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Abstract

Having heard “a pimwit”, English-speakers as-
sume that “the pimwit” is also possible. This
type of productivity is attributed to syntactic
categories such as NOUN and DETERMINER,
but the key question is how do humans be-
come endowed with these categories in the
first place. We propose a novel approach that
combines corpus analysis with computational
modeling to analyze the productivity of DETER-
MINER+NOUN constructions in child-produced
utterances. Our experiments on two corpora
of child-adult interactions using two different
methods of quantifying linguistic productiv-
ity show that children do not display produc-
tivity at early stages. Using a model trained
on child-directed utterances, we simulate chil-
dren’s developmental trajectory with great pre-
cision, suggesting that the emergence of pro-
ductivity in human language can be explained
without the need to postulate a priori access to
syntactic categories.

1 Introduction

Having heard “a pimwit,” English-speakers know
immediately that “the pimwit” is possible, even if
they have not heard the phrase before. Researchers
from diverse theoretical perspectives agree that this
type of productivity can be explained with syntactic
categories (in this case, DETERMINER and NOUN

), but the key question is how do humans become
endowed with these categories in the first place.
The acquisition of the English definite and indefi-
nite determiners (the, a) has been frequently used
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as a case study to tackle the question of whether
syntactic categories are present at birth, or rather
are learnt from exposure to linguistic data.

Linguistic productivity provides evidence for
syntactic categories. If English-learning children
have a DETERMINER category, they should be able
to produce the same noun with different determin-
ers (i.e., a child would produce both a dog and the
dog) (Pine et al., 2013; Yang, 2011). If they do not
have a DETERMINER category, a child who hears a
dog may not immediately understand that the dog
is also possible. On this reasoning, when a child
begins to use the same noun with both a and the, it
can be seen as evidence that the child possesses a
productive determiner category.

Much effort is put into formalizing a quantitative
measure of productivity that can be applied to spon-
taneous child productions and give a reliable esti-
mate of when young language learners start to use
syntactic categories productively in their speech.
Pine and Lieven (1997) propose such a measure,
overlap score, which estimates determiner produc-
tivity based on the proportion of nouns in child-
produced language that are used with both deter-
miners. They estimate determiner productivity for
children in the Manchester corpus (?) and argue
that children are not fully productive at early stages
of learning. Yang (2011) questions the validity
of the original overlap score and proposes a re-
vised version which takes the Zipfian distribution
of nouns and determiners into account. Their analy-
sis of the new score on Manchester corpus suggests
that determiner productivity in children is not quan-
titatively different from that of adults. However,
Pine et al. (2013) argue that Zipfian distributions



331

are not a good approximation of noun frequency
in children’s productions. Additionally, Meylan
et al. (2017) simulate determiner productivity in a
Bayesian model and show that the previous anal-
yses use input data that is too small to yield re-
liable conclusions. In addition to the size of the
input corpus, Meylan et al. (2017) highlight another
important limitation of using the overlap score.
This measure is quite sensitive to the amount of
child-produced data, and therefore cannot be reli-
ably used to estimate productivity at the very early
stages of learning (when children do not produce
many DETERMINER+NOUN combinations). Their
simulation results suggest that the youngest age
groups in previous behavioural studies might not
be young enough for their data to show productiv-
ity. This paper makes the following contributions.
We propose a novel approach that combines cor-
pus analysis with computational modeling. We
use a data-driven computational model with no
built-in categories to simulate the process of lan-
guage learning from child-directed utterances. To
address the limitations related to the input corpus,
in addition to reproducing behavioral patterns of
previous studies on the Manchester corpus, we also
use the Language Development Project (LDP) cor-
pus (Goldin-Meadow et al., 2014), which contains
data from many more children and records inter-
actions from a much younger age. To address the
concerns regarding the productivity measure, we
estimate DETERMINER+NOUN productivity in the
utterances produced by humans and by the model
not only using the overlap score but also the on-
set measure, a simple and data-efficient estimate of
productivity (Cartmill et al., 2014). Altogether, this
approach allows us to examine the developmental
trajectory of the DETERMINER+NOUN construc-
tion in children, and the extent to which it can be
explained by a model that has no prior access to
syntactic categories. We show that the behaviour
of our computational model closely mimics the pat-
terns observed in children over time, revealing the
onset of determiner productivity in both model and
child. These results strongly suggest that children’s
linguistic productivity can be achieved based on
learning from statistics of the child-directed data.

