
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15–25

November 1–4, 2023. ©2023 Association for Computational Linguistics

15

Don’t be Blind to Questions: Question-Oriented Math Word Problem
Solving

Zhenwen Liang1, Jipeng Zhang2, and Xiangliang Zhang�1

1University of Notre Dame, {zliang6, xzhang33}@nd.edu
2Hong Kong University of Science and Technology, jzhanggr@conect.ust.hk

Abstract

Solving math word problems (MWP) is a chal-
lenging task for natural language processing
systems, as it requires to not only identify and
comprehend the problem description within the
context, but also to deduce a solution in ac-
cordance with the posed question. Previous
solvers have been found to prioritize the con-
text over the question, resulting in low perfor-
mance when solving multiple questions under
the same context. In this paper, we present
a question-oriented strategy to address this is-
sue and improve the generalizability of MWP
solvers. Our approach features an entity-aware
encoder that enhances the connection between
MWP context and question via entities in es-
tablished dependency graphs, aiming at obtain-
ing better problem representations. Then, a
question-guided decoder is trained using a con-
trastive learning strategy to enhance the ques-
tion representations. Empirical evaluations on
four benchmarks demonstrate that our method
outperforms previous solvers and exhibits a fa-
vorable balance between efficacy and efficiency
in MWP solving. In addition, our solver is not
reliant on any specific pre-trained model and
demonstrates seamless compatibility with dif-
ferent pre-trained model backbones.

1 Introduction

Since the 1960s, automated mathematical reason-
ing has been recognized as a fundamental chal-
lenge for computers (Bobrow, 1964), with math
word problem (MWP) solving garnering particular
interest within the field of natural language process-
ing (NLP). As shown in Table 1, MWPs typically
involve mathematical problems elaborated in nat-
ural language that are solved through the use of
equations, and solving these problems is a demand-
ing task that requires both text comprehension and
mathematical reasoning abilities.

Our codes are released at https://github.com/
Zhenwen-NLP/QoS_AACL

Context: Mr. Wang rides a bicycle from home to
school at 16 kilometers per hour, and can
reach the school in 0.2 hours. He walks 4
kilometers per hour.

Question 1: How far is Mr. Wang’s home from the
school?

Solutions: MWP-BERT: (16× 0.2)/4 (Wrong)
Ground Truth: 16× 0.2

Question 2: How many times faster is Mr. Wang walk-
ing than cycling?

Solutions: MWP-BERT: 16/4 (Wrong)
Ground Truth: 4/16

Question 3: How long does it take Mr. Wang to walk
to school?

Solutions: MWP-BERT: (16× 0.2)/4 (Correct)
Ground Truth: (16× 0.2)/4

Table 1: An example from UnbiasedMWP (Yang et al.,
2022) dataset. MWP-BERT (Liang et al., 2022a) failed
to solve 2 out of 3 questions with the same context.

At present, the most advanced MWP solvers tend
to be either fine-tuned Seq2Tree models (Jie et al.,
2022; Liang et al., 2022b; Zhang et al., 2022) or
large language models (LLMs) (Wei et al., 2022;
Lu et al., 2022; Wang et al., 2022; Chen et al.,
2022) prompted with in-context examples. While
LLMs may offer higher accuracy in solving these
problems, Seq2Tree models have the advantage of
requiring fewer parameters, making them a more
economical choice. However, current Seq2Tree
solvers have been found to prioritize the context
over questions. Previous research (Patel et al.,
2021; Yang et al., 2022) has demonstrated that
these solvers can actually achieve high accuracy
on MAWPS (Koncel-Kedziorski et al., 2016) and
ASDiv-A (Miao et al., 2020) when the question
text has been removed and just using the context,
but struggle to achieve similar levels of accuracy on
question-diversified datasets such as SVAMP (Patel
et al., 2021) and UnbiasedMWP (Yang et al., 2022).
For example, as shown in Table 1, it is evident that
the state-of-the-art baseline MWP-BERT (Liang
et al., 2022a) successfully tackles the most chal-
lenging question of the three presented. However, it

https://github.com/Zhenwen-NLP/QoS_AACL
https://github.com/Zhenwen-NLP/QoS_AACL

16

falls short in addressing the more elementary ques-
tions, failing to provide satisfactory answers. The
fact that MWP-BERT generates the same solution
for both questions 1 and 3 serves as empirical evi-
dence supporting the conclusion that current MWP
solvers frequently rely on superficial context-based
heuristics rather than devoting sufficient attention
to solving the question at hand.

Our approach consists of three components.
Firstly, we observe that MWPs often seek to
identify an unknown quantity that is related to
some known entities. To facilitate the solver’s
recollection of these entities, we first construct
graphs through dependency parsing and then con-
nect common entities that appear in both the con-
text and the question. Although sub-graphs of
the dependency tree have been combined with
Recurrent-Neural-Network (RNN)-based solvers
in Graph2Tree (Zhang et al., 2020) and MultiE/D
(Shen and Jin, 2020), it has not been used with
pre-trained language model (PLM)-based solvers.
Combining dependency graphs and PLM will equip
the solver a detailed analysis of the syntactic and se-
mantic dependencies between different elements of
the sentence, identifying key nouns and verbs that
are essential for understanding the problem. Our
PLM-based approach retains the entire dependency
tree and also enhances the connection between the
context and the question, enabling the solver to
effectively parse the MWP, connect relevant infor-
mation, and avoid potential misunderstandings.

