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Abstract
Generating high-quality non-English language
datasets is crucial for achieving high perfor-
mance in various Natural Language Processing
(NLP) tasks. In this paper, we propose a new ap-
proach for translating NLP datasets that relies
on a two-phase pipeline and online translation
services. Our approach focuses on solving the
alignment problem that affects span prediction
tasks and utilizes automatically labeled data for
training an alignment model. We demonstrate
that our model-based approach shows higher
accuracy than any other alignment method
and improves the average F1 score on sev-
eral Question-Answering (QA) datasets, specif-
ically on the XQuAD Translated-train dataset,
achieving new state-of-the-art results.

1 Introduction

During the past ten years, natural language process-
ing (NLP) has rapidly developed in all aspects of
research. New models, datasets, training platforms,
and techniques are published almost daily while
accuracy and efficiency are soaring to new heights.
Yet, most works focus mainly on English, given its
global dominance, and maybe a small number of
other languages, while most languages get less at-
tention. This lack of focus subsequently leads to a
scarcity of resources for the majority of languages,
as demonstrated in Appendix C, resulting in less
performing models. Nevertheless, real-world NLP
applications are needed in other languages, as they
are in English. Focusing mainly on English may di-
vert the research community’s attention away from
addressing linguistic features not typically found
in English, such as dealing with intricate morpho-
logical structures. Creating large labeled datasets
is labor intensive; it requires the engagement of
experts in the domain and language in focus. Thus,
non-English datasets tend to be less abundant and
usually smaller.

In this work, we focus on automatically generat-
ing datasets for the traditional question-answering

(QA) task, written in many diverse languages. In
this task, the input consists of a question, a con-
text, and an answer. The context is a short passage,
and the answer is defined as a specific span of text
within that context. The model is expected to pre-
dict the span of the answer within the given context.
This task is deemed one of the foundational tasks
in NLP and is frequently used as a performance
measure for various models (Wang et al., 2018;
Liu et al., 2019; Lan et al., 2020). Additionally,
QA has recently been employed as a preliminary
training step for models before they are trained on
downstream NLP tasks. These tasks include event
extraction (Du and Cardie, 2020), named entity
recognition (Li et al., 2019, 2020), relation classifi-
cation (Cohen et al., 2021), information extraction
(Pires et al., 2022), and other downstream tasks
(Hashavit et al., 2018).

Constructing a QA dataset from the ground up or
through manual translation from another language
requires significant work, time, resources, and a
substantial level of expertise in NLP. Recently, the
idea of utilizing automated translation tools to gen-
erate these datasets has been suggested as a way to
reduce both costs and the amount of manual labor
required (Abadani et al., 2021; Mozannar et al.,
2019; Macková and Straka, 2020). Using auto-
mated translation tools in such settings presents
challenges, which can often compromise the over-
all data quality. A fundamental challenge that
arises is the identification of specific text spans
in the translated document. The translation of a
QA instance written in English includes translating
the question, the context and the original span of
the answer. However, locating the translated ver-
sion of the answer in the translated context is not a
straightforward task since the answer may appear
in a different translated surface form, as dictated
by the context.

Figure 1 illustrates this problem. For example,
consider the answer “Greek” (highlighted in blue).
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This word is inherently ambiguous as it can refer
to both nationality and language, which may have
different forms in other languages. Identifying the
accurate span of Greek in the translated version
of this context becomes challenging, as we may
not have prior knowledge of the original meaning
we are looking for. Moreover, in some languages,
the translation may undergo morphological mod-
ifications to account for gender, person, number,
case, or other language-specific affixations. When
translating the answer in isolation, the contextual
meaning associated with it can be lost, resulting
in a noticeable difference between the translated
answer and its counterpart within the translated
context.

As we show, simple string matching proves in-
sufficient to identify the translated answer’s span
within the translated context. Instead, an align-
ment process becomes necessary after translation
to establish the most suitable semantic equivalent
match in the translated context. If the answer is
not properly aligned during the translation process,
the corresponding instance may be excluded from
the translated dataset, leading to a reduction in the
overall number of samples available. Conversely,
misaligned answers compromise the quality of the
dataset, emphasizing the critical role of precision
and recall in the alignment process to ensure high-
quality datasets.

In this paper, we aim to enhance the use of
automated translation tools for translating span-
prediction datasets, with a specific focus on QA
from English to other languages. We employ com-
mercially available translation tools and introduce
a novel alignment model that can be easily trained
for any language, improving the coverage of the
target language.

