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Abstract

Transfer learning has led to large gains in per-
formance for nearly all NLP tasks while mak-
ing downstream models easier and faster to
train. This has also been extended to low-
resourced languages, with some success. We in-
vestigate the properties of cross-lingual transfer
learning between ten low-resourced languages,
from the perspective of a named entity recogni-
tion task. We specifically investigate how much
adaptive fine-tuning and the choice of transfer
language affect zero-shot transfer performance.
We find that models that perform well on a
single language often do so at the expense of
generalising to others, while models with the
best generalisation to other languages suffer in
individual language performance. Furthermore,
the amount of data overlap between the source
and target datasets is a better predictor of trans-
fer performance than either the geographical or
genetic distance between the languages.1

1 Introduction

The technique of using a pre-trained Natural Lan-
guage Processing (NLP) model and fine-tuning it
on task-specific data has recently taken the NLP
world by storm, achieving state-of-the-art scores in
many different tasks (Jiang et al., 2020; Raffel et al.,
2020; Hendrycks et al., 2021). Although much of
the focus of pre-trained models is on English (Rad-
ford et al., 2018; Devlin et al., 2019), there are also
monolingual models for other languages (de Vries
et al., 2019; Canete et al., 2020) and multilingual
models that were trained on a large multilingual
corpus (Conneau et al., 2020; Xue et al., 2021).

Generally, the training data of these models
mostly consists of higher-resourced languages (i.e.,
those that have large amounts of available data,
such as English and German). This can result in a
large discrepancy between the performance of these

1We publicly release our code and models at https://github.
com/Michael-Beukman/NerTransfer.

models on higher-resourced and low-resourced lan-
guages (where data is scarce; e.g., many African
languages (Alabi et al., 2022)).

A common challenge that arises when working
with these models is the lack of task-specific data
for the target language (Adelani et al., 2021). De-
spite this, in many cases, we have access to data
from other languages. This presents an opportunity
to leverage cross-lingual transfer, training a model
on the language that we have data for and using it
to make predictions for the target language. This is
a common scenario, especially for low-resourced
languages (Adelani et al., 2021).

Given this opportunity for cross-lingual transfer
and the prevalence of pre-trained models, research
has begun investigating the properties of these mod-
els more deeply. Studies have looked into multilin-
gualism (Pires et al., 2019; K et al., 2020), syntactic
transfer (Dhar and Bisazza, 2018), and the effect
of linguistic features (Dolicki and Spanakis, 2021)
and other attributes (Lin et al., 2019) on transfer
performance. Despite this, it is not always clear
which language we should transfer from, or which
factors affect transfer (Lin et al., 2019).

Inspired by this line of work, we focus on inves-
tigating cross-lingual transfer more deeply, specif-
ically in a low-resourced setting. We achieve this
by studying the effect of different training schemes
and identifying features that are indicative of high
transfer performance. We build upon the work of
Adelani et al. (2021), who recently introduced a
high-quality named entity recognition dataset for
ten low-resourced African languages. They also
performed some analysis into which pre-trained
models perform best and preliminary work into the
cross-lingual transfer capabilities of models.

Our results show that adaptively fine-tuning a
multilingual model on unlabelled monolingual data
can improve performance on the target language,
while often diminishing transfer performance by
overfitting to this language. This effect is exac-

https://github.com/Michael-Beukman/NerTransfer
https://github.com/Michael-Beukman/NerTransfer
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erbated if the monolingual dataset is large. Fur-
thermore, we find that when the source and target
dataset contain many shared tokens, then transfer
performance is generally higher. In particular, the
number of overlapping tokens between datasets is
a stronger predictor of transfer performance than
many other features, including the geographic dis-
tance between where the languages are spoken, and
the genealogical distance between the languages.

2 Background and Related Work

2.1 Named Entity Recognition (NER)

Named Entity Recognition is a token classifica-
tion task in which the objective is to classify each
token (or word) as one of a few classes, person,
location, date, organisation, or no entity. NER
is an impactful field (Sang and Meulder, 2003;
Lample et al., 2016) with many applications (Mar-
rero et al., 2013), including information retrieval
and spell-checking (Adelani et al., 2021). In NER,
performance is predominantly measured using the
F1 score (Sang and Meulder, 2003; Adelani et al.,
2021), which balances precision and recall.

2.2 Transfer Learning

Transfer learning is a technique that is often used in
NLP to improve performance while requiring less
task-specific data (Ruder et al., 2019). In one com-
mon form of transfer, we start by training a large
language model on a massive corpus of unlabelled
data, using these learned weights as the starting
point for a specific problem, and fine-tuning further
on task-specific labelled data (Ruder, 2021). This
approach has become the dominant paradigm in
NLP, especially for low-resourced languages, due
to its high performance when fine-tuning on small
datasets (Adelani et al., 2021). The idea is that
the pre-training process instills knowledge into the
model about how language behaves on a general
level, which then does not need to be learned from
scratch using the smaller amount of task-specific
data (Radford et al., 2018; Devlin et al., 2018).

If the pre-training data is in a substantially differ-
ent domain from the target task, we often use adap-
tive fine-tuning. This fine-tunes the pre-trained
model on unlabelled data in the domain of the
target task using a (masked) language modelling
loss (Gururangan et al., 2020). A related approach,
language adaptive fine-tuning (LAFT), fine-tunes
a pre-trained model on unlabelled data in the tar-
get language, which can result in improved perfor-

mance on the target language (Pfeiffer et al., 2020).
Recent work has also explored learning differ-

ent pre-trained base models, tailored to particular
languages. For instance, Ogueji et al. (2021) pre-
train a BERT-style model on less than 1GB of text
from African languages, and find that this performs
well on downstream tasks, compared to massively-
multilingual models that were trained on much
larger datasets. Ogundepo et al. (2022) extend this
by pre-training a T5-based model, expanding the
applications to more general sequence-to-sequence
tasks such as translation. Overall, these works con-
tribute new, Africa-centric pre-trained models and
provide initial benchmarks showing that these mod-
els can perform well on downstream tasks in the
languages they pre-train on (after appropriate fine-
tuning). While this is useful for advancing the field
of low-resourced NLP, they generally do not deeply
investigate cross-lingual transfer learning, which is
the focus of our work.

2.3 Analysis

While approaches such as fine-tuning and cross-
lingual transfer have been empirically shown to
work well, there has been a recent trend that at-
tempts to understand these techniques more deeply.
For instance, Lin et al. (2019) focus on finding a
way to choose the best language to transfer from,
and develop a model that takes in a wide range of
features, such as linguistic distance, entity overlap,
etc., and predicts the transfer performance. Dolicki
and Spanakis (2021) also consider features relevant
to transfer and find that this depends on the task –
no single feature can explain transfer performance
well across tasks. Malkin et al. (2022) instead focus
on the effect of the pre-training language and find
that some languages, called donors, transfer well
to others, while others, denoted recipients, benefit
from transfer. Other work investigates how fine-
tuning a pre-trained model alters its representations
of words (Hsu et al., 2019). For example, Zhou and
Srikumar (2022) study the effect that fine-tuning
has on the representations of a multilingual model
and find that this process often clusters together the
representations that correspond to the same label,
thereby making the classification task easier.