2 Related Work

Many computational models have framed the gen-
eral problem of inducing abstract categories from
unannotated text as clustering words into lexical

categories based on the distributional properties of
their context (e.g., Redington et al., 1998; Clark,
2000; Mintz, 2003; Parisien et al., 2008; Chru-
pała, 2011), showing the possibility of learning
categories that resemble parts of speech from raw
text. Alishahi and Chrupała (2012) and Abend
et al. (2017) model concurrent acquisition of word
meanings and syntactic categories and focus on
the impact of integrating knowledge of syntax (and
particularly the syntactic category of a word) into
the word learning process. However, none of these
models focus on the nature and developmental tra-
jectory of the induced categories, nor do they com-
pare their linguistic productivity to humans. An
exception is Parisien et al. (2008) who present an
incremental Bayesian model for learning syntac-
tic categories from linguistic context, and test it
on child-directed data from the Manchester corpus.
Their analysis of the emerging categories shows
that the categories follow the same trend as chil-
dren’s categories in that nouns are learned before
verbs, followed by adjectives (Kemp et al., 2005).
However they do not analyze the emergence of
each category and its use in child-produced speech.

With the increased dominance of deep neural
models of language, much effort is put into ana-
lyzing the learned representations in inner layers
of these models and to search for encoding syntac-
tic information (see Belinkov and Glass, 2019, for
an overview). Various analyses have shown that
deep language models encode information about
syntactic categories and syntactic dependencies in
their learned representations without explicit train-
ing (e.g., Adi et al., 2017; Hewitt and Manning,
2019; Chrupała and Alishahi, 2019; Tayyar Mad-
abushi et al., 2022). However, the focus of this
body of work is mainly on large language models
that are trained on massive datasets (with some
exceptions; see Grimm et al., 2015), and compari-
son with human language learning is not common.
Pannitto and Herbelot (2020) and Huebner et al.
(2021) are two exceptions, where they each train
a neural network from scratch on child-directed
utterances and compare the output of the model to
human productions. Although these studies are not
specifically focused on the emergence of syntactic
categories, we use the latter as an inspiration for
our own modeling experiments.

Computational studies of the acquisition of the
determiner category are scarce. One such study is
the above-mentioned work by Meylan et al. (2017),
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which used a hierarchical Bayesian model for sim-
ulating syntactic productivity in the case of DETER-
MINER+NOUN constructions, with parameters to
represent the role of experience and an a priori ten-
dency to generalize. Their experiments suggest that
previous corpus studies use input corpora that are
too small to yield statistically reliable conclusions.
They used a large dataset of child-adult interactions
for a single child and found determiner-noun pro-
ductivity, but only if the parameters of the model
are set in a specific way to encourage generaliza-
tion (as opposed to memorization). However, the
Meylan et al.’s model works best when applied to
a large sample of data from each child, and is not
applicable in early stages of learning when child-
produced language is scarce.

One other study that uses the overlap score to
measure determiner productivity in a deep neural
network model is Phillips and Hodas (2017). This
model uses an autoencoder architecture whose ob-
jective is to reconstruct (or repeat) an input utter-
ance, and train it on child-directed utterances from
a collection of corpora from CHILDES (MacWhin-
ney, 1995). The model learns a compact, latent
representation for every incoming utterance, which
is then used to regenerate the same utterance. They
measure the estimated and empirical overlap scores
in adult utterances from the training corpora and in
the utterances generated by the autoencoder model,
and show that if the model’s parameters are set
to allow for more generalizability, its estimated
overlap scores are closer to those of humans. This
study does not compare the behaviour of the trained
model to the behavior of language learning chil-
dren, and therefore says little about the learning
trajectory of the determiner class.