We propose a new span alignment method, de-
scribed in greater detail in Section 3, which formu-
lates the alignment problem as a span extraction
problem and uses a multilingual language model
to predict the alignment. We define an automatic
data labeling process for creating data for training
that model and show that this new approach can
generate high-quality QA datasets. Finally, in Sec-
tion 4, we evaluate our new approach by generating
machine-translated QA datasets in 13 languages,
training QA models on these datasets, and compar-
ing our training results to models trained on exist-
ing datasets in the same languages. The average
improvement of our approach over those baseline

English original

C: Symbiosis (from Greek "together" and "liv-
ing") is close and often long-term interaction
between two different biological species...

Q: What language does the word "symbiosis"
come from?
A: Greek

Czech translation

C: Symbióza (z řeckého „spolu“ a „živ-ing") je
úzká a často dlouhodobá interakce mezi dvěma
různými biologickými druhy...

Q: V jakém jazyce je slovo "symbióza"
pocházet z?
A: řecký

Figure 1: Example of a QA instance consists of a context
(C), a question (Q), and an answer (A) from the SQuAD
v1.1 dataset. The answer in the original English sample
is highlighted in blue as a span within the context and
on its own. The answer in the translated Czech sample
is highlighted in red and appears in different surface
forms within the context and on its own

models is +3.3 in F1 score and +2.9 in exact-match
(EM) score.

In summary, we make the following contribu-
tions:

1. We formulate the span alignment task as a
span extraction task and suggest a new model-
based approach to address it.

2. We achieve state-of-the-art results in QA in
nine languages.

3. We have made our code and the gener-
ated QA datasets in 13 languages pub-
licly available. They can be accessed at
the following URL: https://github.com/
ofrimasad/translated_qa.

2 Related Work

The most popular QA dataset is SQuAD v1.1 (Ra-
jpurkar et al., 2016), containing 100K question-
answer pairs in English. It has been extended in

https://github.com/ofrimasad/translated_qa
https://github.com/ofrimasad/translated_qa
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SQuAD v2.01 (Rajpurkar et al., 2018), with 50K
questions that have no answer in the given content.
A popular non-English version of this benchmark
is the XQuAD2 benchmark dataset for evaluating
cross-lingual QA performance. This dataset con-
sists of only 1,190 question-answer pairs from the
development set of SQuAD v1.1 translated into ten
languages by professional translators (Artetxe et al.,
2020). It also includes the XQuAD-Translate-train
dataset, a machine-translated version of the full
SQuAD v1.1 train set.

The current state-of-the-art results on SQuAD
v1.1 were achieved by using Google’s T5-11B
model (Raffel et al., 2019), with F1 and EM scores
of 96.22 and 91.26, respectively. In comparison,
the equivalent multilingual model, mT5, trained
on XQuAD-Translate-train dataset achieved only
85.2/71.3 F1 and EM scores (Xue et al., 2021,
2022) averaged on ten languages (Arabic, German,
Greek, Spanish, Hindu, Russian, Thai, Turkish,
Vietnamese, Chinese), highlighting a significant
gap of 20% in EM performance.

Moreover, even when using large amounts of
unlabeled data for pre-training large language mod-
els (LLMs), better results can be achieved in the
QA task by fine-tuning the model using a dataset
labeled explicitly for the task. GPT-3, as an ex-
ample, achieves F1 of 69.8 on SQuAD v2.0 (Ra-
jpurkar et al., 2018) when attempting few-shot pre-
dictions. In contrast, the fine-tuned current state-of-
the-art models achieve F1 of 93 on the same dataset
(Brown et al., 2020).

Both versions of SQuAD (1.1, 2.0) have al-
ready been manually or automatically translated
into other languages: Spanish (Carrino et al.,
2019), Czech (Macková and Straka, 2020), Ara-
bic (Mozannar et al., 2019), Swedish (von Es-
sen and Hesslow, 2020), Dutch (van Toledo et al.,
2022), Finnish (Kylliäinen and Yangarber, 2022),
Bangla (Bhattacharjee et al., 2021), and Persian
(Abadani et al., 2021). Moreover, equivalent
datasets were created in French (Heinrich et al.,
2022; d’Hoffschmidt et al., 2020), Russian (Efi-
mov et al., 2019), Hebrew (Keren and Levy, 2021;
Cohen et al., 2023), and Korean (Lim et al., 2019).

Although the majority of translated versions
have been generated using a consistent translation
approach, such as utilizing pre-trained machine
translation (MT) models or online MT services

1Both versions are under CC-BY-SA-4.0 license
2CC-BY-SA-4.0 license

supported by these models, alternative approaches
have been proposed to address the alignment chal-
lenge mentioned earlier.

A naive approach to handling this problem is
to keep only samples where the translated answer
can be found in the text, using either simple string
matching (Heinrich et al., 2022) or more advanced
fuzzy-matching methods that include some text
normalization operations (e.g., white spaces and
punctuation removal, lower-casing) (Kylliäinen
and Yangarber, 2022) and some other basic heuris-
tics. Adopting these approaches often leads to
the removal of many instances from the translated
dataset. for example, in (Heinrich et al., 2022),
around 60% of the instances were discarded dur-
ing this process. Furthermore, as the matching be-
comes fuzzier or less precise, the likelihood of gen-
erating incorrect alignments increases. This ulti-
mately reduces the quality of the translated dataset.
We later demonstrate that significant data loss in-
curred during the translation process has a signifi-
cant impact on the accuracy of a QA model trained
using the translated dataset.