As the second component of our approach, we
address the issue of previous Seq2Tree solvers that
do not distinguish between the encoded represen-
tations of the context and the question. When the
integrated representation of context and question is
directly fed to the decoder, it tends to prioritize the
context and ignore the importance of the question,
as the context is usually longer than the question
in natural (Patel et al., 2021). To counter this, our
approach utilizes only the question to guide the
decoding process, resulting in improved question-
generalization ability and reduced reliance on the
context.

Finally, our approach addresses the difficulties
on solving MWPs that may have semantically simi-
lar questions but entirely different solutions, which
could confuse the solver and lead to incorrect pre-
dictions (Liang and Zhang, 2021; Patel et al., 2021).
To combat this issue, we introduce a question-
contrastive training strategy that helps our solver to

focus on the question. While contrastive learning
has been widely applied in MWP solver training
(Liang and Zhang, 2021; Li et al., 2021; Liang
et al., 2022b), most approaches attempt to group
analogous MWPs together in the problem represen-
tation space. In contrast, our method perturbs the
question representation to create negative samples,
enabling the model to differentiate genuine ques-
tions from these perturbed versions. This helps
to mitigate the risk of incorrect predictions due to
the confusion caused by semantically similar but
ultimately distinct problems.

Overall, we propose a novel Seq2Tree MWP
solver named QoS that considers the importance
of the question part in MWPs. We conduct exten-
sive experiments on MWP solving over four bench-
marks. Our solver not only achieves state-of-the-art
accuracy on Math23k (Wang et al., 2017), MAWPS
(Koncel-Kedziorski et al., 2016), UnbiasedMWP
(Yang et al., 2022), and SVAMP (Patel et al., 2021),
to our knowledge, this is also the first fine-tuned
approach that beats the chain-of-thought comput-
ing approach (Wei et al., 2022) on the MAWPS
dataset. Moreover, ablation studies and qualitative
analysis are elaborated to prove the effectiveness
of our approach. We also implement our solver
with different language model backbones, in order
to showcase its backbone agnosticism and its po-
tential for further advancement in conjunction with
the evolution of pre-trained models.

2 Related Work

2.1 Seq2Seq and Seq2Tree Math Word
Problem Solving

Deep learning techniques have garnered
widespread popularity as the primary method for
solving MWPs due to their efficacy in surpass-
ing traditional statistical rule-based algorithms
(Hosseini et al., 2014) and semantic parsing
methods (Shi et al., 2015; Huang et al., 2017).
Deep neural solver (DNS) (Wang et al., 2017)
was the pioneer in solving MWPs via Seq2Seq
models with an RNN encoder and RNN decoder. A
tree-structured decoder (Liu et al., 2019a; Xie and
Sun, 2019) was presented to achieve goal-driven
decoding. Li et al. (2019) borrowed the idea from
Transformer and applied multi-head attention.
Moreover, many pre-processing methods and
tricks were also very helpful to Seq2Seq/Seq2Tree
solvers, such as number mapping (Wang et al.,
2017), equation normalization (Wang et al.,

17

2018), graph construction (Zhang et al., 2020)
and data augmentation (Liu et al., 2020). Some
low-resource settings (Alghamdi et al., 2022) such
as weak supervision (Hong et al., 2021; Liang
et al., 2023b) have also been explored.

In addition to the aforementioned RNN-to-RNN
solvers, the advent of transformer-based pre-trained
language models (PLMs) has allowed researchers
to construct significantly more powerful solvers
in these years, such as MWP-BERT (Liang et al.,
2022a), REAL (Huang et al., 2021), BERT-CL (Li
et al., 2021), Generate&Rank (Shen et al., 2021),
Deductive Reasoner (Jie et al., 2022), Analogical
solver (Liang et al., 2022b) and so on. PLMs are
used in these methods as a problem encoder. A de-
coder is attached to construct a complete Seq2Tree
solver, which can be trained end to end.

Our paper aims to address a common weakness
that has plagued previous Seq2Tree solvers, namely
their inability to adequately focus on the questions.
To remedy this issue, we introduce a question-
guided solver that is designed to be more resistant
to variations in the formulation of questions. Em-
pirical evaluations demonstrate the efficacy of our
approach, with the proposed solver outperforming
baseline methods by a substantial margin.

2.2 Large Language Models in Math Word
Problem Solving

The ability to reason has long been recognized as a
fundamental challenge for large language models
(LLMs), with these models’ mathematical reason-
ing capabilities not being fully developed until the
emergence of chain-of-thought prompts (Wei et al.,
2022). With the help of it, large language models
(LLMs) have demonstrated a remarkable level of
accuracy in MWP solving, surpassing that of previ-
ous fine-tuned models, simply by being provided
with a few examples of such problem-solving pro-
cesses. Interestingly, researchers (Kojima et al.,
2022) also find that LLMs are sufficient zero-shot
reasoners with the prompt “Let’s think step by step.”
A number of studies have pursued the goal of im-
proving the performance of chain-of-thought, in-
cluding (Shi et al., 2022; Wang et al., 2022; Chen
et al., 2022).

While the aforementioned studies have focused
on the improvement of chain-of-thought prompt-
ing, our approach takes a different tack by lever-
aging a fine-tuned Seq2Tree model with signifi-
cantly fewer parameters (more than 100×) than

LLMs, yet achieving comparable accuracy. In fact,
our solver even outperforms the original chain-of-
thought approach on the MAWPS dataset. Addi-
tionally, our solver has a more transparent structure
and is amenable to further fine-tuning and has the
potential to combine with LLMs in a knowledge
distillation way such as (Ho et al., 2022; Li et al.,
2022; Magister et al., 2022; Shridhar et al., 2022;
Liang et al., 2023a). Given these strengths, we be-
lieve our work represents a meaningful contribution
to the field, providing a powerful Seq2Tree model
for MWP solving tasks and advancing the research
community’s understanding of these problems.

