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Abstract

Most work on verbalising Knowledge-Graphs
(KG) has focused on high-resource languages
such as English, Russian, Czech or Arabic. In
this paper, we focus on KG-to-Text genera-
tion where the output text is in Breton, Irish
or Welsh. To overcome the small size of the
parallel training data, we combine the strengths
of a multilingual encoder-decoder model with
denoising fine-tuning on monolingual data and
Soft Prompt fine-tuning on a small quantity of
KG/text data. We furthermore structure the soft
prompt into multiple sub-prompts designed to
capture the similarities and differences between
English, Knowledge graphs and the three tar-
get languages. Our experiments show that our
approach outperforms strong baselines and that
all sub-prompts contribute to performance1.

1 Introduction

Data-to-Text generation includes generating com-
plete and precise natural language descriptions of
the information contained in structured data like ta-
bles or knowledge graphs (KG). The ever-growing
volumes of data generated over time have opened
the doors to a large variety of data analysis tech-
niques that can be applied to structured data; how-
ever, presenting the outcome of these analyses in a
straightforward and easy-to-interpret manner can
be complex. Data-to-Text generation facilitates
the communication of these outcomes by turning
cumbersome data structures into accessible text.

Steady progress has been made on the task of
generating text from KG graphs into the English
language (Castro Ferreira et al., 2020; Pasricha
et al., 2020; Guo et al., 2020b; Kertkeidkachorn and
Takamura, 2020) and some advances have taken
place in other high-resource languages like Russian
(Agarwal et al., 2020; Kasner and Dušek, 2020;
Yang et al., 2020). Little research has been done

1Code at https://gitlab.inria.fr/wsotomar/
phylogenyinspired_softprompts

on low-resource languages however which can be
explained, at least partially, by how data-intensive
the best-performing KG-to-Text approaches are.

Recent work in machine translation (Conneau
et al., 2020; Lin et al., 2020) shows that fine-tuning
large language models pre-trained on multiple lan-
guages helps compensate for data sparsity. More-
over, lightweight fine-tuning techniques have re-
cently emerged that allow preserving the language
knowledge obtained from high-resource languages
while transferring well to low-resource languages.
In particular, the use of phylogeny information
has shown good results in transfer learning for re-
lated languages in classification tasks like POS
tagging, Named Entity Recognition, or Natural
Language Inference (Faisal and Anastasopoulos,
2022). At the same time, Factorized Soft Prompts
have demonstrated a good performance in transfer
learning to low-resource languages in text genera-
tion tasks like summarization (Vu et al., 2022).

In this work, we focus on Data-to-Text genera-
tion where the input is a Knowledge Graph in the
RDF (Resource Description Format, (W3C, 1999))
format and the output is a text verbalising this
graph in languages from the Celtic family namely,
Irish (GA), Welsh (CY), and Breton (BR). We pro-
pose an approach which combines the strengths
of large multilingual language models (mT5) with
monolingual denoising pre-training and linguisti-
cally motivated, lightweight fine-tuning on small
quantities (around 1.5K) of downstream RDF-to-
Text data. Fine-tuning a multilingual model using
mono-lingual denoising incorporates the benefits
of the large quantities of unlabeled data, which is
particularly important for low-resource languages.
We further hypothesize that structuring the Soft
Prompt to account for relations between languages
helps improve transfer learning.

Leveraging the data made available by the

https://gitlab.inria.fr/wsotomar/phylogenyinspired_softprompts
https://gitlab.inria.fr/wsotomar/phylogenyinspired_softprompts
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WebNLG shared task2, we show that our approach
outperforms Full Model Fine-tuning and Factor-
ized Soft Prompts without phylogeny information
in terms of both automatic metrics and human judg-
ments. We also perform an ablation study to study
the impact of the various sub-prompts, and we ex-
amine how the size (from 0 to 1.5K) of the RDF-
to-Text fine-tuning data impacts performance.

2 Related Work

RDF-to-Text. This is a subclass of the Data-to-
Text task that takes as input RDF graphs and aims
to generate natural text. A usual benchmark for
this task is the WebNLG Challenge (Gardent et al.,
2017; Castro Ferreira et al., 2020) which uses DB-
pedia graphs of different sizes (from 1 to 7 triplets)
as the sources and includes human written lexical-
izations as the targets.