Another approach involves utilizing word re-
lation trees, often extracted by a model. In this
method, both the context and answer are lemma-
tized, and the stem of each lemma is extracted
(Macková and Straka, 2020; Kylliäinen and Yan-
garber, 2022). The stem of the answer is searched
within the list of stems present in the context. De-
pending on the implementation, either the entire
lemma is considered as the answer, or some simpli-
fied reductions are applied. This method can also
be applied to a set of words aligned individually
from the source to the target language using a DL
model (the span of the aligned words is used in this
case) (Zhen et al., 2021). This process still results
in a significant data loss of 18%-28%, as shown by
(Kylliäinen and Yangarber, 2022).

A third approach includes adding markers or
tags directly to the text or as additional tokens (von
Essen and Hesslow, 2020). The markers are short
strings usually added before and after the appear-
ance of the answer in the source text. The idea is
that these markers are designed to survive the trans-
lation process by being copied as-is to the target
text and could be located after translation so that
the translated answer will be located in the trans-
lated text. Typically, markers used for this purpose
are designed to be distinguishable from running
text. They often take the form of non-standard text
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patterns or symbols, such as <p>, «H», ##, @@,
and &&&. This approach poses a new challenge: the
markers should be resilient enough to survive the
translation process and show up in the translated
text, while having minimal effect on the context
of the text. Figure 2 shows how different markers
are preserved during translation vs. the effect of
these markers on the context of the sentence. A
very resilient marker, like “[34456]”, has a very
high chance of being included in the translation.
However, in many cases, it significantly impacts
the translation quality. On the other hand, a less
resilient marker (i.e., “__”) has little effect on the
translation quality, but it is dropped from the trans-
lated text very often (more than 12% of the times).

Figure 2: A plot of markers resilience vs. context preser-
vation. Different markers are plotted in different colors.
The survival rate is calculated as the percentage of times
the marker has survived and appeared in the translation.
Context is compared by calculating cosine similarity
between the embeddings (generated by the multilingual
model) of the text translated with and without the mark-
ers

Carrino et al. (2019) proposed another approach,
using a Bayesian model with Markov-chain Monte
Carlo (MCMC) inference for word alignments. The
context is broken into sentences before translation,
and each translated sentence is aligned with the
original one. This process produced a complete
word mapping from the source context to the trans-
lated context. Finally, they extracted the translated
answer from the translated context using the map-
ping of the answer from the original context. This
approach reduces data loss. However, it is less ap-
plicable to languages with a different morphology
than English. To accommodate such languages, a
work by von Essen and Hesslow (2020) presented
two methods focusing on reordering the words. The

initial word alignments are obtained using cosine
similarity between the source and target texts, rep-
resented by embeddings generated using a mul-
tilingual model. Then, the Gromov-Wasserstein
word distance matrix is minimized to force mini-
mal word reordering while preserving the correct
context of the answer. A work by (Lou et al., 2022)
presented a similar approach with a different word
distance matrix computation.

In a recent work proposed by von Essen and
Hesslow (2020), a new approach was presented, in
which a multilingual model was trained to align
the translated answer and context. The model
was trained using a contextual pyramid, holding a
translated version of the span and its surroundings.
When training, the task is to align this translated
contextual pyramid to the correct span in the En-
glish text. During inference, the model is expected
to carry out the same task, but to align the trans-
lated contextual pyramid to the translated Swedish
text. The model is not directly trained on the task
it is required to eventually perform due to a lack of
training data. Instead, this method relies on the gen-
eralization abilities of a multilingual BERT model
to solve this task by taking a zero-shot learning
approach. The reported data loss using this method
is only 8%.

Most methods depicted above apply some heuris-
tics and basic statistical tools to solve the alignment
problem. In this work, we show that the alignment
problem should be solved using a more advanced
algorithm, based on a language model, which has
proven efficient in solving other NLP tasks.

3 Method

We propose a two-phase approach to tackle the
alignment problem and generate span-prediction
datasets of high quality. Our approach consists
of the following two steps: 1) Train an alignment
model for the target language; and 2) Translate the
given dataset. We will now explain each step in
more detail.