3 Methodology

The primary goal of this paper is to gain a deeper
understanding of transfer learning in low-resourced
settings. To achieve this, we focus on language



201

adaptive fine-tuning and cross-lingual transfer.
First, we investigate the effect of LAFT on trans-

fer performance. Due to the cost of annotation,
we often have more unlabelled data than labelled,
task-specific data, making LAFT very applicable.

Secondly, we examine cross-lingual transfer in
order to understand which languages transfer well
to others and why. This is particularly relevant in
cases where data is scarce in the target language but
available in other languages, a common occurrence
in low-resourced NLP. Knowing which features to
consider when choosing a transfer language will be
immensely useful to NLP practitioners faced with
the choice of transfer language (Lin et al., 2019).

We therefore consider a low-resourced NER task,
using the MasakhaNER dataset (Adelani et al.,
2021). We fine-tune models on this dataset, and
evaluate the effect of adding LAFT and transferring
from different languages in Section 5.

Next, in Section 6 we investigate how much
the transfer performance correlates with various
language- and dataset-based features such as data
overlap and linguistic distance. This helps us to
understand which features should be considered
when choosing a source language to transfer from.

3.1 Data

We consider all ten languages from the
MasakhaNER dataset. We choose these lan-
guages for three reasons: firstly, they are all
low-resourced compared to high-resourced
languages such as English (Conneau et al., 2020),
allowing us to study transfer learning in the
important low-resourced setting. Secondly, there
exists a high-quality dataset for these languages, in
contrast to many other low-resourced languages.
Finally, Adelani et al. (2021) already performed
extensive baseline analysis on this dataset.

Information about the languages, including fam-
ily, the region where it is spoken and dataset size,
is contained in Table 1, with additional details in
Appendix A. We do note that all the languages use
the Latin script, except Amharic, which uses the
Fidel script. Igbo, Wolof and Yorùbá use diacritics,
which are symbols attached to some letters (e.g. in
“e.”), which affect the pronunciation of the word.

4 Experiments

4.1 Experimental Setup

Our experiments largely consist of fine-tuning pre-
trained language models on NER data and evalu-

ating their cross-lingual transfer performance. We
perform each experiment 5 times with different ran-
dom seeds and report the mean performance. We
note that the standard deviation across the different
seeds is often quite large when performing transfer,
i.e., when the fine-tuning and testing language are
not the same. More details are in Appendix C.3.

We use the MasakhaNER implementation2 and
use the same hyperparameters and language codes
as Adelani et al. (2021). All metrics reported are
overall F1 scores on the test set (to compare against
prior work), using the “begin” repair strategy as
specified by Palen-Michel et al. (2021). More de-
tails regarding the training and evaluation proce-
dures can be found in Appendix B.

4.2 Models

We mainly consider two types of models, the first
being xlm-roberta-base, denoted as “base”. Sec-
ondly, we consider LAFT models, obtained by fine-
tuning xlm-roberta-base on unlabelled monolin-
gual data from a specific language. We choose
to use xlm-roberta-base as the base model due
to its high performance and fast training (Adelani
et al., 2021). This model was pre-trained on a large
corpus consisting of data from 100 languages, in-
cluding Amharic, Hausa and Swahili.

We then fine-tune these models on the NER data
of a specific language. For clarity, we contract
the training procedure of a model, for example,
base → hau → wol is the xlm-roberta-base
model that performed language-adaptive fine-
tuning on Hausa, followed by NER fine-tuning on
Wolof. More information about these models and
the LAFT process is contained in Appendix B.

5 Cross-lingual Transfer

Here we investigate the zero-shot transfer perfor-
mance of xlm-roberta-base and the language-
adaptive models. For each pair of languages X,Y ,
we take the model fine-tuned on NER data from
language X and evaluate its performance on lan-
guage Y . To evaluate the effect of LAFT, we use
both base and base → X (the latter model being
obtained by performing LAFT on language X).

This experiment simulates the scenario where
we do not have ample labelled data in the source
language, but we possess task-specific data in a dif-
ferent language. Here, we must choose the best lan-
guage to transfer from. This is a common setup in

2https://github.com/masakhane-io/masakhane-ner/

https://github.com/masakhane-io/masakhane-ner/
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Table 1: Language details, partially reproduced from Adelani et al. (2021), with permission. The NER and LAFT Size
columns contain the number of sentences in the NER training dataset and the unlabelled LAFT dataset, respectively.
Country is the top one or two countries with the most speakers of the language, from Eberhard et al. (2020).

Language Lang. Code Family Country Region Speakers NER Size LAFT Size

Amharic amh Afro-Asiatic-Ethio-Semitic Ethiopia East 33M 1,750 3.1M
Hausa hau Afro-Asiatic-Chadic Nigeria, Niger West 63M 1,903 3.1M
Igbo ibo Niger-Congo-Volta-Niger Nigeria West 27M 2,233 1.1M
Kinyarwanda kin Niger-Congo-Bantu Rwanda, Uganda East 12M 2,110 726K
Luganda lug Niger-Congo-Bantu Uganda East 7M 2,003 506K
Luo Nilo luo Saharan Kenya East 4M 644 160K
Nigerian Pidgin pcm English Creole Nigeria West 75M 2,100 207K
Swahili swa Niger-Congo-Bantu Tanzania, Kenya Central & East 98M 2,104 12.6M
Wolof wol Niger-Congo-Senegambia Senegal West & NW 5M 1,871 42K
Yorùbá yor Niger-Congo-Volta-Niger Nigeria West 42M 2,124 910K

NLP, particularly for low-resourced languages (Lin
et al., 2019; Pfeiffer et al., 2020; Adelani et al.,
2021). Leveraging cross-lingual transfer can lead
to useable models in a data-scarce setting, where
no data is available for the target language.

5.1 Results

These results are shown in Fig. 1, with the y-axis
representing the evaluation language, while the x-
axis represents either the language we performed
NER fine-tuning on (Fig. 1a), or both the LAFT
and NER fine-tuning language (Fig. 1b). In Fig. 1a,
as expected, the diagonal is brighter than the off-
diagonal elements, as fine-tuning on the same lan-
guage one evaluates on improves scores signifi-
cantly. The best zero-shot transfer language gener-
ally performs well, obtaining 10-20 F1 lower than
training on the target language. When evaluating
on Yorùbá, Igbo, Luo and Amharic, however, trans-
fer performance is significantly lower. Igbo and
Yorùbá’s use of diacritics, or that Amharic has a
different script, may be the cause of this. Luo’s low
performance could be because it has a large number
of entities that occur only in its dataset. In addition,
base did not train on any Luo data, and Luo is from
a different family to all of the other languages.

Furthermore, while Amharic transfers poorly on
average, it transfers reasonably well to Swahili,
Hausa and Nigerian Pidgin. The reason may be
that Amharic, Swahili and Hausa were included in
the base model’s pre-training data, while Nigerian
Pidgin shares many similarities with English, an-
other pre-training language. Thus, the pre-trained
model may have some link between its representa-
tions for Amharic and the other languages it jointly
pre-trained on. Fine-tuning on Amharic changes
these shared representations, leading to improved
transfer results (see Appendix C.10 for details).