The best-performing approaches for this task
are based on the Transformer Architecture (Vasava
et al., 2022). Ribeiro et al. (2021) tested the ef-
ficiency of LLMs on Graph-to-Text tasks and Li
et al. (2020) did it specifically on the WebNLG
Challenge. They both found that T5 (Raffel et al.,
2020) performs particularly well. Later on, using
lightweight approaches like Prefix Tuning (Li and
Liang, 2021) and Control Prefixes (Clive et al.,
2021) on T5, further improvements were reached.
Currently, the best results for the English WebNLG
are around 57 BLEU for all the categories.

Beyond English. Some research has expanded
the results obtained in the Data-to-Text task from
English to other languages. Agarwal et al. (2020)
leverage the strength of pre-trained language mod-
els. They further pre-train T5 on parallel English-
Russian machine translation data for around 900K
steps before fine-tuning on 34K English WebNLG
and 29K Russian WebNLG samples. This method
obtained a balanced score of around 52 BLEU for
both English and Russian. Their results show the
benefits of pre-trained language models, even when
the target language is new to the model.

Kale and Roy (2020) attempt the Table-to-Text
task in Czech. They pre-train a transformer from
scratch on English-to-Czech parallel data for a
million steps and then fine-tune it on 1K Table-
to-Czech samples. Their best-performing model
obtains around 26 BLEU. They prove that good

2https://synalp.gitlabpages.inria.fr/
webnlg-challenge/challenge_2023/

pre-training can produce acceptable results even
when samples of the downstream task are limited.

Demir (2022) experiments with Recurrent Neu-
ral Networks, training a Seq2Seq model from
scratch for Turkish Data-to-Text. Their best-
performing model obtains 31 BLEU after being
trained on close to 40K samples mined from the
Turkish Wikipedia.

Touma et al. (2023) fine-tune various models on
7K WebNLG samples translated to Arabic. Their
best-performing model reaches 25 BLEU and con-
sists of an Encoder-Decoder where both compo-
nents are initialized on AraBERT (Antoun et al.,
2020), a Large Language Model pre-trained on
1.3B Arabic words.

These approaches, however, rely on large (hun-
dred of thousands) bilingual or medium-size (sev-
eral thousand) data-to-text datasets. In contrast,
we rely only on monolingual data, which is more
easily available for low-resource languages. We
then combine denoising pre-training with a linguis-
tically motivated lightweight fine-tuning strategy
to overcome the small size (around 1.5K) of the
data-to-text train set.

Parameter-Efficient Training and Low-
Resource Languages. To combat catastrophic
forgetting and minimise the computation costs
induced by the full fine-tuning of large pre-trained
models, various parameter-efficient training
approaches have surfaced which rely on keeping
the original pre-trained model frozen and only
training a few additional parameters. In partic-
ular, Adapters (parameters introduced in every
transformer layer) and Soft Prompts (parameters
prepended to the embedded input of the model)
have shown good performance on a variety of NLP
tasks (Houlsby et al., 2019; Lester et al., 2021).

Parameter-efficient training strategies have also
been shown to support transfer learning, which
is particularly important when dealing with low-
resource languages. Artetxe et al. (2020) showed
that it is possible to adjust an existing language
model to a new language using Adapters. Pfeif-
fer et al. (2020) demonstrated that stacking tasks
and target language adapters can be used for mul-
tilingual transfer learning of a task from a high-
resource language to a low-resource one. In the
same line, Vu et al. (2022) showed that by using
Factorized Soft Prompts that separate tasks from
the target language it is possible to transfer learning
of generative tasks like text summarization from

https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/
https://synalp.gitlabpages.inria.fr/webnlg-challenge/challenge_2023/
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high-resource languages to low-resource languages
like Vietnamese and Thai. Lee et al. (2022) showed
that fusing Language Family adapters improves per-
formance in low-resourced languages. Faisal and
Anastasopoulos (2022) showed that training hier-
archical language adapters following a phylogeny
tree during training can further improve the transfer
learning capacity of adapters in classification tasks
like POS Tagging, Name Entity Recognition and
Natural Language Inference.

We build on these approaches and extend Vu
et al. (2022)’s Soft Prompt approach by structuring
the prompt to better account for the phylogeny re-
lations between languages and maximise transfer
learning between closely related languages.