3.1 Step 1 - Train an Alignment Model for the
Target Language

The alignment model is trained to accomplish the
following task: given a translated sentence in the
target language, and a phrase in English, find the
span of the phrase within the translated sentence.
Figure 3 illustrates the alignment process. The
model predicts a span that closely aligns with the
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Figure 3: The translation and alignment process. Both the context (in yellow) and answer (in green) are translated.
However, since the answer is translated out-of-context while its span inside the context is translated in-context, the
translated answer does not appear in the translated context. The Alignment model takes the translated context and
English answer, and predicts the span in the translated context

meaning of the translated phrase. We train the
model to predict directly from the phrase in En-
glish. We train this model on a dataset that we
automatically generate with labels. We start by
translating only the contexts of SQuAD v1.1 (train)
to the target language, using a machine-translation
model, which we use as a black box. This allows us
to utilize existing off-the-shelf models; in this work
we use Google Translate.3 We proceed to sam-
ple sentences from the translated dataset. Within
each sentence, we randomly select a segment, de-
fined as a few consecutive words. This segment
will be our gold-label in the generated dataset. We
then translate the selected segment into English.
Note that the translation into English is done in-
sensitive to the context. We make sure to select
sentences and segments, according to the distribu-
tion of the length and position of the answers in
SQuAD. The resulting dataset is formatted as a QA
dataset, where each sentence we sample is consid-
ered as context, the selected segment as the answer,
and the translated segment in English is treated as
the question. Some examples from this dataset are
listed in Table 5.

Following that, we proceed to fine-tune a pre-
trained multilingual model4 for the QA task on
the dataset we have generated. To evaluate the
performance of our model, we use a validation set
that is created in a similar way to the one described
earlier. The dataset also includes negative instances
(questions that are impossible to answer based on
the given context), as introduced in SQuAD v2.0.
These instances are generated by choosing a phrase
that does not appear in the sentence. By using
negative instances, the model is trained to predict
two values, the span of the answer, as well as the
confidence level of the predicted span. When the
confidence level is low it indicates that the model

3https://translate.google.com
4We use a multilingual model since the phrase is in English

while the span is searched in text written in the target language.

was unable to identify any span within the context
that it deems as a suitable answer. We control the
confidence level using a threshold value in order
to reduce false predictions. We elaborate more on
that in the next phase.

3.2 Phase 2 - Dataset Translation

We use the online Google Translate service to trans-
late SQuAD v1.1 into other languages. Each con-
text, question, and answer are translated together
as a single unit to preserve as much context as pos-
sible in the translation process.

In Figure 2 we show how in-sentence markers
may disappear in the translation, along with the im-
pact they have on the translation quality. However,
we noticed that if markers are placed between pairs
of sentences, as sort of sentence delimiters, the
markers predominantly remain intact, and the trans-
lation maintains its fidelity to the original text. In-
serting such sentence-delimiter markers enables us
to translate the context as one unit, as well as main-
tain sentence-level alignment between the source
text of the context and its translated version. Us-
ing such markers is essential as the segmentation
of the context into sentences in the source and tar-
get languages, does not always produce parallel
sentences. We found that depending on the target
language, between 7-15% of the contexts are di-
vided into a different number of sentences in the
target language. With the added markers, this was
minimized to a range of 0.5-3%.

Following this, we would like to find the answer
(written in English) in the translated version of
the context. We refer to this procedure as answer
alignment. To accomplish this, we employ three
methods that essentially serve to complement one
another:

1. First, if possible, we attempt to align the an-
swer by locating it within the translated con-
text using exact matching.

https://translate.google.com
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2. In cases where the answer cannot be aligned
using exact matching, we use the alignment
model described above to align the answer
with the translated sentence.

3. Finally, when the alignment model predicts
relatively low confidence, we segment the con-
text into subsets of words with a total word
count that approximates the word count of the
answer. More formally:

∀(wi, . . . , wj) ⊆ (w1, w2, . . . , wm)

Nans + 2 > j − i+ 1 > Nans − 2

where Nans is the number of words in the an-
swer, and m is the total number of words in
the context. Then, we calculate the embed-
dings of the answer and all context segments
using a pre-trained multilingual BERT model
(cased), also known as mBERT, and use co-
sine similarity to find the closest segment to
the answer. To prevent weak alignments, we
set a threshold on the similarity value.

4 Experiments

We experiment on different languages and answer-
alignment methods and compare our approach to
other methods described in Section 2.

4.1 Experimental Settings

We evaluated our model on ten languages, us-
ing the Cross-lingual Question Answering Dataset
(XQuAD) (Artetxe et al., 2019) as a benchmark.
The creators of this dataset also released the
Translate-train benchmark, in which SQuAD v1.1
(Rajpurkar et al., 2016) train set was automatically
translated into ten languages using an automatic-
translation model. We perform evaluations on the
XQuAD dataset comprised of 240 paragraphs and
1,190 samples taken from the development set of
SQuAD v1.1. Those instances were manually trans-
lated by professionals into the same ten languages.
We use the Google Translate API service to trans-
late the SQuAD v1.1 train set into ten languages.
Both our alignment models and language-specific
QA models are fine-tuned based on the multilin-
gual BERT model (cased) (Devlin et al., 2019). We
follow the XQuAD Translate-train benchmark, and
assign the same values to all training hyperparame-
ters. We train each model for the duration of three
epochs, with a learning-rate value of 3.0e− 5, and

a warm-up value of 6%. In all our training execu-
tions, we use a batch size of 8, a gradient accumula-
tion of 8, and employ the widely-used AdamW op-
timizer. We set the model-based answer-alignment
threshold to 0.05 and the cosine-similarity align-
ment threshold to 0.5.