Observation: LAFT on the target language
improves downstream performance
Comparing the diagonals in Fig. 1a and Fig. 1b,
we can see that the LAFT models usually per-
form much better than the base model after subse-
quent NER fine-tuning. Of particular interest is the
large improvement we see in Yorùbá and Amharic,
where the language adaptive models outperform
the base models by +5 and +7 F1, respectively.
This could be because Yorùbá contains diacritics,
and Amharic does not use the Latin script, making
the language adaptive fine-tuning phase crucial to
adapt the model to the specific characteristics of
these languages. On average, by using language
adaptive fine-tuning on the target language, we can
improve the F1 performance by approximately 3
F1 after subsequent NER fine-tuning.

Observation: Performing LAFT on a large
dataset can diminish transfer performance
While performing LAFT improves performance
on the language we fine-tune on, transfer perfor-
mance often shows a mixed result. For some lan-
guage pairs, using a model that has been subject
to language-adaptive fine-tuning on the same lan-
guage as one fine-tunes on helps (e.g. the pcm
column and kin row), but for others, this effect is
minor, or even negative (e.g. yor transferring to
lug). For some languages, notably Swahili and
Hausa, using adaptively fine-tuned models (and
then fine-tuning on NER data from the same lan-
guage) significantly diminishes the transfer capabil-
ities from these languages, possibly indicating over-
fitting. This is similar to what Pfeiffer et al. (2020)
found when performing adaptive fine-tuning on the
source language – transfer performance generally
decreased. We investigate this further (more details
in Appendix C.1) and find that those languages with
fewer sentences in the language adaptive datasets
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Figure 1: Heatmaps indicating the average performance over 5 seeds of specific models on specific languages (y-
axis) after being fine-tuned on another language’s NER data (x-axis). avg indicates the average transfer performance
per row or column, respectively. This calculates the average of the entire row or column excluding the diagonal.

transfer better on average after performing LAFT
and NER fine-tuning. There is a statistically signif-
icant correlation, with Pearson’s R = −0.82, be-
tween the number of sentences in the LAFT dataset
and the average improvement in transfer perfor-
mance when using a LAFT model compared to us-
ing the base model. This suggests that larger LAFT
datasets result in more overfitting and less transfer.

Recommendation
• Use LAFT on the target language prior to fine-

tuning on NER data in the same language.
• If transfer performance is the priority, how-

ever, LAFT on a large dataset in the NER
fine-tuning language should be avoided.

6 Explaining Transfer Performance

To explain some of the results shown in the pre-
vious section, here we examine other dataset and
language features, determining whether they have
any correlation with the transfer performance.

6.1 Data Overlap
The first feature we consider is the word overlap
between the different languages’ datasets. We do
so because in NER, a token classification task, a
model would benefit greatly from previously en-
countering an entity. Thus, if languages X and Y
share tokens, a model trained on X would perform
well on the already-seen tokens in language Y .

We call a token overlapping when the same
token is labelled as the same entity type in two
different datasets (e.g. John[NAME] would over-
lap with John[NAME], but would not overlap with
John[ORG] Deere[ORG]). To calculate the overlap
between source language X and target language
Y , we find all of the named entities (i.e., all tokens
that are not labelled as “Other”) that occur in both
datasets and count the total number of times each
token occurred in either dataset (e.g. if John oc-
curred twice in X and three times in Y , we count it
five times). We do not distinguish between tokens
that are at the beginning of an entity or in the mid-
dle thereof (i.e., we consider B-PER and I-PER to
be the same for this experiment). We also consider
the entire dataset, i.e., train + dev + test, to obtain
a more representative sample.

There are alternative ways to calculate overlap,
such as only taking into account unique entities
(which we avoid as one entity overlapping multiple
times is relevant), or determining the fraction of
overlapping tokens instead of the absolute num-
ber (Lin et al., 2019). However, we find that these
alternative methods generally produce similar re-
sults and lead to similar conclusions, so the specific
calculation method does not have a significant im-
pact. In Appendix C.5, we provide a more in-depth
explanation of these methods and their results.
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6.1.1 Results
Fig. 2a shows the overlap between each pair of lan-
guages, with the diagonal being proportional to the
number of entities for each language. Wolof and
Luo have much less data than the other languages,
and thus much less overlap, potentially explaining
why these two performed poorly in previous exper-
iments. In particular, Wolof has around three times
more sentences than Luo, but fewer entities, indicat-
ing that entities are sparsely distributed throughout
its sentences. Moreover, Amharic, due to it being
written in a different script than all of the other lan-
guages, does not have any lexical overlap. Finally,
there seems to be a large amount of data overlap in
general, e.g., Swahili and Hausa have around 33%
of their tokens overlapping.

Observation: Data Overlap Strongly Correlates
with Transfer Performance
We see a strong correlation (Pearson’s R = 0.73)
between how many tokens overlap and the perfor-
mance in Fig. 2b. The procedure here was sim-
ply to compute the correlation between the data
overlap (as in Fig. 2a) and the performance when
fine-tuning on one language and evaluating on an-
other, starting from the pre-trained base model (as
in Fig. 1a). We do not consider the diagonal ele-
ments, as they contain the performance of evaluat-
ing on language X after fine-tuning on language
X and are thus not considered transfer learning.

These results do not imply a causal relationship,
however, as previous work has shown that lexical
overlap has a negligible impact on transfer perfor-
mance, and word order, model depth and other
attributes contribute more (Pires et al., 2019; Tran
and Bisazza, 2019; K et al., 2020). This might be
specific to the task under consideration, however,
as other work still has shown that, for some tasks,
the word and subword overlap between languages
is a useful proxy for expected performance when
performing cross-lingual transfer (Lin et al., 2019).
Additionally, NER (and other token classification
tasks) may be particularly sensitive to word over-
lap, as the classification happens on a per-word or a
per-token basis. Finally, Amharic, due to its differ-
ent script, has no overlap with any other language,
while still displaying some transfer, indicating that
more intricate mechanisms are at play.

Observation: Most of the overlap is in English
Having shown that data overlap has such a large
correlation with transfer performance, we now in-

vestigate this deeper, to see which types of enti-
ties overlap. To aid in this, we classify a token
as “international” if it falls into one of the follow-
ing categories: (1) place names, such as “Africa”,
“Washington”, “Nairobi”; (2) numbers, such as
those found in dates, e.g., 2016; (3) the names
of people in English, e.g. Paul, Jean; (4) punctua-
tion marks found in the middle of entities; and (5)
common words/companies such as “December”,
“Christmas”, “Monday” and “Google”. All of these
are written in English. See Appendix C.4 for more
details about these categories. Over all of the entity
tokens across all languages, around 35% of these
correspond to international tokens. However, when
only considering the overlapping tokens, interna-
tional words are the majority, around 69%. This
seems to indicate that instead of overlapping tokens
representing shared words between languages, they
often represent international entities written in En-
glish. This holds even when considering only the
distribution of unique tokens (instead of taking into
account the number of times each token occurs).
In this case, international tokens make up 28% of
all tokens compared to 64% of overlapping tokens.
This could be a factor present mostly in news-based
data such as MasakhaNER, however, as news arti-
cles often cover globally relevant topics, leading to
these types of entities being shared across datasets.
Our findings in this section may partially explain
why Adelani et al. (2021) obtained poor perfor-
mance when transferring from Wikipedia. Finally,
we note that the correlation results (Fig. 2b) are
similar when only considering the local or interna-
tional tokens, see Appendix C.6.