3 Phylogeny-Inspired Task-Source-Target
Soft Prompts

At the heart of our approach is a highly structured
Soft Prompt which decomposes into multiple sub-
prompts. Inspired partly by the structure of the
original T5 translation prompts (Raffel et al., 2020)
(e.g., Translate English to German), we first divide
the Soft Prompt into three main components: Task,
Source, and Target. This is also similar to one stan-
dard practice in Machine Translation architectures
like mBART (Liu et al., 2020), M2M100 (Fan et al.,
2021), and NLLB (NLLB Team et al., 2022) where
both Source and Target languages are specified to
improve Zero-Shot performance.

In an attempt to model phylogeny informa-
tion, we further decompose the Source and Tar-
get components into Family, Genus, and Lan-
guage sub-prompts. We call the resulting Soft
Prompt, “Phylogeny-Inspired Task-Source-Target”
Soft Prompt (PI-TST). By using this prompt, we
aim to allow less-resourced languages to benefit
from the training data of their related languages
while preventing the mixture of training data to
introduce too much noise to the model. Figure 1
shows the simplified phylogeny tree we used dur-
ing training. We paired the linearized RDFs with
English since the subjects, objects, and predicates
of the RDF are in English.

4 Method

We fine-tune a pre-trained multilingual model using
the Soft Prompt described in the previous section
and proceed in two steps: an unsupervised pre-
training of the whole Soft Prompt (Step 1) and a
downstream task fine-tuning of the task sub-prompt

Figure 1: Simplified phylogeny tree used when training
the Soft Prompts.

(Step 2). During these two steps, all the weights of
the base model remain frozen. For mT5, we add
a preliminary step (Step 0) which we refer to as
language Model Adaptation.

Step 0: Language Model Adaptation. Some-
times the pre-training objective of the base Large
Language Model is not aligned with the natural
text generation objective. For example, models
based on T5 are generally pre-trained on the Span
Corruption objective which generates spans of text
separated by sentinel tokens instead of plain natural
text. When performing full model fine-tuning this
behaviour is soon corrected, but for lightweight
approaches like Soft Prompts, it can be harder to
overcome it. Lester et al. (2021) proved that pre-
training the base model for some steps in a lan-
guage modelling task, like Prefix Language Mod-
elling, before freezing it and applying a lightweight
strategy benefits performance. We use the BERT-
style Masked Language Modelling (MLM) pre-
training task of Raffel et al. (2020) instead of Prefix
Language Modelling (PLM). We do this given the
better performance of the first objective over the
second in Raffel et al. (2020), particularly on trans-
lation downstream tasks. Furthermore, the MLM
task is closer to our downstream tasks than PLM.
Once this step has been completed, we freeze the
base model for the rest of the training.

Step 1: Unsupervised Pre-training of the Soft
Prompt. The goal of the first stage is to train the
language components of the Soft Prompt so that
each of them captures as much language informa-
tion relevant to their assigned language. Specifi-
cally, we train the whole Soft Prompt on a mixture
of unsupervised, monolingual tasks (Masked LM,
Prefix LM, Suffix LM, Generation, and Deshuf-
fling). We substitute the parameters being used
for each component based on the language of
the training sample. Instances that belong to the
same language family share the same Family sub-
prompt but have different Genus and Language
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Soft Prompt Component Possible Options
Task Masked LM, Prefix LM, Suffix LM, Deshuffling, Open Generation, Data-to-Text
Source/Target Family Germanic, Celtic
Source/Target Genus West Germanic, Goidelic, Britonic
Source/Target Language English, RDF, Irish, Scottish Gaelic, Breton, Welsh

Table 1: Possible values of each Soft Prompt component.

Figure 2: Example input Batch for Step 1 (Unsupervised Pre-training of the Soft Prompt).

sub-prompts. Table 1 shows the possible values of
each component and Figure 2 shows an example
input batch for this step.

Step 2: Downstream Task Fine-tuning of the
Soft Prompt. Once the language components
of the Soft Prompt have learned to perform the
unsupervised tasks, we freeze them and train the
Task sub-prompt on the downstream task (RDF-
to-Text generation). Following Vu et al. (2022),
we use one of the unsupervised task Soft Prompt
components to initialize the new task Soft Prompt
component. In our case, we use the Masked LM
component since we consider it to be the closest
one to the RDF-to-Text task. In this stage, we con-
tinue switching the language components of the
Soft Prompt as required by each training instance,
with the difference that now they are frozen.