3 Our Approach

3.1 Problem Formulation

The goal of our paper is to develop an MWP solver
that can take in a description of a problem, rep-
resented as W = {w1, w2, ..., wn}, and output
an equation-shaped solution, denoted as S. In
addition, we divide the problem description W
into two distinct components: the context repre-
sented as Wc ∈ Ra, and the question represented as
Wq ∈ Rb, where a and b are lengths of the context
and the question such that a+b = n. In the original
dataset, the problem description does not differen-
tiate between these two parts, so we designate the
final sentence of the problem as the question and
the rest part as the context. There are a few excep-
tional cases in which there is only a single sentence
presented in the problem description, in which case
we treat that sentence as a question without any
accompanying context. Then, we transform the so-
lution into pre-order traversals of solutions trees to
simplify the grammar of the solution (Xie and Sun,
2019). In the solution tree, operator nodes serve as
the parents of number nodes, which must always
be leaf nodes.

3.2 Model Architecture

Our proposed network is shown in Figure 1, which
contains an entity-aware encoder and a question-
guided decoder.

Entity-Aware Encoding

The encoder is trained to learn the representation
of the problem. Firstly, we input the entire prob-
lem W into a pre-trained model to get an initial
representation Z. We implement BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b), and

18

Problem Description:
Conner has 25,000 (N0) dollars in his

account. Every month he spends 1500 (N1) dollars.
How many dollars will Conner have in his account

after 8 (N2) months?

[CLS] Conner has N0 ?
...

...
[CLS] E_1 E_2 E_3 E_n

[CLS] Z_1 Z_2 Z_3 Z_n

...

Conner has dollars in account

PROPN VERB NOUN NOUNADP

dollars Conner have in account

Context:

Question:

NOUN PROPN VERB ADP NOUN

Transformer Encoder Graph Encoder
Context Question

Tree Decoder

GCNGCN …… GCNGCNMulti-head

Layer Norm

Feed Forward (MLP)

Context Question

-

N0 ×

N1 N2

Entity Linking

Dependency Parsing

Gaussian Noise

Summation
Contrastive
Decoding

Maximize
Margin

Figure 1: Overview of the proposed QoS model. One MWP is first encoded using a pre-trained language model,
followed by the use of dependency graph analysis and entity linking to ensure a high-quality representation of
the question. A question-guided decoder is then employed, utilizing contrastive training to maximize the margin
between the decoding of the genuine and perturbed question representations.

DeBERTa (He et al., 2020) to show that our solver
is generalizable across different PLMs.

Typically, an MWP asks for information about
an entity that can be referred to in the context. By
identifying the connection between these two refer-
ences and establishing the understanding that they
refer to the same entity, it will construct a more
coherent and comprehensive representation of the
problem, facilitating the solving process. To this
end, we first create a dependency graph of the prob-
lem W , which can assist in disambiguating the
syntactic roles of words and resolving syntactic
ambiguity that may arise in complex word prob-
lems. Then we add additional edges related to the
entities that appear in both context Wc and ques-
tion Wq. The construction method of the graph will
be explained later in this section. Generally, the
workflow of our encoder is:

Ẑ = enc(W) = Z +GraphNN(Z,A), (1)

where the adjacency matrices of the constructed
graphs are represented by A, and our encoder is de-
noted as enc. Leveraging the context-question asso-
ciation enhanced dependency graph A, we employ
a graph neural network, designated as GraphNN ,
to refine the vector Z ∈ Rh∗n where h is the di-
mension of hidden representations. A residual con-
nection is established between the refined vector
and the original vector. The GraphNN is struc-
tured in a transformer-like manner, with the Graph
Convolutional Network (GCN) block serving as the

fundamental building block. Each GCN block can
be decomposed into a two-layer graph convolution:

GCN(Z,A) = σ(Â(σ(Â× Z ×X1))X2), (2)

where Â is normalized adjacency matrix as men-
tioned in (Kipf and Welling, 2016), and X1, X2 are
learnable matrices.

Borrowing from transformers (Vaswani et al.,
2017), we also employ a multi-head mechanism.
Multiple different GCN blocks are introduced and
their output features (equivalent to different heads)
are concatenated to get the final representation:

MHead(Z,A) =
∣∣∣∣H
h=0

GCN(Z,A(h mod 4)),
(3)

where || stands for concatenation operation, and
H denotes different heads. A is a set of adjacency
matrices, which represents 4 different methods of
graph construction. To achieve this, we first obtain
the dependency structure using Stanza (Qi et al.,
2020), and then identify all words with POS tags
of "NOUN" or "PROPN", as the concepts we are
trying to connect are generally nouns. For the first
graph, we add edges between wi and wj if they
refer to the same entity and belong to context Wc

and Wq, respectively:

A0(i, j) =

{
1, if wi = wj , wi ∈ Wc, wj ∈ Wq,

0, others.
(4)

19

For the second graph, we connect one entity to the
neighbors of its another appearance in the depen-
dency graph:

A1(i, j) =

1, if A0(i, k) = 1, j ∈ NBR(k),

1, if A0(k, j) = 1, i ∈ NBR(k),

0, others,
(5)

where NBR(k) are first-hop neighbors of wk in
the dependency graph. The first graph is utilized
to elicit the encoder of the entity’s appearance in
the context during question encoding, while the
second graph is designed to facilitate the bridging
of subtle concepts that pertain to the entities. Both
A0 and A1 are formed by introducing additional
edges into the original dependency graph, which
can be either directed or undirected. A directed
edge only exists from the parent to the child in
the dependency tree, while an undirected edge is
bidirectional. Therefore, we eventually have four
different graphs in total.