6.2 Additional Features

While we primarily focus on data overlap in this
work, other features may also influence transfer
performance between languages. We specifically
consider the features used by Lin et al. (2019). This
includes various language-based features, such as
genetic and syntactic distance, dataset-based fea-
tures, such as source dataset size, as well as the
geographical distance between the countries where
the languages are spoken.

6.2.1 Language-Based Features
The language-based features are largely based on
the URIEL database of language properties (Lit-
tell et al., 2017). These features are: Genetic, In-
ventory, Syntactic and Phonological distance. Ge-
netic Distance is how different two languages are
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Figure 2: (a) Data overlap and (b) its correlation with F1. R in (b) is similar without Amharic, see Appendix C.7.

based on their language families. The other dis-
tances measure the cosine distance between vectors
representing each language’s syntax or phonology,
derived from various linguistic databases (Lewis,
2009; Dryer and Haspelmath, 2013).

6.2.2 Dataset-Based Features
The dataset-based features are Source Dataset Size,
representing the number of sentences in the source
dataset and; Source over Target Size Ratio, the
number of sentences in the source dataset divided
by the number of sentences in the target dataset.
We add two similar features, the number of named
entities in the source dataset, and the ratio between
this and the number of entities in the target dataset.

6.2.3 Geographical Distance
The geographic distance is calculated as a nor-
malised distance between the geographic center of
where the language’s speakers reside (Littell et al.,
2017; Hammarström et al., 2018). This, however,
is potentially problematic, especially if a language
is spoken in multiple countries and is somewhat
spread out. For instance, Swahili is spoken across
Kenya, Tanzania, and other countries, but the “geo-
graphic center” for Swahili is marked as a point in
Southeastern Tanzania (Hammarström et al., 2018).
As this may not be particularly accurate, we also
experiment with a different approach of calculat-
ing the geographic distance between two languages,
that of the shortest distance between all of the coun-

tries where each language is spoken (obtained from
Hammarström et al. (2018)). If these countries
share a border, the distance is zero. However, this
new method results in distances that are closely cor-
related with those obtained previously and result in
similar conclusions, so we do not consider it further.
Finally, Featural Distance is the cosine distance
between vectors consisting of the four language-
based features and the geographical distance.

Observation: Language-based features do not
correlate strongly with transfer performance

Similarly to data overlap, we compute the correla-
tion between these features and the transfer perfor-
mance, with results in Table 2 (see Appendix C.8
for plots). We find that most of these features
exhibit a poor correlation with the transfer per-
formance, and not all of the correlations are sta-
tistically significant. The genetic distance is the
language-based feature with the highest correlation
with transfer performance, at Pearson’s R = −0.30
(i.e., closer languages tend to transfer better). This
is still much weaker than the data overlap’s corre-
lation of R = 0.73. Overall, this suggests that the
most important feature for transfer performance is
the overlap between the source and target datasets,
instead of how close the languages are. However,
it may still be best to consider several different
factors instead of any single one (Lin et al., 2019).
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Table 2: Pearson’s correlation coefficient and the corre-
sponding p-value for features used by Lin et al. (2019).
The data overlap row is the same as in Fig. 2. The first
five features are not statistically significant, as p ≥ 0.05.

Feature Type R p

Featural Distance Linguistic -0.00 1
Phonological Distance Linguistic -0.02 0.84
Inventory Distance Linguistic -0.06 0.55
Source Over Target Size Ratio Dataset -0.20 0.056
Geographic Distance Geographic -0.21 0.05
Source Dataset Size Dataset 0.23 0.029
Syntactic Distance Linguistic -0.23 0.028
Source Number Of Entities Dataset 0.29 0.0063
Source Over Target Entities Ratio Dataset -0.30 0.0044
Genetic Distance Linguistic -0.30 0.0041
Data Overlap Dataset 0.73 3.5× 10−16

Recommendation
• Choosing a source language for NER based on

its data overlap with the target is promising.
• Other features have small correlations with

transfer performance, much less than data
overlap, and should not be used as a primary
reason for choosing a specific language.

7 Discussion

Our work follows a recent trend of analysing em-
pirical results more deeply, attempting to better
understand the underlying phenomena (Lin et al.,
2019; Zhou and Srikumar, 2022). We specifically
consider cross-lingual transfer for low-resourced
languages, investigating the effect of LAFT, the
choice of transfer language, and which features are
indicative of high transfer performance.

In line with recent work, we find that LAFT can
improve performance on downstream tasks (Ade-
lani et al., 2021; Alabi et al., 2022). We also dis-
cover that performing this process on a large dataset
can inhibit transfer performance. This motivates
having more general models instead of overspe-
cialised ones, which would ideally be more robust.
The work of Alabi et al. (2022) may be particularly
relevant here, as they perform LAFT on multiple
source languages, and encounter less of a loss in
generalisation performance compared to our case
of performing LAFT on only one language.

We further find that data overlap between the
source and target languages correlates strongly
with transfer performance, and that this may pro-
vide a way to choose a promising language to trans-
fer from. Many other language-specific features
have a much lower correlation with transfer perfor-
mance. This suggests that, for token classification
tasks such as NER, data overlap is potentially more
important than language similarities.

This may not always be the case, however. Per-
formance in other tasks, such as machine transla-
tion, may be less influenced by the amount of data
overlap. Furthermore, the MasakhaNER dataset
largely consists of annotated news articles. This
type of data may skew more towards discussing
international entities than, say, local history or fact-
based text such as Wikipedia. In these cases, ge-
ographical or linguistic distance may contribute
more to transfer than data overlap. Thus, while
we highlight some important results, they may not
necessarily apply to other tasks and domains. This
should be investigated in future work.

One promising avenue of investigation for future
work is to examine transfer performance when all
international tokens are removed, to determine if
this would diminish the correlation with data over-
lap, resulting in other features becoming more im-
portant for transfer. Using a more sophisticated
strategy than only counting overlapping words
when they exactly match would be promising, po-
tentially resulting in the identification of similar,
but slightly different, words between related lan-
guages. Finally, while we considered ten low-
resourced African languages, it would be valuable
to extend this study to other languages and regions
to determine how well our conclusions generalise.

8 Conclusion

In this paper, we conduct a thorough examination
of transfer learning in low-resourced African lan-
guages, focusing on language-adaptive fine-tuning
and cross-lingual transfer. We find that language-
adaptive fine-tuning on a large dataset can lead to
improved performance on the target language, but
at the cost of reduced transfer performance.

We further demonstrate that data overlap be-
tween the source and target datasets is a powerful
predictor of transfer performance in NER, surpass-
ing other factors such as geographical or genealog-
ical distance. This, however, does not necessarily
imply that data overlap is the cause of transfer per-
formance, as Amharic, without any overlap, still
displays some transfer. We also find that English
words make up the bulk of the overlapping tokens.