Inference. At inference time all the parameters
of the base model and the Soft Prompt remain
frozen. We then combine the task and language
sub-prompts as required by each of the 3 inference
tasks (i.e., generating into Breton, Irish or Welsh).

5 Data

Table 2 shows the number of samples available on
each dataset used.

For unsupervised training, we extract Celtic
and English monolingual data from multiple
datasets available in the Huggingface Hub 3.
Specifically, we collected data from different

3https://huggingface.co/datasets

Train Validation Test
Version Sample Samples Samples

Monolingual
BR 1 206 546 250 250
CY 12 993 205 250 250
EN 7 959 035 250 250
GA 7 996 721 250 250
GD 1 019 593 250 250

WebNLG
RDF-to-BR – 1 399 2 280
RDF-to-CY – 1 665 1 779
RDF-to-EN 35 426* 4 464 5 150
RDF-to-GA – 1 665 1 779

Table 2: Datasets. Collected data for the experiment.
While a big dataset of monolingual data was collected,
just a small amount is seen during training. *The train-
ing WebNLG data was only used during the Zero-Shot
ablation experiment.

OPUS corpora (Tiedemann, 2012) (Bible Cor-
pus (Christodouloupoulos and Steedman, 2015),
DGT, EUConst, GNOME, KDE4, OfisPublik (Ty-
ers, 2009), OpenSubtitles (Lison and Tiedemann,
2016), Opus-100 (Zhang et al., 2020), ParaCrawl,
QED (Abdelali et al., 2014), Tatoeba, and Ubuntu),
CC-100 (Conneau et al., 2020), CC-Aligned (El-
Kishky et al., 2020), CC-Matrix (Schwenk et al.,
2021), ECDC Steinberger et al. (2014), mC4, OS-
CAR (Suárez et al., 2019), TaPACo (Scherrer,
2020), TedTalks (Cettolo et al., 2012), UDHR, and
Wikipedia.

To process the text we first split it into sentences

https://huggingface.co/datasets
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using SentenceSplitter 4 with the default English
settings. Then, each sentence was normalized using
TextaCy5, we applied bullet point normalization,
hyphenated words normalization, quotation marks
normalization, Unicode normalization, white space
normalization, and HTML tag removal. Finally, the
sentences were filtered using FastText Language
Identification (Joulin et al., 2016b,a)6 by keeping
only those above a 0.5 threshold. We collected as
many samples as possible for the Celtic languages
but limited the number of English samples to pre-
vent it from overshadowing the other languages.

6 Experimental Setup

6.1 Training Process
Step 0: Language Model Adaptation. We
choose to use mT5-Large (Xue et al., 2021) as
our base model7 since it that was originally pre-
trained in several languages including English,
Irish, Scottish Gaelic, and Welsh. Before training
the Phylogeny-Inspired Soft Prompt we perform
a language model adaptation for 30 000 steps on
monolingual data for English, Breton, Irish, Scot-
tish Gaelic, and Welsh as well as RDF triples from
WebNLG. Once the LM Adaptation has been com-
pleted the base model is permanently frozen and
we train the Phylogeny-Inspired Soft Prompts.

Step 1: Unsupervised Pre-training of the Soft
Prompt. We perform this step for 30 000 steps
over our monolingual data for English, Breton,
Irish, Scottish Gaelic, and Welsh as well as the
RDF triples from WebNLG.

Step 2: Downstream Task Fine-tuning of the
Soft Prompt. We fine-tune the Task sub-prompt
on the WebNLG task using the validation split of
the English WebNLG dataset (Gardent et al., 2017)
as well as human-written Breton, Irish, and Welsh
translations of it. This process takes 5 epochs or
around 4500 steps and we keep the best checkpoint
every 500 steps.

To account for the unbalanced distribution of
samples in our datasets we apply the sampling strat-
egy described in Devlin et al. (2019) with α = 0.3
which has been shown to perform best NLLB Team
et al. (2022). Table 3 accounts for that and other

4https://github.com/mediacloud/
sentence-splitter

5https://textacy.readthedocs.io/en/latest/
6https://fasttext.cc/docs/en/

language-identification.html
7https://huggingface.co/google/mt5-large

Parameter Value

Base Model mT5-Large
Vocabulary Size ∼250K Tokens
Embedding Dimensions 1 024
Base Model Parameters ∼1.22B
Total Prompt Parameters ∼747K
Inference Prompt Parameters ∼143
Learning Rate 0.0001
Batch Size per GPU 8
Available GPUS 2 Nvidia A40
Sampling Temperature 0.3
ML Adaptation Steps 30 000
ML Adaptation Training Hours ∼12
Soft Prompt Pre-training Steps 30 000
Soft Prompt Pre-training Training Hours ∼12
Soft Prompt Fine-tuning Steps ∼4 500
Soft Prompt Fine-tuning Training Hours ∼4