3 Method

In the following sections, we present a series of
interleaved computational experiments and behav-
ioral analyses to examine linguistic productivity.

3.1 Data

The Manchester corpus This corpus records a
study of 12 monolingual English-speaking children
from middle-class households in Manchester, UK,
from ages 20 to 36 months. Mothers and chil-
dren were audio-recorded playing freely in their
homes two times every three weeks for a year, for
a maximum of 34 sessions per child. At the be-
ginning of the study, the children ranged in age

from 1;8.22 to 2;0.25 with mean length of utter-
ances (MLUs) ranging between 1.06 to 2.27 in
morphemes (Theakston et al., 2001).

The LDP corpus The Language Development
Project corpus (LDP) followed 64 typically de-
veloping, monolingual, English-speaking children
from the Greater Chicagoland Area. Children and
their primary caregivers were video-recorded en-
gaging in spontaneous interactions in their homes
for twelve 90-minute visits (M=11.3, SD = 1.8, ses-
sions, range 4–12 sessions), beginning from when
the children were 14 months to 58 months. The
resulting corpus of caregiver-child interactions con-
tains over 1 million transcribed utterances (n =
646, 685 for primary caregivers and n = 368, 884
for children), and approximately 1,000 hours of
videos (Goldin-Meadow et al., 2014).

Preprocessing Both the primary caregivers’ and
children’s utterances were lemmatized, stripped of
extraneous punctuation, and all instances of capi-
talization were removed. All utterances tagged as
reading aloud were excluded. We identified syn-
tactic categories using the part-of-speech taggers
provided in the spaCy library (Honnibal and Mon-
tani, 2017). Our preprocessing pipeline is shared
online1.

3.2 Productivity Measures

We consider two methods of assessing grammatical
productivity in our behavioral as well as model-
generated data.

Overlap score Following Pine et al. (2013), we
compute the overlap score as the number of noun
types that the child pairs with both a and the, di-
vided by the total number of noun types used with
determiners. We refer to this metric as ‘observed
overlap’, to distinguish it from the ‘expected’ over-
lap variant proposed in Yang (2011).2 Since this
metric is very sensitive to sample size (Meylan
et al., 2017), we only report the score for sample
sizes that consist of at least 50 productions.3

Onset measure We assume that a child has pro-
ductive use of the category under study when the
child uses all of its forms (in our case, a and the)

1https://osf.io/s2jnm/?view_only=
ca2d57aee759426ba1c531a64bc982f0

2We ran all of our analyses also with the ‘expected’ overlap
metric and found a high correlation between both metrics.

3This number was chosen as a threshold after personal
communication with Charles Yang.

https://osf.io/s2jnm/?view_only=ca2d57aee759426ba1c531a64bc982f0
https://osf.io/s2jnm/?view_only=ca2d57aee759426ba1c531a64bc982f0
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with the same noun, and does so with at least two
different nouns within the same session (i.e., a car,
the car, a bottle, the bottle). This criterion is in-
spired by Cartmill et al. (2014); the only difference
is that we do not require that the child continue
using the category in the upcoming sessions.

4 Computational Model

Our goal is to examine the trajectory of determiner
productivity in a data-driven computational model
trained on child-directed data, and see to what ex-
tent it resembles the same trajectory in children. Al-
though we do not seek to simulate the exact mech-
anism that children use for learning and process-
ing language, it is important to choose a modeling
framework and architecture that satisfies a num-
ber of criteria. First, the model must not rely on
any data or supervision signal that is not available
in children. Second, the ultimate task on which
the model is trained must be similar to the daily
experience of children using language. Third, the
model must not rely on any explicit, latent represen-
tation of abstract syntactic categories in advance. A
model that meets these requirements would allow
us to study this phenomenon at Marr’s computa-
tional level (Marr, 2010).