Finally, similar to transformers, we add a multi-
layer perception (MLP) with Layer Normalization
(LN) at the end of our encoder:

GraphNN(Z,A) = MHead(Z,A)+

LN(MLP (MHead(Z,A))).
(6)

Dependency parsing can assist in disambiguating
the syntactic roles of words, which can be partic-
ularly useful in resolving syntactic ambiguity that
may arise in complex word problems. Overall, the
utilization of these four graphs enhances the ca-
pacity of our encoder to comprehend the MWP
through dependency parsing, and strengthens the
association between the context and the question
through additional entity linking.

Question-Guided Decoding
The tree-based decoder (Xie and Sun, 2019) is a
popular choice for the design of MWP solvers. It
generates the solution in the form of a binary tree,
consisting of a predicting module and a decompos-
ing module. Each node in the tree has a hidden
state, which the predicting module decodes into a
token with an attention score on the problem de-
scription. If the prediction is an operator such as
+ or −, the decomposing module splits the node
into two children nodes. On the other hand, if the
prediction is a quantity, the node becomes a leaf
and is not further decomposed. Similar to Recur-
rent neural networks (RNNs), the hidden state at

each time step depends on the previous time step.
In this way, we obtain a binary tree whose leaf
nodes represent quantities and non-leaf nodes rep-
resent operators, which can be easily converted into
a mathematical solution. Finally, the decoder out-
puts the pre-order traversal sequence of the solution
tree. However, previously Seq2Tree solvers with
tree decoders employed the mean vector of the over-
all problem representation Ẑ denoted in Equation
(1), as the hidden state of the root node. However,
MWPs often have more context than the question,
leading to the mean vector being heavily influenced
by the context. This could potentially explain the
observation that Seq2Tree solvers tend to converge
on simplistic context-based heuristics, as noted in
prior research (Patel et al., 2021; Yang et al., 2022).
To address the aforementioned issue, we follow the
structure of the tree decoder but decompose the
problem representation Ẑ ∈ Rh∗n into context rep-
resentation Ẑc ∈ Rh∗a and question representation
Ẑq ∈ Rh∗b based on the splitting index between
Wc and Wq, and use the mean vector of Ẑq as the
initial hidden state of the tree decoder. This seem-
ingly minor modification has been demonstrated to
be quite effective in our experiments. This strategy
allows the decoder to incorporate a more balanced
representation of the problem at the outset, rather
than being biased towards the context.

Question-Contrastive Training
Our decoder, as previously mentioned, relies on
the learned question representation Ẑq to guide the
solution generation. Given the potential for MWPs
to have similar questions but disparate solutions
(Liang and Zhang, 2021), it is essential that this
question representation be precise. To that end,
we introduce question-contrastive learning in our
approach, with the aim of augmenting the training
process with a degree of variability and bolstering
the model’s sensitivity to minor data perturbations.
This, in turn, provides a more precise encoding
for the question and allows for a more accurate
decoding towards the solution.

The regular training criteria for the solver is to
minimize the negative log probability:

L(W,S) = − log p(Ẑ | W)− log p(S | Ẑc, Ẑq),
(7)

where the two terms train the encoder and decoder,
respectively. To obtain a question-robust decoder,
we apply Gaussian noise to the question representa-
tion Ẑq and get a negative question representation

20

Ẑneg
q :

Ẑneg
q = Ẑq + λN (0, 1), (8)

where λ controls the magnitude of the introduced
noise. Toward the end of enabling our solver to
execute distinct decoding processes for disparate
questions, we strive to augment the discrepancy
between the decoding based on Ẑq and Ẑneg

q . In
other words, we are trying to enlarge the differ-
ence D(Ẑq, Ẑ

neg
q) between those two decoding pro-

cesses:

D(Ẑq, Ẑ
neg
q) =− log p(S | Ẑc, Ẑq)+

log p(S | Ẑc, Ẑ
neg
q).

(9)

Then, we adjust our training target to a modified
hinge loss with a margin of m:

L =

{
L(W,S), if m−D(Ẑq, Ẑ

neg
q) > 0,

− log p(Ẑ | W) +m−D(Ẑq, Ẑ
neg
q), otherwise.

(10)

When the difference D(Ẑq, Ẑ
neg
q) exceeds the mar-

gin m, which means our model does well on differ-
entiating them, we simply utilize the original train-
ing loss as outlined in Equation (7). Conversely,
when the discrepancy between the two decoded re-
sults falls below the margin m, we alter our decoder
training target to augment the difference between
them. Eventually, we use loss L in Equation (10) as
our training target, λ and m are hyper-parameters.

4 Experimental Results

4.1 Datasets

Math23k Math23k (Wang et al., 2017) is a com-
monly utilized benchmark for evaluating the perfor-
mance of MWP solvers. It is composed of 21,162
Chinese MWPs in the training set and 1,000 in the
test set, and is sourced from educational websites.

MAWPS MAWPS (Koncel-Kedziorski et al.,
2016) comprises 2,373 English MWPs, which were
created by integrating several smaller datasets. In
our evaluation, we use a 5-fold cross-validation
approach on this dataset due to its small size.