Table 3: Hyperparameters.

relevant hyperparameters used. The batch size was
chosen to optimize the use of our GPUs. The learn-
ing rate was chosen after a small exploratory ex-
periment. The Soft Prompt size follows Vu et al.
(2022) using around 50 tokens for task and 50 for
each language. Finally, the training steps follow
Lester et al. (2021).

6.2 Models

We compare our model to a baseline obtained by
applying full fine-tuning on mT5, to previous work,
and two MT-based, upper-bound models.

Full Model Fine-tuning. We perform full fine-
tuning on mT5. First, we performed the Language
Model Adaptation to attune the model to our tar-
get languages. We then fine-tuned it on the down-
stream task.

Control Prefixes. The Control Prefixes model
presented by Clive et al. (2021) is currently one
of the best-performing strategies for the English
WebNLG benchmarks. This lightweight fine-
tuning approach includes attribute-level parameters
into different layers of T5 which indicate the seman-
tic category of the input WebNLG RDF graph to
improve performance. For our baseline, we trained
Control Prefixes on the WebNLG validation data
of all languages (Celtic and English).

Machine Translation (MT). We consider two
scenarios using Machine Translation: a generate-
and-translate scenario (NLG+MT), where the out-
put of the best RDF-to-English generation system
from the WebNLG Challenge 2020 (Guo et al.,
2020a) is translated into the Celtic languages using

https://github.com/mediacloud/sentence-splitter
https://github.com/mediacloud/sentence-splitter
https://textacy.readthedocs.io/en/latest/
https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://huggingface.co/google/mt5-large
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Machine Translation, and a translation-only sce-
nario (Gold+MT) where the translation takes as
input the references of the WebNLG dataset. We
view these models as upper bounds since, differ-
ent from our models which are trained on around
1.5K data points, the machine translation models
have been trained on thousands of samples of par-
allel English-Celtic data. Note further that the
GOLD+MT model does not perform RDF-to-Text
generation as it simply translates the English sen-
tences of the WebNLG test set into Celtic. To per-
form the translations we used a version of the sys-
tem from Zhang et al. (2020) trained only on Celtic
and English data from the OPUS Corpora (Tiede-
mann, 2012). It is worth noting that NLG+MT
and the Gold+MT models are requires significantly
more parallel data to be trained than our proposed
method.

6.3 Ablation Experiments

To test the impact of the various sub-prompts (task,
phylogeny data, source and target language), we
perform a series of ablation experiments. Figure 3
shows the various prompts we experiment with. We
compare our full prompt with five other prompts:
the same prompt but without phylogeny infor-
mation (TST); the same prompt without Source
Language information (PI-TT) and three simpler
prompts without phylogeny information which ei-
ther are unstructured (S) or model only two factors
namely, Task and Target Language (TT) or Source
and Target Language (ST).

We fixed the size of the Soft Prompts at 140
tokens for all the experiments. When a task com-
ponent was present, we fixed its size to 50 tokens
with the rest taking 90 tokens. All the language-
related components on a Soft Prompt had their size
distributed uniformly as shown in Figure 3. All
the Soft Prompts underwent the same pre-training
before the downstream task fine-tuning.

6.4 Training Data

Training Samples. This experiment tests our fi-
nal PI-TST model but fine-tuned on different num-
bers (100, 500, 1000) of randomly sampled ele-
ments from each language on the dataset.

Zero-Shot. We test the zero-shot capabilities of
our final PI-TST model by fine-tuning the task Soft
Prompt only in English (either on the validation or
training data) and testing it on Celtic languages.

Figure 3: Composition of the input embeddings to the
frozen model for different Soft Prompt variants.

7 Evaluation

7.1 Automatic Evaluation

BLEU. We compute the corpus level BLEU score
(Papineni et al., 2002) for each experiment using
SacreBLEU (Post, 2018) .

Google BLEU. We also compute sentence level
Google BLEU scores (Wu et al., 2016) for each
experiment.