Ultimately, while more work is needed, we hope
that our analysis could inform some of the experi-
mental decisions and transfer considerations when
dealing with lower-resourced languages, thereby
improving the quality of NER models for these
languages.
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Limitations

While we believe that our work is valuable, it has
several shortcomings that could be addressed in
future work. First, our focus is solely on one task—
NER. While this enables us to perform detailed
experiments and analysis, the disadvantage is that
our results may not be general to all NLP tasks.
Furthermore, as mentioned in the discussion sec-
tion, our overlap results may be quite particular to
NER. Therefore, it would be particularly promising
to extend our work to other tasks, such as machine
translation, sentiment classification, text classifica-
tion, etc.

Second, our work only focuses on a subset of
ten African languages. While Africa exhibits a
large amount of linguistic diversity, and has sev-
eral low-resourced languages, our conclusions may
not necessarily be applicable to all low-resourced
languages, or languages in other regions, such as
Asia, Latin America, etc. It would be beneficial
to extend our work to other languages and regions
by using some of the more recent datasets for low-
resourced languages (Prabhakar et al., 2022; Ade-
lani et al., 2022a,b; Ebrahimi et al., 2022; Patil
et al., 2022). Relatedly, we only considered one
dataset, MasakhaNER. While this dataset is of high
quality, it is also relatively small. It would be
valuable to investigate whether our results hold on
lower-quality datasets, as low-resourced languages
often lack high-quality datasets such as the one we
considered in this work.

Finally, to isolate the training procedure,
we focused only on one pre-trained model,
xlm-roberta-base. Again, this enabled us to
perform in-depth analysis, but it would be valu-
able to extend this work to other models, such as
mBERT (Devlin et al., 2019), AfriBERTa (Ogueji
et al., 2021) and AfriTeVa (Ogundepo et al., 2022),
to determine if our results generalise to other mod-
els.
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Appendix

A Dataset

As mentioned in the main text, we used the
MasakhaNER dataset (Adelani et al., 2021).3 In-
formation about the dataset, including the number
of sentences and data sources, broken down by lan-
guage, is shown in Table 3. Adelani et al. (2021)
discuss the characteristics of the languages in more
depth.

Most of the data was sourced from various news
websites around the same time, with e.g. the
Swahili and Hausa data both coming from the VOA
website. While the authors of Adelani et al. (2021)
do not know for certain whether the Hausa and
Swahili data are translations of each other, it is
quite likely that the events covered are similar, as
the data is from around the same period.

B Hyperparameters and Reproducibility

We make our code available to reproduce our ex-
periments. Table 4 contains the hyperparameters
that we used when training the models. We used
the same hyperparameters and base code as Ade-
lani et al. (2021). For all experiments, in total, we
used around 1000 GPU hours, on an internal clus-
ter. The model we use, xlm-roberta-base, has
270M parameters.

B.1 Language Adaptive Fine-tuning
Procedure

The language adaptive models, introduced by Ade-
lani et al. (2021), had the following procedure:
Take the xlm-roberta-base model as a starting
point and fine-tune this on unlabelled, monolin-
gual data for one language (e.g. Swahili, Wolof,
etc.) using a masked language modelling loss. This
was done separately for each language, resulting in
ten separate language-adaptive models. The data,
including its source and the number of sentences,
used for this process is described in Table 10 of
Adelani et al. (2021).

B.2 Language Split of XLM-Roberta

XLM-Roberta (Conneau et al., 2020) is a multi-
lingual large language model trained on a large
corpus consisting of 100 languages. In particular,
it was trained on 8 African languages, including 3
languages contained in the MasakhaNER dataset,

3Available at https://github.com/masakhane-io/
masakhane-ner

https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
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Table 3: Information about the different data sources and breakdowns of the NER data per language. Reproduced
from Adelani et al. (2021), with permission.

Language Data Source Train/ dev/ test #Anno PER ORG LOC DATE % of Entities in Tokens #Tokens

Amharic DW & BBC 1750/ 250/ 500 4 730 403 1,420 580 15.13 37,032
Hausa VOA Hausa 1903/ 272/ 545 3 1,490 766 2,779 922 12.17 80,152
Igbo BBC Igbo 2233/ 319/ 638 6 1,603 1,292 1,677 690 13.15 61,668
Kinyarwanda IGIHE news 2110/ 301/ 604 2 1,366 1,038 2,096 792 12.85 68,819
Luganda BUKEDDE news 2003/ 200/ 401 3 1,868 838 943 574 14.81 46,615
Luo Ramogi FM news 644/ 92/ 185 2 557 286 666 343 14.95 26,303
Nigerian Pidgin BBC Pidgin 2100/ 300/ 600 5 2,602 1,042 1,317 1,242 13.25 76,063
Swahili VOA Swahili 2104/ 300/ 602 6 1,702 960 2,842 940 12.48 79,272
Wolof Lu Defu Waxu & Saabal 1871/ 267/ 536 2 731 245 836 206 6.02 52,872
Yorùbá GV & VON news 2124/ 303/ 608 5 1,039 835 1,627 853 11.57 83,285

Table 4: Hyperparameters for the fine-tuning experi-
ments

Hyperparameter Value

Number of Seeds 5
Fine-tuning Epochs 50
Maximum Sequence Length 200
Batch Size 32
Learning Rate 5e-5

Amharic, Swahili and Hausa. The amount of data
for these African languages is quite small, however,
consisting of 68M tokens for Amharic, 275M for
Swahili and 56M for Hausa, compared to e.g. 55B
for English and 10B for French and German. Thus,
while the model was trained on some African lan-
guages, they only make up a small fraction of the
entire pre-training dataset.

Additionally, it is important to question whether
XLM-Roberta was either pre-trained or adaptively
fine-tuned on, for example, the test dataset for some
of the languages. Adelani et al. (2021) do not know
this for certain. It is unlikely, however, as the data
of XLM-Roberta was extracted from the Common-
Crawl 2018 snapshot, whereas Adelani et al. (2021)
created and annotated the MasakhaNER dataset in
2020 and 2021 from current (at the time) news data.

B.3 NER and its evaluation

In Named Entity Recognition, we often have a dis-
tinction between the start of a multi-word entity,
and the continuation of one. For instance, John
Deere would be labelled as B-ORG I-ORG (denot-
ing the beginning and inside of an entity). However,
in some cases, the gold standard, “correct” labels
often have invalid transitions, such as I-ORG be-
ing immediately after O, bypassing the required
B-ORG label (Palen-Michel et al., 2021). Relat-

edly, the output of a model may also contain some
of these invalid transitions. This complicates eval-
uation, which has resulted in methods being de-
veloped to correct these problems. One common
approach is the “begin” repair method, where any
invalid “I-” is replaced by a “B-” (Palen-Michel
et al., 2021). After the label sequence has been
repaired, the standard evaluation procedure is then
used, comparing the predicted output to the ground-
truth annotations. We used this begin repair strat-
egy in our experiments.