Unfortunately, we did not have access to the
same translation model used by the creators of
XQuAD, as it seems the model used by XQuAD
has better capabilities than the online Google Trans-
lation service provided by the vendor.

4.2 Results

We compare four groups of datasets, each contain-
ing datasets in ten languages translated from the
original SQuAD v1.1 dataset:
Simple Alignment: created using Google Trans-
late with only simple string matching
XQuAD Translate-train: created by the creators
of XQuAD using a superior translation model than
ours.
Simple + Cosine Alignment: created using
Google Translate following two answer-alignment
methods, string matching, and cosine similarity, as
described in §3.2.
Full Alignment: our main approach. Created using
Google Translate, and the full answer-alignment
process described in §3.2.

Table 1 summarizes the F1 and EM scores on the
XQuAD test set (in the same language as the train
set) after training the multilingual BERT model
on each one of the translated datasets. The table
also provides the size of the translated train set as a
percentage of the size of the SQuAD v1.1 original
train set.

Compared to the baseline approach (Simple
Alignment), which experiences a dataset size re-
duction of approximately 50%, our main approach
(Full Alignment) maintains 93.4% of the origi-
nal dataset size. Additionally, our main approach
demonstrates improvements in both F1 and EM
scores across all languages, with an average in-
crease of 3.3% points in F1 and 2.98% points in
EM. We attribute this improvement to the utiliza-
tion of a larger number of samples in our approach.

When comparing our method to the XQuAD
benchmark, we observe variations in performance
across different languages. Nonetheless, our ap-
proach achieves an average improvement of 3.4%
points in F1 and 2% points in EM over XQuAD. It
is worth noting that XQuAD Translate-train outper-
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XQuAD Translate-train Simple Alignment Simple + Cosine Alignment Full Alignment
Language F1 EM Size F1 EM Size F1 EM Size F1 EM Size
Arabic (ar) 68.01 51.51 99.1% 68.06 51.51 56.8% 70.17 52.02 97.6% 70.71 53.70 94.2%
German (de) 74.67 60.08 94.3% 73.34 58.24 55.1% 75.13 57.90 97.8% 76.84 61.18 95.4%
Greek (el) 71.63 53.95 91.3% 68.43 50.34 48.2% 73.43 55.46 97.5% 72.83 56.22 89.2%
Spanish (es) 79.30 62.27 99.9% 77.17 59.66 55.2% 77.50 58.15 97.4% 79.27 62.27 96.1%
Hindi (hi) 70.08 55.80 98.0% 68.58 53.78 56.4% 70.13 53.53 97.8% 70.82 55.46 91.9%
Russian (ru) 75.17 58.91 96.9% 65.53 47.73 41.2% 73.22 54.29 97.1% 73.94 55.88 94.6%
Thai (th) 31.85 28.57 98.0% 59.01 51.26 52.2% 63.59 55.97 95.5% 61.95 53.45 86.8%
Turkish (tr) 69.51 55.46 98.8% 65.58 49.75 59.7% 66.75 49.92 97.8% 69.54 52.52 93.9%
Vietnamese (vi) 75.75 56.55 99.5% 75.85 55.21 58.1% 75.69 53.95 97.8% 76.24 54.20 95.5%
Chinese (zh-CN) 66.20 56.60 97.8% 61.13 53.78 56.3% 55.93 45.55 87.6% 63.56 55.29 96.1%
Average 68.2 54.0 97.3% 68.27 53.13 53.9% 70.15 53.67 96.4% 71.57 56.02 93.4%

Table 1: The results of mBERT-cased on the XQuAD test set, using the XQuAD Translated-train set as well as our
datasets.

forms our method in certain languages. Neverthe-
less, our approach outperforms XQuAD in seven
out of the ten tested languages. Notably, upon ex-
amining the language that yielded better results on
the XQuAD dataset, we discover a significant dif-
ference in translation quality between XQuAD and
our translation model. Based on this observation,
we hypothesize that employing the same translation
model utilized by our approach could potentially
yield improved results. However, due to the un-
availability of detailed information regarding the
translation process of the XQuAD Translat-train
dataset, we cannot provide a comprehensive analy-
sis.