LaBSE Cosine Similarity. We use LaBSE (Feng
et al., 2022) to obtain sentence embeddings for
the generated text and the human reference. We
then compute the sentence level cosine similarity
of both embeddings as an automatic measurement
of semantic accuracy. We choose this model for
sentence embeddings over others given its implicit
goal of being language agnostic, which benefits the
experimentation with low-resourced languages.

Wilcoxon signed-rank test. We use the
Wilcoxon signed-rank test (Wilcoxon, 1945) on the
sentence level metrics (Google BLEU and LaBSE
Cosine Similarity) to evaluate if the differences
observed on different experiments are statistically
significant. We proffered this approach over paired
Student’s t-test since our results do not follow a
normal distribution.

7.2 Human Evaluation

We selected 25 random input graphs from our test
set making sure to have a variety of sizes and col-
lected the generation by our proposed model from
those graphs into all our target languages. We then
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provided all 25 of those generated texts to human
evaluators and asked them to score them following
4 different criteria: Readability, Grammaticality,
Word Order and Semantic Adequacy. Each crite-
rion was to be scored on a 1 to 3 scale where 1 is
bad, 2 is medium, and 3 is good.

Readability. The evaluator was given the gener-
ated output of the model and asked if the generated
text was understandable and reasonable text in the
language.

Grammaticality. The evaluator was given the
generated output of the model and asked if the
morphology of the generated text was correct
and if agreement constraints (e.g., verb/subject,
noun/adjective) were respected.

Word Order. The evaluator was given the gen-
erated output of the model and asked if the word
order of the generated text was correct and if a
native speaker would come up with a text like that.

Semantic Adequacy. The evaluator was given
the generated output of the model as well as the
human-written reference and asked if the generated
text shared the same meaning as the human-written
reference.

We reached out to colleagues that grew up on
regions where the evaluated language is spoken to
perform the human evaluation. Given the nature of
the low-resource languages we are working with,
we only collected a small number of evaluations.

8 Results

8.1 Automatic Evaluation Results

PI-TST outperforms the baselines. Table 4
shows the results of the automatic evaluation. Our
proposal (PI-TST) outperforms mT5 Full Fine-
tuning and the state-of-the-art, Control Prefixes
models fine-tuned on Celtic. For Breton and Welsh,
PI-TST even outperforms the BLEU score of the
NLG+MT approach, with the advantage that our
model does not require any number of parallel
translation data, while the MT model has been
trained on significant amounts of bilingual data,
which is not always available for low resource
languages. Furthermore, the NLG model of the
NLG+MT baseline was trained on all 32K sam-
ples of the full English WebNLG while PI-TST is
only trained on validation data, which is signifi-
cantly smaller. It is worth noting that, for Breton,
which is the most under-resourced of the Celtic
language evaluated, our method even comes close
to the Gold+MT BLEU score and surpasses its
LaBSE Cosine Similarity score. As the data used
to pretrain mT5 does not include any Breton, this
suggests that our fine-tuning approach produces
bigger improvements on languages which were not
seen during the base model pre-training.

The effect of Source information. The abla-
tion results in Table 5 show that the two best-
performing models (PI-TST, ST) include a source
sub-prompt, which suggests that, similar to the con-
trol tokens used in multilingual machine translation,
our source and target sub-prompts help structure
the representation space and guide learning. We
conjecture that having both Source and Target sub-

BLEU Score (↑) Google BLEU Score (↑)* LaBSE Cosine Similarity (↑)
Experiment BR CY EN GA BR CY EN GA BR CY EN GA

Machine Translation
NLG+MT 13.08 20.24 53.98 18.09 17.74 27.49 49.64 24.86 72.96 89.90 95.05 87.76
Gold+MT 19.81 49.04 100.00 32.09 23.04 51.82 100.00 36.44 76.23 94.80 100.00 92.56

Baselines
Control Prefixes 12.23 13.33 51.61 8.17 16.37 18.76 47.77 13.59 80.52 79.41 94.52 73.12
Full Fine-tuning 16.49 18.83 46.40 14.16 21.36 24.36 43.62 20.09 82.56 86.02 92.35 82.49

Final
PI-TST 18.15 20.60 49.15 15.64 22.57 25.95 46.09 21.23 84.09 87.72 93.65 84.68