C Additional Results and Analysis

This section contains additional experiments and
results. In particular, we consider the correlation
between overfitting (i.e. transferring worse to other
languages) after performing LAFT and the size of
the LAFT corpus in Appendix C.1. Appendix C.2
contains more LAFT experiments, considering the
effect of performing LAFT on a language other
than the fine-tuning one. In Appendix C.3 we
have additional transfer results, specifically consid-
ering the different NER categories in isolation, and
expanding upon the increased variance we found
when performing transfer. We next detail the pro-
cess when classifying tokens as international in Ap-
pendix C.4. Appendix C.5 covers the various other
overlap calculations we consider, confirming that
they all lead to similar conclusions. Appendix C.6
considers correlation results when splitting the data
and performance into international and local sub-
sets. Appendix C.7 performs the correlation analy-
sis between performance and data overlap without
considering Amharic, which has no overlap with
any other language. Appendix C.8 contains more
in-depth definitions of the other features, besides
data overlap, that we considered, as well as plots
showing the correlation of each feature with trans-
fer performance. In Appendix C.9 we consider
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the effect of training on a combination of datasets.
Finally, in Appendix C.10 we consider the repre-
sentations of the pre-trained models, how they are
changed by fine-tuning and how this may explain
some of our transfer results.

C.1 Overfitting vs Dataset size
In this experiment, we evaluate the effect of the
size of the language adaptive dataset on the trans-
fer performance of a model trained on downstream
data. To do this, we take the (a) base → X → X
models, for each language X; i.e., those that per-
formed language adaptive fine-tuning on language
X and additional NER fine-tuning on the same
language. We then evaluate these models on the
9 other languages. We do the same for the (b)
base → X models (i.e. the models that took the
base pre-trained model and performed NER fine-
tuning on language X). We subtract the average
transfer performance of the (b) models from the (a)
ones, to obtain the performance gain (or loss) after
performing language adaptive fine-tuning. We then
plot this quantity against the number of sentences
in the language adaptive fine-tuning datasets (ob-
tained from Table 10 in Adelani et al. (2021)) in
Fig. 3. We see a strong negative correlation (Pear-
son’s R = −0.82) that is statistically significant
(p < 0.05). This seems to indicate that the larger
our language adaptive fine-tuning dataset is, the
worse a downstream model will transfer.

Furthermore, we find that this result still
holds if we omit the three languages included in
xlm-roberta-base’s pre-training dataset (Hausa,
Swahili, Amharic), with R = −0.89, p < 0.05.
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Figure 3: The correlation between the number of
sentences in the LAFT sentences on the x-axis and
the transfer performance delta of using this model
compared to the base for fine-tuning.

C.1.1 Pre-training Size
In Fig. 1b, we find that, on average, only Swahili
and Nigerian Pidgin perform better as target lan-
guages after performing LAFT on the source lan-
guage. Hausa, for instance, does not. One reason
for this may be the size of the xlm-roberta-base
pre-training dataset: Swahili had 275M tokens, En-
glish 55B (Nigerian Pidgin is an English creole),
Amharic 68M and Hausa only 56M. Pre-training
on a large dataset may make the model less suscep-
tible to generalising worse after performing LAFT
on another language.

C.2 Additional LAFT Experiments

C.2.1 Experiment
For each language X , we compare four different
models: base, base → Swahili, base → Hausa
and base → X, where the latter three were subject
to further language-adaptive fine-tuning on their
respective languages. The base model acts as a
baseline that does not perform adaptive fine-tuning
at all, just fine-tuning on NER data. The base → X
model shows the benefits of using adaptive fine-
tuning on the target language. The base → Swahili
and base → Hausa models provide information
on how downstream performance is affected by
language-adaptive fine-tuning on a different lan-
guage. We chose Swahili as it was the language
with the most speakers and the largest dataset out of
the 10 available ones (Adelani et al., 2021), making
it a promising language to transfer from. It is also
spoken in Eastern Africa, like many of the other
languages we consider. Hausa is chosen as a base-
line, as another language with many speakers and
a relatively large dataset. Hausa is predominantly
spoken in Western Africa, in contrast to Swahili.
We fine-tune each of these models on NER data
and report the results when evaluated on the test
set.

C.2.2 Results
We find that performing LAFT on Swahili outper-
forms the base model. When using Hausa as the
LAFT language, however, we do not see any signif-
icant increase in performance compared to the base
model when averaging over all languages. This
may be due to the fact that the Hausa LAFT dataset
is around 4 times smaller than the Swahili one.
Besides Swahili and Hausa themselves, four lan-
guages have a significant (more than the standard
deviation) difference in performance between the
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Table 5: Performance of different models after fine-tuning and evaluating on NER data. We use a Mann-Whitney U
test (Mann and Whitney, 1947) as some data failed a Shapiro Wilks normality test (Shapiro and Wilk, 1965). ∗

indicates a statistically significant difference (p < 0.05) between the base model and the one under consideration,
bold implies ∗ and being the maximum per language. The leftmost column shows the model we started with before
fine-tuning on language-specific NER data, while the other columns indicate the NER fine-tuning and evaluation
language. For example, base → X is the language adaptive model for each column.

wol pcm yor hau ibo luo lug kin swa amh avg
Starting point for NER fine-tune

base 64.2 (1.3) 87.3 (0.9) 77.9 (0.3) 89.5 (0.4) 84.9 (0.7) 74.5 (1.3) 80.2 (0.7) 73.7 (0.7) 87.8 (0.5) 70.7 (1.1) 79.1 (0.2)
base → X 66.9 (1.7) 87.1 (0.8) 83.3 (0.3)∗ 91.6 (0.4)∗ 87.9 (0.5)∗ 76.2 (1.2) 84.5 (0.5)∗ 78.3 (1.0)∗ 89.6 (0.6)∗ 78.2 (0.8)∗ 82.4 (0.2)∗

base → swa 67.3 (1.3)∗ 88.0 (0.8) 78.3 (1.0) 88.8 (0.2)∗ 84.3 (0.8) 77.2 (1.4) 82.0 (0.5)∗ 75.2 (1.0) 89.6 (0.6)∗ 68.9 (0.9) 80.0 (0.5)∗

base → hau 66.1 (2.0) 88.3 (1.0) 78.7 (0.7) 91.6 (0.4)∗ 85.5 (0.4) 75.2 (1.0) 79.8 (0.6) 72.1 (0.8)∗ 87.6 (0.6) 68.4 (0.5)∗ 79.3 (0.3)

Swahili and Hausa models, Igbo, Luo, Luganda
and Kinyarwanda. Hausa only outperforms Swahili
on Igbo, which is predominantly spoken in West
Africa, whereas Swahili outperforms Hausa on the
other three languages, largely spoken in East Africa.
This suggests that the region of the source and tar-
get language has an impact on the effectiveness of
LAFT.

C.3 Additional Transfer Results

In Fig. 5, we show more transfer results. The
first row contains transfer performance when fine-
tuning on the x-axis and evaluating on the y-axis.
Figs. 5a and 5b were contained in the main text,
and Fig. 5c contains the results when using a
base → swa language adaptive model. The second
row shows the standard deviations of the F1 score
over 5 seeds for each model in the first row. In
particular, looking at Fig. 5d, the results indicate
that the standard deviation is generally higher when
performing transfer (off-diagonal elements) com-
pared to performing standard evaluation on the fine-
tuned language (diagonal elements). This suggests
that transfer exhibits a lack of robustness to ran-
dom initialisations. This effect is more pronounced
when fine-tuning on Luo, as it has significantly less
data than the other languages. When transferring
from other languages to Amharic, the spread is
higher than average, likely due to Amharic’s differ-
ent script.