Many computational models that simulate syn-
tactic category acquisition from large corpora fal-
sify the first criterion, for example by relying on
corrective feedback on part of speech labels as-
signed to words, or on which words must be clus-
tered together (see Section 2 for an overview). Sim-
ilarly, a number of existing models that are used
for investigating the current debate on determiner
productivity do not adhere to the second criterion;
for example Phillips and Hodas (2017) use an au-
toencoder architecture trained on a repetition task,
where a model learns to regenerate input utter-
ances, which is an unrealistic task from a language
learner’s point of view. Criterion three is the core of
our study: we want to see how far we can go in re-
producing productivity patterns in children without
assuming pre-existing abstract categories.

A natural choice of model for our enterprise is
Transformers (Vaswani et al., 2017). First of all,
training Transformers with the parental input and
the Masked Language Modelling (MLM) objective
is adequate in terms of the information available
in the supervision signal, which consists uniquely
of information available to children (words in care-
giver’s utterances). Second, we can use the MLM

objective to test the model by masking the deter-
miners in children’s productions. In this way, we
can simulate children’s productivity, thereby repro-
ducing a more naturalistic scenario than previous
approaches. Finally, this model does not rely on
any pre-existing syntactic knowledge, which meets
our third objective.

The existing Transformer-based models such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have become a focus for computa-
tional psycholinguistic research and used to simu-
late many aspects of human language processing,
from reading times to brain activities (see Frank
et al., 2019, for an overview), but they often need
much more training data than is available to human
language learners. However, a much smaller varia-
tion of BERT called BabyBERTa (Huebner et al.,
2021) was recently proposed and trained on 5 mil-
lion tokens of data directed at children between
ages of one to six. They performed post-analysis
on the hidden representations of this model and
showed that it acquires grammatical knowledge
comparable to RoBERTa pre-trained on 160GB
of text. We follow this approach and use a much
smaller variation of BERT in our study which we
train from scratch on child-directed data.

We instantiate a small Transformer-based model
using the HuggingFace library (Wolf et al., 2020)
and reduce the number of attention heads to 2 and
the number of hidden layers to 1. We tokenize the
input with WordPieceTokenizer (Wu et al., 2016),
with a maximum vocabulary size of 30000 and
a minimum frequency of 2. We use the default
training configuration provided in HuggingFace’s
Trainer (Adam), with the exception of the batch
size, which we increase from 8 to 64. Remain-
ing hyperparameters are set to their default values
in HuggingFace (see exact version in our shared
code4). Crucially, we do not apply any pre-training
on this model; therefore, our initial model does not
have any built-in linguistic knowledge.

4.1 Experimental Setup

We train our model on child-directed utterances
from the corpus under study, using the MLM ob-
jective. Since the child-directed data for each indi-
vidual child is not enough to train the model from
scratch, we accumulate utterances of all the parents.
In experiments showing a developmental trajectory
over time, we train the model with the input avail-

4https://github.com/rgalhama/defdets_aacl

https://github.com/rgalhama/defdets_aacl
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able up to each depicted age.
To test the determiner productivity of the model,

we first extract all the determiner usages in the
utterances produced by each individual child. Fol-
lowing prior studies (Pine et al., 2013; Yang, 2011),
we mask the definite and indefinite determiners
in DETERMINER+NOUN constructions; in particu-
lar “DETERMINER NOUN-SINGULAR <X>” and
“DETERMINER <X> NOUN-SINGULAR”, where
<X> is any category except NOUN-SINGULAR.
As an example, for the child’s utterance Here’s the
pink ear, we would present the model with Here’s
[MASK] pink ear. We then feed the utterances to
the model so that it predicts the most likely filler
for the masked slot. For each masked slot, we
record the prediction to which the model assigns
the highest probability.

4.2 Overall performance

Manchester Corpus

LDP Corpus

Figure 1: Confidence Matrix of masked determiner pre-
dictions for the model trained on all sessions in Manch-
ester corpus (top) and in LDP corpus (bottom).