Table 4: Automatic Evaluation Results. For Google BLEU and Cosine Similarity, the results without a statistically
significant difference from the final PI-TST model (p > 0.05) are underlined. The English values on the Machine
Translation rows are the scores obtained by the RDF-to-EN model and the Gold references i.e., in this case,
translation is not used. *Since we use the Sentence Level Google BLEU score for statistical significance analysis,
here we present the Average of the Sentence level scores instead of the corpus level one.
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BLEU Score (↑) Google BLEU Score (↑)* LaBSE Cosine Similarity (↑)
Experiment BR CY EN GA BR CY EN GA BR CY EN GA

Soft Prompt
S 9.63 1 1.01 48.48 10.36 13.41 15.18 44.73 14.18 79.84 86.42 93.51 82.49
TT 17.70 19.94 48.30 15.58 21.95 25.32 45.26 21.04 83.21 87.59 93.60 84.66
ST 17.89 19.94 49.18 15.58 22.24 25.34 45.73 20.88 83.72 87.53 93.55 84.47
TST 16.28 18.49 47.29 15.39 21.33 24.19 44.82 20.94 82.21 86.46 93.04 84.16
PI-TT 17.43 19.41 48.32 15.23 22.16 25.28 45.29 21.48 83.55 87.34 92.90 84.35

Training Samples
100 Samples 12.42 13.61 38.42 10.66 17.12 18.98 38.09 15.66 77.58 81.15 89.74 78.56
500 Samples 14.31 14.95 43.70 12.60 19.08 20.68 42.12 16.99 79.92 82.54 91.30 79.84
1000 Samples 15.34 18.29 47.18 13.91 20.29 24.02 44.29 19.32 81.99 86.44 92.47 82.53

Zero-Shot
English Validation 9.81 11.85 48.36 9.69 13.79 16.88 45.04 13.96 78.57 83.29 93.26 82.19
English Training 9.57 11.27 48.09 10.36 13.49 16.19 44.95 14.58 79.19 83.70 92.94 81.04

Final
PI-TST 18.15 20.60 49.15 15.64 22.57 25.95 46.09 21.23 84.09 87.72 93.65 84.68

Table 5: Automatic Evaluation Results of Ablation Experiments. For Google BLEU and Cosine Similarity, the
results without a statistically significant difference from the final PI-TST model (p > 0.05) are underlined. *Since
we use the sentence level Google BLEU score for statistical significance analysis, here we present the average of the
sentence level scores instead of the corpus level one.

prompts (rather than just Target) helps the model
differentiate between the unsupervised monolin-
gual step (Step 1) where Source and Target prompts
refer to the same language and the second fine-
tuning step where the Source and Target prompt
refers to different languages (Source: RDF, Target:
Celtic). On the other hand, we observe that the
TST model has much lower performance than ST,
which is likely due to a trade off between prompts
and prompt size: 70 tokens for the Source token in
ST vs. 45 in TST.

The effect of Phylogeny information. Just like
PI-TST, the Phylogeny-Inspired Task-Target (PI-
TT) model outperforms Full Model Fine-tuning
in all languages confirming the positive impact of
phylogeny information.

Languages not seen during pre-training of the
original Encoder-Decoder (mT5). For Breton,
the only language not seen during the pretraining of
mT5, the PI-TT model outperforms TT indicating
that phylogeny information is particularly useful
for under-resourced languages.

Source and Phylogeny Prompts. Comparing
models across these two dimensions, we find that
while adding either a phylogeny or a source sub-
prompt does not always improve performance (both
TST and PI-TT underperform TT), adding both
does (PI-TST outperforms all other models).

Size of the Training Data. Figure 4 shows the
performance of the PI-TST models when fine-tuned
with varying amounts of KG-Text data. With only
1 000 samples per language, PI-TST outperforms
Full Model fine-tuning in English and performs on
par with the Celtic languages.

Zero-Shot. Table 5 shows that using our model
in a zero-shot setting reaches equivalent results on
Celtic languages than a simple Soft Prompt model
trained on all Celtic languages.

Statistical Significance. Table 7 in Appendix A
presents the statistical significance between each
experiment and our final proposal PI-TST. While
some of the ablation experiments produce results
that are not statistically different to our proposal,
we still advocate from our proposal over those other
approaches, since PI-TST provides much more con-
trolability and flexibility given its complex soft
prompt. We believe that the extreme modularity of
our proposal gives it an edge over the ablation stud-
ies. We also note that, where the average Google
BLEU score of an ablation experiments outper-
formed our model (Irish PI-TT) the difference was
not statistically significant. Finally, the difference
on the Google BLEU score between our proposal
and the Breton Gold+MT is not statistically signifi-
cant; despite the former (and more data intensive)
approach having a higher average.
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8.2 Human Evaluation Results

Figure 4: BLEU Score comparison by number of train-
ing samples per language. The × mark indicates the
score of Full Model Fine-tuning.