UnbiasedMWP UnbiasedMWP (Yang et al.,
2022) consists of 10,264 Chinese MWPs with di-
verse questions, which are constructed by vary-
ing the grounded expressions and annotating cor-
responding questions by human annotators. An as-
sessment of the solver’s performance on this dataset
may serve as an indication of its ability to general-
ize over different questions.

SVAMP The SVAMP (Patel et al., 2021) dataset
consists of 1,000 MWPs and is not split into train-
ing and testing sets. Previous studies have mainly
explored two different settings, i.e., 1). combin-
ing MAWPS (Koncel-Kedziorski et al., 2016) and
Asdiv-a (Miao et al., 2020) as the training set, with
SVAMP as the testing set; 2) splitting SVAMP
into 5 folds, and performing a leave-one-out cross-
validation, using MAWPS and Asdiv-a as addi-
tional training data for each validation. We adopted
the latter method, as our proposed approach seeks
to optimize the solver towards learning better ques-
tion generalization capability from the training set
to the testing set. In contrast, the first setting does
not align with our objective, since the training set
has no diversity of questions, while the testing set
does. The results in Table 3 demonstrate the ability
of our solver, in learning to understand different
questions under the same context from the training
set and generalizing to the testing set.

4.2 Baselines
GTS (Xie and Sun, 2019) proposes a goal-driven
tree-based decoder. Graph2Tree (Zhang et al.,
2020) utilizes quantity-related graphs to refine
the problem representation. NumS2T (Wu et al.,
2021b) applies explicit numerical encoding. Multi-
E/D (Shen and Jin, 2020) uses multiple encoders
and decoders in MWP solving. HMS (Lin et al.,
2021) proposes a hierarchical encoder. EEH-G2T
(Wu et al., 2021a) captures the long-range relation-
ship in the text by graphs. REAL (Huang et al.,
2021) proposes an augmented learning strategy by
retrieving similar MWPs. BERT-CL (Li et al.,
2021) uses BERT backbone and contrastive learn-
ing. MWP-BERT (Liang et al., 2022a) presents
several pre-training tasks to continually pre-trained
a BERT model on MWP corpus. Deductive Rea-
soner (Jie et al., 2022) proposes a deductive decod-
ing method on RoBERTa backbone. Analogical
Solver (Liang et al., 2022b) is a representation
learning method by capturing similar problems dur-
ing training and uses BERT backbone. CoT (Wei
et al., 2022) is an in-context learning approach with
chain-of-thought prompts on large language mod-
els.

4.3 Implementation Details
In this work, we conducted all experiments using
an NVIDIA RTX 3090 24G graphics card, imple-
mented in Python using the PyTorch framework.
To get the initial representation Z in Equation (1),

21

we use three different backbones - BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019b), and
DeBERTa (He et al., 2020). The training was per-
formed for 100 epochs with a batch size of 16, us-
ing the AdamW (Kingma and Ba, 2014; Loshchilov
and Hutter, 2018) optimizer with an initial learning
rate of 3e-5 for base models and 6e-6 for large mod-
els, which was halved every 30 epochs. The weight
decay during training was set to 0.1, and a dropout
rate of 0.5 was applied to the decoder to prevent
overfitting. During testing, we employed a 5-beam
search to improve the quality of the solutions.

4.4 Hyper-parameter Tuning
In order to determine the hyperparameters for
our model, we employed a grid search approach
with a manually designed search space, using an-
swer accuracy as the evaluation metric. After
exploring the search space for the noise magni-
tude λ, we ultimately selected a value of 1 out of
{0.01, 0.1, 1, 10}. Similarly, for the margin m in
Equation 10, we chose a weight of 0.01 from the
available options of {0.001, 0.005, 0.01, 0.05, 0.1}.
We set the number of heads H in our graph encoder
to 8 out of {4, 8, 12, 16}. Additionally, we exam-
ined the size of the beam search across the range
of {1, 3, 5, 7} and ultimately selected a search size
of 5. Lastly, we selected an embedding size of
512 for the tree-based decoder from the options of
{128, 256, 512, 1024}.

4.5 Backbone Language Models
Our encoder relies on a pre-trained language
model to get the representation of MWPs.
Specifically, we use three different backbones
- BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), and DeBERTa (He et al., 2020).
For English datasets, three models are cloned
from https://github.com/google-research/bert,
https://github.com/facebookresearch/

fairseq/tree/main/examples/roberta, https:

//github.com/microsoft/DeBERTa. For Chinese
datasets, we use a continually pre-trained
model MWP-BERT (Liang et al., 2022a)
https://huggingface.co/invokerliang/MWP-BERT-zh

as our BERT backbone. Then, we use
whole-word-mask (WWM) (Cui et al.,
2020) pre-trained Chinese RoBERTa
https://github.com/ymcui/Chinese-BERT-wwm and
https://github.com/IDEA-CCNL/Fengshenbang-LM

as our RoBERTa and DeBERTa backbones,
respectively.

Math23k MAWPS
GTS 75.6 82.6

Graph2Tree 77.4 83.7

NUMS2T 78.1 -
Multi-E/D 78.4 -

HMS 78.4 80.3

EEH-G2T 78.5 84.8

REAL 82.3 −
BERT-CL 83.2 −

MWP-BERT 84.7 90.1∗

Deductive Reasoner 85.1 92.0

Analogical Solver 85.6 91.0∗

CoT − 93.3

Our solver with (base / large) backbone:
QoS - BERT 86.0 / 86.7 90.7 / 91.8

QoS - RoBERTa 85.2 / 86.9 92.1 /93.4
QoS - DeBERTa 85.0 /87.5 90.6 / 92.3

Table 2: Accuracies on Math23k and MAWPS datasets.
* denotes our reproduction. The best base/large models
are bolded.