To make sure that the model is properly trained,
we checked the accuracy of the model in predicting
a determiner in the masked slot.We compute the
accuracy of the predictions for the sentences pro-
duced by children in a certain session (age) with
the model trained with input data up to that ses-
sion. Figure 1 reports the accuracy of predicting
the masked determiner in children’s productions
by the models trained on data from all sessions. In
the case of the Manchester corpus, the model is
67.94% accurate in predicting the exact determiner,
while it predicts any of the two determiners with a
probability of 91%. For the LDP corpus, the model
can predict the exact determiner with similar per-
formance (65.48%) . The accuracy for predicting
either of these two determiners is 83%.

Both models are more likely to predict the defi-
nite determiner (the) over the indefinite (a). This
is more noticeable in the case of the Manchester
corpus, in which 55.45% of the predictions are for
the definite determiner (47.13% for the LDP data).
This likely reflects the fact that the is more frequent
in parental speech. For instance, in the case of
parental data in LPD, 61% of the constructions that
we study (which combine definite and indefinite
determinants with singular nouns, as explained in
section 4.1) use the, versus 39% using a (but note
that the can also appear in the input combined with
plural nouns). Despite this bias in the data, the
accuracy of the model in predicting the exact de-
terminer is above chance for both models. (The
average probability mass of the decoded determin-
ers can be found in Appendix C.)

Child Model
You’re the monster You’re a monster
I see a moon I see the moon
Up a stair Up the stair
Is this a bug? Is this the bug?
Draw a train track Draw the train track
Tickle the back Tickle a back
No, I want the penguin story No, I want a penguin story
He take a bathroom He take the bathroom

Table 1: Some examples where the model produces a
different determiner from the child.

Note that the overall performance of the model
is underestimated as some of the model’s predicted
determiners that mismatch the ones used by the
child (and therefore considered as errors) might be
plausible choices in the given context. Table 1
shows a few examples of such errors, some of
which sound more plausible than the child’s choice
(e.g. You’re a monster).
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5 Our Study of Linguistic Productivity

To investigate the development of linguistic pro-
ductivity in children and to simulate the process
using our computational model, we conduct the
following three experiments in this study.

Experiment 1. We establish the reliability of
our model by reproducing the behavioral patterns
observed in Pine et al. (2013) and Yang (2011):
we train our model on child-directed utterances
from the Manchester corpus, and use the trained
model to predict the masked determiners in child-
produced sentences in the same corpus. Following
those studies, we estimate and compare overlap
scores in the utterances produced by adults, chil-
dren and our model.

Experiment 2. We train the model on child-
directed utterances from the LDP corpus, which
contains data from more children and records inter-
actions from a younger age. We then compare the
estimated overlap scores in the utterances produced
by adults, children and our model.

Experiment 3. We use the same model trained
on child-directed utterances from the LDP corpus,
but this time we compare the patterns of production
of DETERMINER+NOUN combinations by adults,
children and by our model using the onset measure.

Through these experiments, we show that our
model closely mimics the behaviour of children
when using determiners, but the use of LDP corpus
and the choice of the onset measure presents a
clearer picture of emergence of determiners as a
syntactic class.

5.1 Experiment 1: Overlap Score on
Manchester Corpus

To reproduce previous studies, we first train our
model on child-directed utterances from all par-
ents in the Manchester corpus. After the model
is fully trained, for each of the 12 children in this
corpus we take all the sentences that contain a DE-
TERMINER+NOUN usage, mask the determiner and
feed the masked input to the model, then replace
the masked word with the top determiner predicted
by the model (see Section 4 for details).

Figure 2 shows the observed overlap scores as
measured for the sentences produced by the Manch-
ester parents, children, and our model. We see that
there is no noticeable difference between overlap
scores of children and adults, which is in line with

what Yang (2011, 2013) reports. However, the over-
lap scores estimated for utterances produced by our
model are closer to those of children than to adults.