When asked where they learned the language 4
of the evaluators answered "Home", 2 answered
"School and Home" and 3 answered "School".
When asked how they considered their proficiency
at the language 8 of the evaluators answered
"Good" and 1 answered "Medium". Table 6 shows
the results of their evaluation of our PI-TST model.

This evaluation shows that the model produces
acceptable text concerning Readability, Grammati-
cality and Word Order for all Celtic languages. It
also shows that, for English and Irish, the quality
of the Semantic Adequacy is past the middle point.

Criteria (↑) BR CY EN GA
Annotators (↑) 3 2 2 2
Readability (↑) 2.67 2.18 2.96 2.16
Grammaticality (↑) 2.69 2.46 2.84 2.42
Word Order (↑) 2.68 2.58 2.94 2.30
Semantic Adequacy (↑) 1.84 1.64 2.54 2.06

Table 6: Results of Human Evaluation

9 Conclusion

In this work, we proposed a Soft Prompt approach
enriched with phylogeny source language informa-
tion. We showed that adding this information to
the Soft Prompt leads to an improvement in the
Data-to-Text task on low-resource languages. In
particular, we showed that this approach can outper-
form basic strategies like Full Model Fine-tuning
and other complex approaches like Control Pre-
fixes, simple Soft Prompts, and Factorized Soft

Prompts. These results open the door to further
advancements in the NLG domain for low-resource
languages, as shown by the improved performance
of Breton which was new to the base language
model and is significantly less resourced than the
other Celtic languages studied.

10 Acknowledgments

We thank the anonymous reviewers for their feed-
back. We gratefully acknowledge the support of the
French National Research Agency (Gardent; award
ANR-20-CHIA-0003, XNLG "Multilingual, Multi-
Source Text Generation"). Experiments presented
in this paper were carried out using the Grid’5000
testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER
and several Universities as well as other organiza-
tions (see https://www.grid5000.fr).

11 Limitations

The scarcity of available data and the access to
native speakers of the language made the research
particularly challenging. Furthermore, we only
tested our approach in one language Family given
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A Statistical Significance

Table 7 presents the statistical significance between
each experiment and our final proposal PI-TST.
While some of the ablation experiments produce
results that are not statistically different to our pro-
posal, we still advocate from our proposal over
those other approaches, since PI-TST provides
much more controlability and flexibility given its
complex soft prompt. We believe that the extreme
modularity of our proposal gives it an edge over
the ablation studies. We also note that, where the
average Google BLEU score of an ablation exper-
iments outperformed our model (Irish PI-TT) the
difference was not statistically significant. Finally,
the difference on the Google BLEU score between
our proposal and the Breton Gold+MT is not sta-
tistically significant; despite the former (and more
data intensive) approach having a higher average.

Google BLEU Score (↑)* LaBSE Cosine Similarity (↑)
Experiment BR CY EN GA BR CY EN GA

Machine Translation
NLG+MT 0.0000 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Gold+MT 0.2700 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Baselines
Control Prefixes 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Full Fine-tuning 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Soft Prompt
S 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0121 0.0000
TT 0.0007 0.0089 0.0135 0.1101 0.0060 0.4284 0.5420 0.4962
ST 0.0249 0.0048 0.1443 0.0124 0.0626 0.1318 0.4616 0.0467
TST 0.0000 0.0000 0.0000 0.0089 0.0000 0.0000 0.0000 0.0000
PI-TT 0.0166 0.0011 0.0020 0.1358 0.0013 0.0003 0.0000 0.0313

Training Samples
100 Samples 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
500 Samples 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1000 Samples 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Zero-Shot
English Validation 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000
English Training 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7: Wilcoxon signed-rank test p-values. For Google BLEU and Cosine Similarity, the results without a
statistically significant difference from the final PI-TST model (p > 0.05) are underlined. *Since we use the sentence
level Google BLEU score for statistical significance analysis, here we present the average of the sentence level
scores instead of the corpus level one.
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