C.3.1 Performance varies wildly across the
different entity types

We also consider the above results in slightly more
detail by looking at each NER category individu-
ally, to see if any perform much better or worse
than the others. These results are shown in Fig. 4.
We generally see that dates transfer poorly, over
most languages, particularly for Luo. This could
be caused by the differences in writing dates across

these languages. Organisations transfer poorly for
Amharic, possibly caused by its different script.

C.4 International Tokens in Overlap

We have a few separate categories of international
tokens, described shortly. The full data we use can
be found in our source code base.

Names This contains a list of common English
names and surnames.

Places This list contains continents such as Africa,
countries such as Russia, cities such as Lon-
don and states such as Texas. We addition-
ally have the four cardinal directions (North,
South, East, West) and the 10 000 cities with
the largest population.4.

Companies A list of popular companies and or-
ganisations, such as Twitter, Youtube, Boeing,
etc. We additionally use a list of the Fortune
1000 companies.

Numbers/Punctuation This category contains
numbers and punctuation marks.

General English General English words, such as
the names of the 12 months and the 7 days,
words such as “International”, “Hospital”,
“Christmas”, etc. This category had the fewest
occurrences on average, around 1% of tokens.

We generally find that places, names and numbers
made up most of the overlapping tokens. Punctua-
tion, the names of companies and general English
words make up the smallest fraction, with less than
10% of the tokens.

4https://public.opendatasoft.com/explore/dataset/
geonames-all-cities-with-a-population-1000/download/

https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/download/
https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/download/
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Figure 4: Heatmaps for the language-adaptive fine-tuned model (Fig. 5b), broken down by category.

C.5 Alternate Overlap Calculations

While we used just a single method for calculating
overlap in the main text, here we show the results
when using other, reasonable techniques. Overall,
we find that the conclusions are the same, with over-
lap correlating strongly with transfer performance.
In particular, the variations we consider are:

Unique Entities Only count the number of unique
overlapping entities between the datasets.

Only Train Consider only the training dataset.

Source/Target/Sum When counting the number
of times a token overlaps, use the number of
occurrences in the source dataset, or the target
dataset, or the sum of these two values.

Normalise Whether or not to normalise the over-
lap by dividing by either (1) the total number
of entities, (2) the number of entities in the
source, or (3) target language, etc.

Considering “O” Whether or not to consider the
“Other” entities as well when calculating over-
lap, or just using the named entities.

Without Labels Whether to consider two entities
overlapping if they have different labels.

Overall, we find that using the number of over-
lapping tokens as the number of occurrences in the
source dataset has the lowest correlation, with R
around 0.5. If we do not consider this approach of
calculating overlap, then all correlation coefficients
are at least 0.6, ranging up to 0.7. All correlations
are statistically significant, with p < 0.05.

This shows that regardless of the overlap method
used, there is a strong correlation between the num-
ber of overlapping tokens and the transfer perfor-
mance in NER. Some of the results for different

calculation methods are shown in Fig. 6. In par-
ticular, in the bottom row of this figure, we show
results similar to those in the main text, but con-
sidering only the number of tokens present in the
target dataset. We also calculate the fraction of
overlapping tokens instead of the absolute number.

C.6 Splitting Overlap into Local and
International

See Fig. 7 for the overlap results (similar to Fig. 2),
split up into international and local tokens. The
results here are similar to the ones in the main
text (which was averaged over all tokens). The
correlation is slightly lower for local tokens, but it
is still positive and statically significant.

C.7 Overlap Correlations without Amharic

Fig. 8 contains the correlation results when not
considering Amharic.

C.8 Additional Features

We additionally consider the other features from
Lin et al. (2019). These results are shown in Fig-
ures 12-21. In particular, we consider the following
features:

Geographic distance The distance between
where the different languages are spoken,
based on data from Glottolog (Hammarström
et al., 2018).

Genetic distance The genealogical distance be-
tween the languages based on the Glottolog
language tree.

Inventory distance The cosine distance between
the feature vectors from the PHOIBLE
database (Moran et al., 2014).

Syntactic distance The cosine distance between
the feature vectors that represent the syntactic
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(g) Performance difference when
adding language-adaptive fine-tuning.
Swahili and Hausa transfer worse on
average, while Luo improves.
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(h) Performance difference between
using a Swahili adaptively fine-tuned
model and no language-adaptive fine-
tuning after subsequent fine-tuning on
NER data. Hausa fine-tuning per-
forms much worse when evaluated on
Swahili.

Figure 5: Heatmaps indicating the average performance over 5 seeds of specific models on specific languages
(y-axis) after being fine-tuned on another language’s NER data (x-axis). In general, we notice a large standard
deviation, indicating that this process is unreliable. The bottom row shows the difference between one technique,
and base, i.e. how much improvement this new model gives over using the base model. avg indicates the average
transfer performance per row or column, respectively. Note that this calculates the average of the entire row or
column excluding the diagonal, to be able to see the overall transfer performance at a glance.
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Figure 6: Overlap and correlation plots, for the (top) smallest and (middle) largest correlation coefficients, respec-
tively. The bottom row contains the results when calculating overlap as the fraction of overlapping tokens in the
target dataset, to contrast against the main text that used the absolute number. The top row used just the training
dataset, counted overlap with respect to the number of occurrences in the source datasets, without considering labels.
The middle row also used all of the unlabelled data, but calculated |Es∩Et|

|Es|+|Et| where Es and Et are the sets of unique
entities for the source and transfer languages respectively (Lin et al., 2019)
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(b) Local

Figure 7: Showing the correlation between overlap and performance when only considering (a) International and (b)
Local tokens. Here, both the performance and overlap calculations only took these subsets of tokens into account,
for instance, comparing the number of overlapping international tokens with the performance on international
tokens.
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Figure 8: This shows the correlation between data
overlap and performance for Amharic, as it has a
different script and may thus be considered an outlier.
The results are very similar to Fig. 2b.

properties of the languages, from the WALS
database (Dryer and Haspelmath, 2013).

Phonological distance The cosine distance be-
tween the phonological feature vectors
obtained from WALS and Ethnologue
databases (Lewis, 2009).

Featural distance The cosine distance between
feature vectors consisting of the 5 above fea-
tures.

Source language dataset size The number of sen-
tences in the source language’s dataset.

Source Over Target Size Ratio The size (in num-
ber of sentences) of the source dataset divided
by the size of the target dataset.

Source language number of entities The num-
ber of named entities in the source language’s
dataset.

Source Over Target entity Ratio The number of
entities in the source dataset divided by the
number of entities in the target dataset.

Overall, we find that data overlap has the highest
correlation with transfer performance, with many
other features not having a statistically significant
correlation or a very small positive or negative cor-
relation.