Alignment from English vs. Alignment from
the Target Language. We found that using the
English phrase as an input to the alignment model
produced better results (1.7% F1 on average) than
using the target-language phrase. We hypothesize
that this happens due to some contextual biases
added to the translated text. To demonstrate that,
consider the following sample for alignment in
Spanish:

C: Cuando se encuentran por primera
vez, se considera de buena educación in-
clinarse.
Q: bow
A: inclinarse

The Spanish sentence says: “When you first meet,
it is considered polite to bow”. The alignment
should be between the word “bow” in English and
“inclinarse” in Spanish. But if we translate the
word “bow” back to Spanish, we get the word
“arco”, which refers to another meaning of bow,
a weapon (e.g., bow and arrow). Suppose the align-
ment model is trained using the translated phrase
instead of the English one. In that case, it needs to
handle a harder challenge, as the translated phrase

“arco” and the target phrase “inclinarse” in the con-
text, are completely different. The phrase “bow” in
English is closer to the contextual meaning since
it does not assume only one meaning of the word.
The same concept can apply not only to words with
multiple meanings, but also to words that appear in
different surface forms depending on the context.
All the results reported in this paper were achieved
by training the alignment model using the English
phrase. Table 3 shows a comparison between the
results of the alignment model training with the
two approaches.

Multiple Alignment Methods. We utilize a
multi-method approach for aligning answers.
Three different alignment techniques are applied
based on the results of our experiments. Our find-
ings indicate that basic string matching can suc-
cessfully resolve 30-60% of the samples, contin-
gent on the target language, consuming minimal
resources and time. For the remaining unresolved
samples, we utilize an alignment model along with
the cosine similarity method described in Section
3.2. Preliminary testing showed that while cosine
similarity achieves lower performance overall, it
surpasses the alignment model on sequences with
length ≥ 15 words. Thus, using cosine similarity
as a complementary alignment method to model-
based alignment improves overall results.

Size vs. Quality of the Dataset. An important
insight that can be drawn from our results is that
while preserving the maximal number of samples
from the dataset in the translation is crucial, adding
misleading samples counter-affects this. We ob-
serve that by using cosine similarity, we increased
the average size of the dataset from 53.9% to
96.4%, but when using the model-based alignment
process, we gain a larger improvement in F1 and
EM scores, even though the average size of the
generated dataset was only 93.4% of the original
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one (smaller than the 96.4% we get by using co-
sine similarity). We illustrate this observation in
Figure 4. While the size of the dataset grows mono-
tonically when decreasing the threshold, we see
that the F1 score is less predictable. When the
threshold is over 0.2, the F1 gradually decreases
correlated with the size of the dataset, but when the
threshold is under 0.2, the F1 score is quite noisy.
At this range of threshold values, the trade-off be-
tween adding more samples and adding misleading
samples causes extreme changes in F1 over small
changes in the threshold. In addition, we quantify
the effect of using additional data on the overall
model performance. We discuss this in Appendix
A.

4.3 Using a Large Language Model to
Generate the Dataset

To investigate the potential of LLMs in generating
QA datasets in languages other than English, we
employed the OpenAI GPT-3.5 API. Our initial
experiment focused on generating samples com-
prising question-answer pairs within a context writ-
ten in Hebrew. We sourced 50 distinct contexts
from Hebrew Wikipedia. Each context was concate-
nated with five different English-written prefixes
that were manually formulated to instruct GPT-3.5
(i.e., Generate a SQuAD question and answer in
Hebrew. Note that the answer must appear in the
context itself. The context: <Hebrew context>).

To evaluate the generated answers, we imple-
mented a validation step by cross-referencing the
answers with the corresponding context. Only an-
swers present within the context were deemed us-
able. The obtained results revealed that the most
successful prefix achieved a mere 18% usability
rate. Notably, the handling of non-Latin languages
by GPT-3.5 entails character-level tokenization,
causing an elevated token count in requests and
responses. Consequently, the cost estimation for
producing an extensive dataset is prohibitively ex-
pensive due to the pricing structure based on price
per 1k tokens.

In another experiment, we aimed to explore the
feasibility of translating samples from the SQuAD
v1.1 dataset into Hebrew, maintaining the align-
ment between the translated answer and the trans-
lated context. This experiment was designed to
ascertain the LLM’s effectiveness in performing
high-quality translations while retaining the con-
textual coherence of the content.

Surprisingly, our efforts to identify an optimal
prompt configuration to successfully translate the
samples yielded discouraging results. The exper-
iment recorded a success rate of less than 5%, in-
dicating significant challenges in achieving accu-
rate and reliable translations using the employed
methodology.

These experiments collectively underscore the
complexities involved in generating non-English
QA datasets and performing accurate dataset trans-
lations using current LLMs.