4.6 Accuracy Comparison
We first report the results on two well-
acknowledged datasets, Math23k and MAWPS. As
shown in Table 2, our solver outperforms baselines
on both benchmarks, achieving a state-of-the-art
performance. This improvement over Seq2Seq and
Seq2Tree baselines on both datasets is statistically
significant, as confirmed by a t-test with a p-value
< 0.01. While the improvement on MAWPS may
appear small, the rest of the problems in this
dataset are difficult to solve. It is worth mentioning
that our solver with RoBERTa (large) achieves
higher accuracy on MAWPS dataset than the CoT
approach presented in (Wei et al., 2022), which
relies on a 540B-parameter backbone and has a
93.3% accuracy.

To further test the capabilities of our solver, we
conduct experiments on two highly challenging
benchmarks, UnbiasedMWP and SVAMP. These
datasets are created by introducing diverse varia-
tions in the MWP questions. Previous Seq2Seq
solvers with limited generalization capability have
been unable to achieve satisfactory accuracy on
these datasets. However, as shown in Table 3, our
solver not only becomes the top performer on Un-
biasedMWP, but also achieves a superior accuracy
on SVAMP. While it is true that LLM-based ap-

https://github.com/google-research/bert
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/facebookresearch/fairseq/tree/main/examples/roberta
https://github.com/microsoft/DeBERTa
https://github.com/microsoft/DeBERTa
https://huggingface.co/invokerliang/MWP-BERT-zh
https://github.com/ymcui/Chinese-BERT-wwm
https://github.com/IDEA-CCNL/Fengshenbang-LM

22

UnbiasedMWP SVAMP
GTS 63.7 54.6∗

Graph2Tree 64.6 58.2∗

MWP-BERT 80.1 63.1∗

Roberta-Graph2Tree − 65.0

Deductive Reasoner 82.7∗ 69.8∗

Analogical Solver 82.3∗ 68.7∗

CoT − 79.0

Our solver with (base / large) backbone:
QoS - BERT 82.5 / 83.9 50.5 / 69.9

QoS - RoBERTa 82.8 / 85.1 60.5 / 72.4
QoS - DeBERTa 82.4 /86.8 58.8 /72.6

Table 3: Accuracies on UnbiasedMWP and SVAMP
datasets. Since the two datasets are recently released and
few papers have evaluated their methods on them, only
representative baselines (* denotes our reproduction)
are selected and compared with our proposed method.
The best base/large models are bolded.

Entity-
aware

encoding

Question-
guided

decoding

Contrastive
Training Math23k SVAMP

✗ ✗ ✗ 85.1 65.3

✓ ✗ ✗ 86.0 70.5

✗ ✓ ✗ 85.0 65.2

✗ ✗ ✓ 84.9 65.3

✗ ✓ ✓ 85.5 69.1

✓ ✓ ✗ 86.0 70.1

✓ ✗ ✓ 86.1 70.3

✓ ✓ ✓ 86.9 72.4

Table 4: Accuracy among different ablated models. All
models have RoBERTa-large backbone.

proaches (Wei et al., 2022; Lu et al., 2022; Wang
et al., 2022; Chen et al., 2022) have achieved im-
pressive results on the SVAMP dataset, surpassing
the accuracy of our solver described here, we posit
that our work is fundamentally distinct and not in
competition with them. A detailed discussion of
this can be found in Section 5.

4.7 Ablation Study

To assess the contribution of each component to the
overall performance of the solver, various combi-
nations of these methods are implemented in Table
4. ✗ and ✓ indicate different combinations of the
proposed components. To further elaborate, the
term "without entity-aware encoding" refers to the
condition in which the adjacency matrix of the orig-
inal dependency graph is utilized solely to form A
in Equation (1). Next, "without question-guided
decoding" signifies the scenario in which the entire
problem representation is directly input to the de-
coder. Finally, "without question-contrastive train-

Figure 2: Comparison on memory and time cost be-
tween our solver and baselines on Math23k.

ing" refers to the use of Equation (7) as the loss
function in place of Equation (10). Generally, the
results demonstrate the significance of all three
components in achieving optimal performance. To
be more specific, the entity-aware encoding can
always offer accuracy improvement with different
decoding strategy. And the question-guided decod-
ing and question-contrastive loss should be paired
to exert their full potential. Because the decoding
process is dominated by the context without ques-
tion decoding, thus question-contrastive training
will be less effective. On the other hand, the ques-
tion decoding without the contrastive loss will be
short of obtaining precise representation for similar
but different questions (Liang and Zhang, 2021).

4.8 Model Efficiency

As shown in Figure 2, we evaluate the efficiency
of our proposed solver by comparing its training
time and memory cost with that of representative
baselines. The inference time is not considered
in our analysis as they all operate at milliseconds
scale. We measure the training time cost from the
initiation of the training process until the solver
reached convergence at its optimal performance.
All the results are measured on a single RTX 3090
24G graphics card to ensure fairness and our back-
bone encoder is RoBERTa. Our results in Figure 2
demonstrate that our model exhibits a satisfying ef-
ficiency advantage over existing Seq2Tree solvers
while obtaining a superior performance. We can
also find that the analogical solver is particularly
slow because it needs to seek similar MWPs dur-
ing training thus requires a much longer time to
converge, although it contains a similar number of
parameters as ours.