C.9 Combining Datasets

As an additional experiment, we train models on a
combination of datasets, to see if this has any effect.
The two options we consider here are: (1) training
on the concatenation of all of the datasets; and (2)
training on the concatenation, excluding the target
language. We consider (1), as it involves training
a single model, and we would like to investigate
how well this model performs across all languages.
For (2), we measure the effect of transferring from
the nine other languages, as opposed to only the
single-language transfer we have considered in the
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rest of this paper. These results are shown in Ta-
ble 6. Training on the target language, or on the
concatenation of all languages performs quite well.
The latter option also has the advantage of only
being one model, whereas we need one model per
language if we fine-tune only on data from one
language. Fine-tuning the base model on the best
transfer language performs worse than training on
all of the datasets, excluding the target language.
Finally, using a LAFT model for the target lan-
guage and fine-tuning on all datasets except the
target performs much better, and is the best transfer
option we have considered.

Table 6: Here we show the results when training on
a combination of datasets, compared to training on
the best transfer language, or the target language it-
self. cat − {X} indicates that the model trained on a
combination of all of the datasets excluding the target
language.

wol pcm yor hau ibo luo lug kin swa amh avg

base → X 64 87 78 89 85 74 80 74 88 71 79
base → X → X 67 87 83 92 88 76 85 78 90 77 82
base → cat 65 89 81 91 86 77 81 75 87 71 80
base → swa → cat 66 89 80 91 85 80 81 76 89 69 81
base → X → cat− {X} 57 80 68 78 76 45 73 68 74 49 67
base → cat− {X} 43 78 60 74 60 44 63 59 75 33 59
base → best 44 70 54 76 54 40 59 58 76 40 57

C.10 Representations

This additional experiment follows prior work by
Hsu et al. (2019) by investigating the contextual
word embeddings from the different models, specif-
ically looking into how these embeddings change
as we perform different fine-tuning operations. We
take the last 4 layers from the language model (i.e.
not the dense final layer) and use the sum of these
hidden states to obtain a word vector (of size 768).
We use the sentences from the dataset, and only
extract the 4 different NER categories for compu-
tational reasons. We compute the mean vector per
category, which we use in the following. To visu-
alise the data, we show the results after performing
PCA.

C.10.1 Variability
We found a large amount of variability when fine-
tuning the models on different random seeds (see
Figure 1 in the main text), so we next investigate the
effect of different initialisations on the embeddings.

Fig. 9 shows the results for a few languages pairs,
and immediately we can see that Fig. 9a has clus-
ters corresponding to the different categories, even
when using different seeds. Figs. 9b to 9d on the
other hand cluster more toward seeds, so the cate-

gories differ when using different seeds. This could
indicate that the Swahili model is more consistent
and robust to random initialisations, and learns
roughly the same embeddings for each seed. On the
other hand, when fine-tuning from Kinyarwanda,
Luo or Wolof, there is no clear clustering of cat-
egories (despite a relatively large amount of data
overlap between Kinyarwanda and Hausa), sug-
gesting that these models cannot distinguish Hausa
categories very well (possibly substantiated by the
poorer results shown in the main text).

Now, the above analysis is somewhat impacted
by the final linear layers in the models – it is en-
tirely possible that two models that have different
embeddings also have different final layers and end
up classifying examples exactly the same. We can,
however, still use these experiments to extract some
qualitative information about the embeddings of
different languages. Furthermore, Figs. 9e and 9f
– in which the language being investigated is the
same as what the models trained on – contain re-
sults where the clustering is predominantly towards
categories, bolstering the validity of this approach.

C.10.2 Different Languages and Models
Here we consider the same model and analyse
the differences in embeddings from different lan-
guages, and how this evolves. For example, in
Fig. 10a we see that for Nigerian Pidgin (which
transferred well previously), the predominant clus-
ters are again categories and not languages.

We next examine different models on the same
language, specifically looking at what happens to
these embeddings when a model is further fine-
tuned. Fig. 10b shows that performing fine-tuning
on models does affect the embeddings quite sig-
nificantly, although there does still seem to be a
similar relative positioning between the categories
- almost as if in PCA, one principal component was
the model used, and another was the category.

C.10.3 Transfer when fine-tuning on Amharic
In the main text, we observed that Amharic trans-
ferred quite well to Hausa, Swahili and Nigerian
Pidgin. We now plot the embeddings of different
languages, using base fine-tuned on Amharic in
Fig. 11. In the top row, we have Hausa, Swahili
– languages that Amharic was jointly pre-trained
with – and Nigerian Pidgin, which is similar to
English. In the bottom row, we have three other
languages, not contained in the pre-training dataset.
Clearly, the top row is clustered significantly more
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towards categories – indicating that the model man-
ages to transfer knowledge from Amharic to these
other languages. The bottom row demonstrates a
clear clustering around the random seed – indicat-
ing no real information is transferred.

C.10.4 Summary
In summary, plotting the embeddings can shed
some light on the representations learned by the
model which, in many cases, provides some expla-
nation for the results we obtained. Examining the
embeddings can shed some light on this.
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(e) Hausa embeddings from a model
that was fine-tuned on Hausa – with
clear category clusters.
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(f) Swahili embeddings from a Swahili
fine-tuned model – with clear category
clusters, although LOC and organisa-
tions are grouped close together.

Figure 9: Scatter plots of embeddings from different models, languages and categories. The shapes indicate different
categories, whereas the colours indicate different starting points, i.e. seeds.
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(a) Embeddings for different languages from a
base → pcm → pcm model. This clustering is
quite similar across different seeds.
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Figure 10: Embeddings of (a) multiple languages with one model and (b) Hausa embeddings from different models
after performing PCA.
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Figure 11: Showing embeddings of various languages, obtained from base → amh.
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Figure 12: Source over Target Size Ratio
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Figure 13: Source Language Dataset Size
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Figure 14: Source over Target Entities Ratio
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Figure 15: Number of entities in the source language’s dataset
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Figure 16: Genetic Distance
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Figure 17: Syntactic Distance
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Figure 18: Featural Distance



224

wol pcm yor hau ibo luo lug kin swa amh
Source

wo
l

pc
m

yo
r

ha
u

ib
o

lu
o

lu
g

ki
n

sw
a

am
h

Ta
rg

et

0 0.64 0.43 0.39 0.49 0.22 0.64 0.64 0.46 0.35

0.64 0 0.59 0.55 0.55 0.62 0 0 0.57 0.57

0.43 0.59 0 0.48 0.39 0.36 0.59 0.59 0.53 0.53

0.39 0.55 0.48 0 0.46 0.33 0.55 0.55 0.51 0.43

0.49 0.55 0.39 0.46 0 0.44 0.55 0.55 0.33 0.58

0.22 0.62 0.36 0.33 0.44 0 0.62 0.62 0.5 0.41

0.64 0 0.59 0.55 0.55 0.62 0 0 0.57 0.57

0.64 0 0.59 0.55 0.55 0.62 0 0 0.57 0.57

0.46 0.57 0.53 0.51 0.33 0.5 0.57 0.57 0 0.56

0.35 0.57 0.53 0.43 0.58 0.41 0.57 0.57 0.56 0

Phonological Distance

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Phonological Distance

20

30

40

50

60

70

F1

Comparing F1 vs. Phonological Distance. R=-0.02, p=8.4e-01

Source
wol
pcm
yor
hau
ibo
luo
lug
kin
swa
amh

Target
wol
pcm
yor
hau
ibo
luo
lug
kin
swa
amh

Figure 19: Phonological Distance
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Figure 20: Inventory Distance
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Figure 21: Geographic Distance