Figure 4: F1 score and dataset size vs. threshold value.
Results of a BERT multilingual model trained on the
SQuAD v1.1 dataset translated to German by using the
alignment model with different thresholds and tested on
the XQuAD-de test set.

Additional Languages. We conduct another set
of experiments, to compare our general approach
for dataset translation to the approaches described
in Section 2. We collect the datasets and models
used by previous works to translate QA datasets
into Spanish, Swedish, Hebrew, and Czech. The
results of these experiments are described in Table
2. The results show that our translation approach
outperforms the other approaches in all languages
except Swedish (von Essen and Hesslow, 2020).

These experiments facilitate a comparison be-
tween our automated, language-agnostic technique
and some language-specific methodologies. We
learned that the creators of the language-specific
datasets possess intrinsic knowledge of the particu-
lar language, which can play a significant role when
producing a dataset for a specified language. Some
languages contain unique punctuation marks, dif-
ferent structures, and concepts that may be used to
improve translation when handled correctly. More-
over, the evaluation process of a QA task includes a
phase referred to as normalization. This process in-
cludes the removal of language-specific articles. In
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Language Model Test Set Train Set F1 EM Size

Spanish (es) mBERT cased XQuAD test set Spanish SQuAD-es-TAR-train 77.6 61.8 100.0%
Ours 79.3 62.3 96.1%

Swedish (sv) mBERT cased sv-dev-proj proj-sv 81.4 71.5 99.1%
Ours 80.1 70.7 96.8%

Hebrew (iw) mBERT cased ParaShoot test ParaShoot train 56.1 32.0 1,792
Ours 66.6 41.2 83,413

Czech (cs)

mBERT cased

SQuAD-cs v1.15

SQuAD-cs (v1.1) 70.6 59.5 73.2%
mBERT uncased SQuAD-cs (v1.1) 73.9 62.1 73.2%
mBERT cased Ours 76.4 65.8 95.1%
mBERT uncased Ours 76.7 66.3 95.1%

Table 2: The results of mBERT trained on datasets translated by previous work (described in Section 2) and by our
translation approach (described in Section 3). The results are reported on the dataset used by each study: Spanish
(Carrino et al., 2019), Swedish (von Essen and Hesslow, 2020), and Czech (Macková and Straka, 2020). The
Hebrew dataset, ParaShoot (Keren and Levy, 2021), was created manually (not a translation) and formatted similarly
to SQuAD.

English, these articles are [a, an, the], in French [le,
la, less, l’, du, des, au, aux, un, une], and in German
[in, wine, einen, einem, wines, Weiner, der, die, das,
den, dem, des]. Not knowing the language-specific
articles may dramatically affect the performance
of the QA model, and unfortunately, there is not a
source yet that outlines these articles for prevalent
languages.

English to Target Target to Target
Language F1 EM F1 EM
Arabic(ar) 81.41 77.36 80.44 74.13
German(de) 81.80 78.79 80.26 75.42
Greek(el) 78.34 74.55 78.62 73.73
Spanish(es) 76.42 71.75 76.94 70.53
Hindi(hi) 80.06 73.55 78.37 68.15
Russian(ru) 81.74 77.93 80.78 75.49
Thai(th) 66.55 64.45 64.79 61.91
Turkish(tr) 82.49 77.45 80.79 73.94
Vietnamese(vi) 80.57 71.71 80.35 70.14
Chinese(zh-CN) 72.94 72.17 70.44 69.14
Average 78.23 73.97 77.18 71.26

Table 3: The results of alignment model training in ten
languages. Comparing two types of alignment, from
English directly to the target language, and from the
target language to itself.

5 Conclusion

In this paper, we presented a novel two-step
approach for automatically translating span-
prediction datasets. We have identified the align-
ment process as the differentiating component be-
tween different approaches, and formulated the
alignment problem as a span extraction problem.
We presented a method for training an alignment
model and using such a model to obtain high-
quality translations of instances of a QA dataset.
The evaluation results show that our approach im-
proves the quality of the datasets created through
translation from English into 13 different lan-
guages, with an average F1 score improvement of
3.4%, achieving state-of-the-art results on XQuAD.

6 Limitations

Our approach is fully dependent on the quality
of the machine translation system for the target
language. Although machine translation systems
are available for most languages, they might not
yet be available for some less common languages.
The quality of the said machine translation system
might affect the result of our process and produce
lesser results. Any biases in the machine translation
system may be inherited by the resulting dataset,
which may lead to bias confirmation.
Moreover, our approach requires either local com-
puting resources or access to online services. These
resources might be expensive or limited when used
under the free usage terms.