23

Context: In a tree planting activity, the fifth-grade students planted 145 trees, 17 fewer than the sixth-grade
students. The number of trees planted by the sixth-grade students is 1.5 times that of the fourth-grade.

Question 1: How many trees did the sixth-grade students plant?

Solutions: MWP-BERT: (145 + 17)/1.5 W/o our encoding: (145 + 17)/1.5
W/o our decoding: 145 + 17 QoS (Ours): 145 + 17

Question 2: How many trees did the fourth-grade students plant?

Solutions: MWP-BERT: (145 + 17)/1.5 W/o our encoding: (145 + 17)/1.5
W/o our decoding: (145 + 17)/1.5 QoS (Ours): (145 + 17)/1.5

Question 3: How many more trees are planted by fifth-grade students than those by fourth-grade students?

Solutions: MWP-BERT: 145 + 17− 145 W/o our encoding: (145 + 17)/1.5
W/o our decoding: (145 + 17)/1.5 QoS (Ours): 145− ((145 + 17)/1.5)

Question 4: How many times as many trees were planted by fifth-grade students as fourth-grade students?

Solutions: MWP-BERT: (145 + 17) ∗ 1.5/145 W/o our encoding: 145/((145 + 17)/1.5)
W/o our decoding: (145 + 17)/145 QoS (Ours): 145/((145 + 17)/1.5)

Table 5: Our case study. Correct solutions are colored in green and wrong solutions are in red.

4.9 Case Study
To investigate the effectiveness of our approach, we
conducted a case study that compared our solutions
to those produced by the baseline MWP-BERT
model and two ablated versions of our approach as
shown in Table 5. The first ablated model excluded
the use of entity linking in the original dependency
graph, while the second replaced our decoder with
a vanilla tree-decoder (Xie and Sun, 2019). It is
worth noting that MWP-BERT misconstrued the
first question and seemed to be reasoning based on
the context rather than the question itself, whereas
our solver accurately solved it. As for the fourth
question, our solver utilized entity-aware encoding
to precisely comprehend the question’s intent and
provide a correct solution. This case study demon-
strates that our solver is able to concentrate on the
questions during the reasoning process and exhibits
superior generalizability on questions.

5 Discussion on Large Language Models

In this era of LLMs, it is not surprising that our
method cannot surpass the performance of LLMs
on MWP benchmarks such as (Wei et al., 2022;
Wang et al., 2022; Lu et al., 2022). However, our
approach still represents a significant advancement
in the field of MWP solving. Its computational effi-
ciency makes it practical for real-world situations
where cost and speed are important considerations.
For instance, our method has the potential to uti-
lize the capabilities of LLMs through knowledge
distillation, serving as a student model to improve
performance while maintaining efficiency, like (Ho
et al., 2022; Magister et al., 2022; Shridhar et al.,
2022; Liang et al., 2023a). Therefore, we believe
this work has its value to the research field.

6 Conclusion

In this work, we present a question-oriented strat-
egy to solve math word problems, addressing the
limitations of the question-generalizability of pre-
vious solvers. Our model contains an entity-aware
encoder, a question-guided decoder and question-
contrastive loss. Empirical evaluations demonstrate
that our approach outperforms fine-tuned Seq2Tree
models and even some large language models in
terms of effectiveness. Through our case study, we
provide further evidence of the effectiveness of our
approach. Overall, our solver has a simple structure
but exhibits a favorable balance between efficacy
and efficiency, and it is also compatible with di-
verse language model backbones. We believe it has
the potential to serve as a valuable reference for
future research endeavors in the community.

Limitation

Despite achieving superior question-generalization
ability, our solver still encounters challenges in
explaining its reasoning steps in a human-like
manner. This is a common limitation among
Seq2Tree MWP solvers when compared to chain-
of-thought approaches. Additionally, while our
solver demonstrates state-of-the-art performance
among its peers, its accuracy is still lower in com-
parison to the latest chain-of-thought approaches
such as (Wang et al., 2022; Chen et al., 2022).

In our future work, we plan to investigate meth-
ods for integrating our approach with large lan-
guage models (LLMs) in order to harness their
exceptional mathematical reasoning capabilities,
making our solver both more explainable and more
powerful.

24

References
Reem Alghamdi, Zhenwen Liang, and Xiangliang

Zhang. 2022. Armath: a dataset for solving arabic
math word problems. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 351–362.

DG Bobrow. 1964. Natural language input for a com-
puter problem solving system. Ph. D. Thesis, Depart-
ment of Mathematics, MIT.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin
Wang, and Guoping Hu. 2020. Revisiting pre-trained
models for chinese natural language processing. In
EMNLP: Findings, pages 657–668.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, pages 4171–4186.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. In ICLR.

Namgyu Ho, Laura Schmid, and Se-Young Yun. 2022.
Large language models are reasoning teachers. arXiv
preprint arXiv:2212.10071.

Yining Hong, Qing Li, Daniel Ciao, Siyuan Huang, and
Song-Chun Zhu. 2021. Learning by fixing: Solv-
ing math word problems with weak supervision. In
AAAI.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In EMNLP, pages 523–533.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to solve
math word problems. In EMNLP, pages 805–814.

Shifeng Huang, Jiawei Wang, Jiao Xu, Da Cao, and
Ming Yang. 2021. Recall and learn: A memory-
augmented solver for math word problems. In Find-
ings of EMNLP, pages 786–796.