Due to the small size of the Manchester corpus,
we could not train the model on this data incremen-
tally and trace the trajectory of overlap scores as a
function of the age of children in this corpus. We
address this issue in the next experiment.

5.2 Experiment 2: Overlap Score on LDP
Corpus

Although Yang (2011) interprets similarity between
overlap scores for children and adults as evidence
for the availability of a priori syntactic categories,
children participating in the earliest sessions of the
Manchester corpus might already be old enough
to have acquired the abstract determiner class. In
addition, the sample of children (n=12) is quite
small (Meylan et al., 2017). Therefore we perform
the same experiment on the LDP corpus.

We train the model on child-directed utterances
from the LDP corpus and use it to predict masked
determiners in child-produced utterances. Figure 3
shows overlap scores for utterances produced by
LDP parents, children and our model, where chil-
dren (on the x axis) are ranked by their estimated
overlap scores. As before, the overlap scores for
all three groups are close to each other, with those
for the model closer to children than adults. There
is a stronger fit to the predictions of our model and
the LDP children compared to those of the model
and adults. To see whether the distance between
the overlap score for children and adults changes
as children grow older, we also estimated overlap
scores averaged over all children within the same
session; that is, we accumulated all the utterances
that parents and children were producing at a given
point in time. This time the pattern is different:
as can be seen in Figure 4, there is a gap between
overlap scores for parents and children in the ear-
lier sessions, which disappears in the later sessions.
However, due to the small number of utterances
produced by children at earlier sessions, the esti-
mation of overlap score is not reliable (in fact we
could not apply the measurement to earlier ages
because the sample size was smaller than 50; see
Section 3.2). As before, overlap scores estimated
for the model are closer to children than adults.

5.3 Experiment 3: Onset on LDP Corpus
To address the limitations of the overlap score and
get a better picture of determiner productivity in
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Figure 2: Overlap over Manchester corpus. The x-axis is sorted by observed overlap in child-produced language.

Figure 3: Observed overlap over LDP corpus.

Figure 4: Observed overlap over LDP corpus, averaged by age group.

early stages of development, we repeat the previous
experiment on LDP corpus but this time we use the
onset measure to estimate linguistic productivity.

Figure 5 shows the median number of noun types
that appear with both determiners in each session;
the dashed black line corresponds to the onset cri-
terion (i.e., when a minimum of two noun types
has been used with both determiners in the same
session). The points above this line correspond to
learners who have achieved determiner productiv-

ity. We see that while productivity is relatively con-
stant in parental speech, children use determiners
for several months without displaying productiv-
ity. This onset pattern is replicated in the model.
As in the previous experiments, we can see that
the model shows an excellent fit to the trajectory
of children. The small decrease in productivity at
the older ages is due to the fact that both children
and parents produced fewer utterances overall at
these points. In Appendix D we have included a
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Figure 5: Median number of noun types that are produced with both determiners. The dashed horizontal line
represents the lower boundary for our onset criterion (i.e., when two different nouns are each produced with both
determiners). Error bars correspond to standard deviation.

Figure 6: Age of productivity according to the onset
measure for LDP children and the model (r = 0.71).
A random jitter of 0.5 has been added to overlapping
points in the graph.

graphical demonstration of this pattern for each
individual child in LDP to show that this fit is not
a result of averaging over all children.

In addition to producing more noun types with
both determiners over time, the moment of onset
of determiner productivity in the model also shows
a strong correlation with the moment of onset in
children. Figure 6 shows this correlation for all
the children in LDP and their corresponding model
simulation.

It is worth mentioning that the onset measure
also depends on the amount of input produced by
children, as there is a correlation between the me-
dian number of words produced by children and
the number of productive noun types in each ses-
sion (Kendall’s rank correlation τ = -0.25, p=.007);
however, we found that 84% of the children had
already produced two exemplars of two different

nouns in at least one session prior to the hypothe-
sized onset, but without passing the onset criterion.
In other words, the children could have displayed
productivity, but did not.