7 CO2 Emission Related to Experiments

Experiments were conducted on a RTX 3090 GPU
(TDP of 350W). A cumulative of 5-9 hours per
language to train the alignment model + 3 hours to
train and test the final model which evaluates the
dataset’s quality. Total emissions are estimated to
be 1.68 kgCO2eq per language or 30.3kgCO2eq
for all experiments.
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A F1 Scores on Subsets of SQuAD v1.1

Generally speaking, increasing the size of the
dataset improves the model’s performance, up to a
certain threshold. It can be seen in Figure 5, which
shows the F1 scores reached by the same model
trained on different sizes of subsets of the SQuAD
v1.1 dataset (in English). In this case, the model
still benefits from increasing the number of samples
up to 100% of the dataset.

Figure 5: F1 score vs. size of train set (as a percentage
of the full SQuAD v1.1 train set). Each data point rep-
resents the results of a different mBERT model trained
on a subset of the SQuAD v1.1 train set and evaluated
on the SQuAD v1.1 development set

B Results on Translated SQuAD v2.0
Simple Alignmen Full Alignment

Language F1 EM F1 EM
Arabic(ar) 68.71 54.59 72.68 58.69
German(de) 74.58 61.03 78.01 64.51
Greek(el) 70.12 53.82 74.27 59.96
Spanish(es) 80.41 63.50 82.98 66.97
Hindi(hi) 70.92 56.54 72.86 58.67
Russian(ru) 65.04 47.96 74.68 59.74
Thai(th) 44.98 38.78 49.05 43.96
Turkish(tr) 70.96 55.62 73.73 58.37
Vietnamese(vi) 77.77 57.45 79.61 58.77
Chinese(zh-CN) 63.36 59.55 65.60 62.41
Czech(cs) 72.34 59.51 77.92 66.19
Hebrew(iw) 70.07 56.58 72.27 58.01
Swedish(sv) 78.63 68.07 80.24 70.22
Average 69.84 56.38 73.38 (+3.54) 60.50 (+4.11)

Table 4: Results of BERT-multilingual(cased) trained
on SQuAD v2.0 train set and evaluated on SQuAD v2.0
development set, both translated to different languages.
Simple alignment baseline refers to simple matching
defined in §3.2. Full Alignment refers to our main ap-
proach. Created using Google Translate, and the full
answer-alignment process described in §3.2. our ap-
proach achieves an average improvement of 3.4 percent-
age points in F1 and 2 percentage points in EM over the
baseline
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C Resource Availability of Common Languages

Figure 6: Top 30 languages sorted by native speakers vs. the number of public datasets and models available on the
popular HuggingFace hub (Lhoest et al., 2021) (as of May 2023). There are 15696 models in English compared to
only 14302 models in all other languages combined, and 3300 datasets in English compared to 4292 datasets in all
other languages combined (English native speakers are 8.5% of all native speakers of the 30 languages)
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D Samples from the Alignment Dataset
English Phrase Target Language Phrase (span) Context
Pointe-Noire and along the Atlantic coast. Pointe-Noire und entlang der At-

lantikküste. (103-146)
Die bedeutendsten Untergruppen des Kongo sind Laari in den
Regionen Brazzaville und Pool sowie Vili um Pointe-Noire und
entlang der Atlantikküste.

16 year olds, but in practice 16-Jährige, aber in der Praxis (78-108) Die öffentliche Bildung ist theoretisch kostenlos und obligatorisch
für unter 16-Jährige, aber in der Praxis fallen Kosten an.

less than the 79% weniger als die 79% (72-92) Die Netto-Einschulungsrate im Grundschulbereich lag 2005 bei
44%, viel weniger als die 79% im Jahr 1991.

of the boom and the des Aufschwungs und der (186-209) Die derzeitige Regierung herrscht über einen unruhigen inneren
Frieden und steht trotz der seit 2003 rekordhohen Ölpreise vor
schwierigen wirtschaftlichen Problemen bei der Stimulierung des
Aufschwungs und der Verringerung der Armut.

government Regierung (15-24) Die derzeitige Regierung herrscht über einen unruhigen inneren
Frieden und steht trotz der seit 2003 rekordhohen Ölpreise vor
schwierigen wirtschaftlichen Problemen bei der Stimulierung des
Aufschwungs und der Verringerung der Armut.

Peace Frieden (63-70) Die derzeitige Regierung herrscht über einen unruhigen inneren
Frieden und steht trotz der seit 2003 rekordhohen Ölpreise vor
schwierigen wirtschaftlichen Problemen bei der Stimulierung des
Aufschwungs und der Verringerung der Armut.

he professed to be public bekundete er öffentlich sein (82-110) Als Sassou Nguesso am Ende des Krieges im Oktober 1997 an
die Macht zurückkehrte, bekundete er öffentlich sein Interesse
daran, Wirtschaftsreformen und Privatisierungen voranzutreiben
und die Zusammenarbeit mit internationalen Finanzinstitutionen
zu erneuern.

Table 5: Samples from the dataset used for training the alignment model (German in this example)