Zhanming Jie, Jierui Li, and Wei Lu. 2022. Learning
to reason deductively: Math word problem solving
as complex relation extraction. In ACL, pages 5944–
5955.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In NAACL, pages
1152–1157.

Jierui Li, Lei Wang, Jipeng Zhang, Yan Wang, Bing Tian
Dai, and Dongxiang Zhang. 2019. Modeling intra-
relation in math word problems with different func-
tional multi-head attentions. In ACL, pages 6162–
6167.

Shiyang Li, Jianshu Chen, Yelong Shen, Zhiyu Chen,
Xinlu Zhang, Zekun Li, Hong Wang, Jing Qian,
Baolin Peng, Yi Mao, et al. 2022. Explanations from
large language models make small reasoners better.
arXiv preprint arXiv:2210.06726.

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,
Chao Li, Hongzhi Liu, and Yunbo Cao. 2021. Seek-
ing patterns, not just memorizing procedures: Con-
trastive learning for solving math word problems.
arXiv preprint arXiv:2110.08464.

Zhenwen Liang, Wenhao Yu, Tanmay Rajpurohit, Peter
Clark, Xiangliang Zhang, and Ashwin Kaylan. 2023a.
Let gpt be a math tutor: Teaching math word problem
solvers with customized exercise generation. arXiv
preprint arXiv:2305.14386.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Wei Qin,
Yunshi Lan, Jie Shao, and Xiangliang Zhang. 2022a.
Mwp-bert: Numeracy-augmented pre-training for
math word problem solving. In NAACL, pages 997–
1009.

Zhenwen Liang, Jipeng Zhang, Lei Wang, Yan Wang,
Jie Shao, and Xiangliang Zhang. 2023b. Generaliz-
ing math word problem solvers via solution diversifi-
cation. In AAAI, volume 37, pages 13183–13191.

Zhenwen Liang, Jipeng Zhang, and Xiangliang Zhang.
2022b. Analogical math word problems solving with
enhanced problem-solution association. EMNLP.

Zhenwen Liang and Xiangliang Zhang. 2021. Solving
math word problems with teacher supervision. In
IJCAI, pages 3522–3528.

Xin Lin, Zhenya Huang, Hongke Zhao, Enhong Chen,
Qi Liu, Hao Wang, and Shijin Wang. 2021. Hms:
A hierarchical solver with dependency-enhanced un-
derstanding for math word problem. In AAAI, pages
4232–4240.

Qianying Liu, Wenyu Guan, Sujian Li, Fei Cheng,
Daisuke Kawahara, and Sadao Kurohashi. 2020.
Reverse operation based data augmentation for
solving math word problems. arXiv preprint
arXiv:2010.01556.

25

Qianying Liu, Wenyv Guan, Sujian Li, and Daisuke
Kawahara. 2019a. Tree-structured decoding for solv-
ing math word problems. In EMNLP, pages 2370–
2379.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In ICLR.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2022. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. arXiv preprint arXiv:2209.14610.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub
Adamek, Eric Malmi, and Aliaksei Severyn. 2022.
Teaching small language models to reason. arXiv
preprint arXiv:2212.08410.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
english math word problem solvers. In ACL, pages
975–984.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In NAACL, pages 2080–2094.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D Manning. 2020. Stanza: A python
natural language processing toolkit for many human
languages. In ACL, pages 101–108.

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin
Jiang, Ming Zhang, and Qun Liu. 2021. Generate &
rank: A multi-task framework for math word prob-
lems. In Findings of EMNLP, pages 2269–2279.

Yibin Shen and Cheqing Jin. 2020. Solving math word
problems with multi-encoders and multi-decoders.
In COLING, pages 2924–2934.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,
Yi Tay, Sebastian Ruder, Denny Zhou, et al. 2022.
Language models are multilingual chain-of-thought
reasoners. arXiv preprint arXiv:2210.03057.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In EMNLP, pages 1132–1142.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya
Sachan. 2022. Distilling multi-step reasoning ca-
pabilities of large language models into smaller mod-
els via semantic decompositions. arXiv preprint
arXiv:2212.00193.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS/NeurIPS, pages 5998–6008.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018. Translating a math word
problem to a expression tree. In EMNLP, pages 1064–
1069.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In
EMNLP, pages 845–854.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Qinzhuo Wu, Qi Zhang, and Zhongyu Wei. 2021a. An
edge-enhanced hierarchical graph-to-tree network for
math word problem solving. In Findings of EMNLP,
pages 1473–1482.

Qinzhuo Wu, Qi Zhang, Zhongyu Wei, and Xuanjing
Huang. 2021b. Math word problem solving with
explicit numerical values. In ACL, pages 5859–5869.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word problems.
In IJCAI, pages 5299–5305.

Zhicheng Yang, Jinghui Qin, Jiaqi Chen, and Xiaodan
Liang. 2022. Unbiased math word problems bench-
mark for mitigating solving bias. arXiv preprint
arXiv:2205.08108.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan
Wang, Jie Shao, and Ee-Peng Lim. 2020. Graph-to-
tree learning for solving math word problems. In
ACL, pages 3928–3937.

Wenqi Zhang, Yongliang Shen, Yanna Ma, Xiaoxia
Cheng, Zeqi Tan, Qingpeng Nong, and Weiming
Lu. 2022. Multi-view reasoning: Consistent con-
trastive learning for math word problem. Findings of
EMNLP.