Impact of linguistic context. A possible concern
could be that the similarity between the predictions
of the model and children might be due to proper-
ties of child-produced utterances, rather than the
internal representations of syntactic categories. To
investigate this potential confound, we ran a control
experiment in which we tested the model also on
utterances that the parents produced (see Appendix
E for details). We found no significant difference
between model predictions on parent-produced ver-
sus child-produced utterances, suggesting that our
findings are not driven by the context used for the
test.

Productivity vs. memorizing. Given the good-
ness of fit of the model, there is the possibility that
the model simply memorizes DETERMINER+NOUN

usages it has seen in the training data instead of
productively using abstract categories. Since (un-
like children) we have full access to the input of the
model, we can search for the novel combinations
in its output. Table 2 shows some examples where
the model produces a determiner it has never seen
before in combination with the target noun, but is
more appropriate for the context. This is an impor-
tant observation which hints at the abstract nature
of the emerging syntactic categories.

6 Conclusion

In this paper, we investigate how and when
English-speaking children productively use DETER-
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Age Model Noun
(m.o.) Prediction Frequency
22 Take a milkie 9
26 Sylva has a flu 5
30 That’s a daffodil 3
42 You just call him an idiot 0
46 Do you want to have a boyfriend? 5

Table 2: Examples of model-produced DETER-
MINER+NOUN combinations that were not in the train-
ing data. Age is in months old.

MINER+NOUN constructions. Our experiments on
two corpora of child-adult interactions suggest that
children do not use determiners productively when
they first produce them. It isn’t until 30 months
that children display productivity in their use of
determiners. Thanks to the use of the data-efficient
onset measure, this outcome is less dependent on
sampling effects and therefore more reliable.

We furthermore train a Transformer-based model
from scratch on child-directed utterances, and sim-
ulate determiner production in children. Our model
mimics children’s developmental trajectory with
great precision, suggesting that the emergence of
productivity in human language can be explained
without the need to postulate access to pre-existing
syntactic categories.

Our hybrid approach is independent of the target
syntactic construction. In the future, we plan to
apply this methodology to a range of syntactic phe-
nomena, and investigate the trajectory as well as
the order of development of different syntactic cat-
egories in children exposed to different languages.

Limitations

In this study we combined child-directed data from
all caregivers in our corpus to train the computa-
tional model, and only used the individual child-
produced utterances as test cases for each version
of the model. This was due to lack of enough train-
ing data, but in the future we must think about
creative ways of simulating individual differences
(for example by pre-training the model on a generic
child-directed corpus, and fine-tune each instance
of the model on child-directed data from individual
children in our corpus).

In addition, we focused on the development of
only one syntactic category, and only in English.
This is due to historical and practical reasons: En-
glish determiners have been used as a case study in
this domain, likely due to the simplicity of the DE-
TERMINER+NOUN construction (which involves

closed vocabulary items rather than an open lex-
ical class) and the fact that its acquisition seems
to start relatively early. However, there is nothing
in the empirical and computational framework we
used here that is specific to this particular case, and
the same approach can be applied to any other lan-
guages and prominent categories such as nouns,
verbs, adjectives and adverbs. Comparing their de-
velopmental pattern in the computational model
can allow us to investigate the order of develop-
ment often hypothesized in children (e.g. nouns
are learned before verbs, adjectives become pro-
ductive much later, etc.).

Ethics Statement

We used the LDP dataset Goldin-Meadow et al.,
2014, a corpus that was collected from sponta-
neous parent-child interactions recorded in a home-
setting. This rather personal, intimate setting lends
itself to the frequent use of Personally Identifiable
Information (PII), either directly in utterances or
indirectly through personal artifacts.

The data collection protocol (approved by Uni-
versity of Chicago, IRB protocols 02-942 and
H12078) determined the following privacy con-
siderations:

1. Subjects were issued subject numbers.

2. Paper files were identified by number only and
kept in locked file drawers.

3. Electronic files were stored on password-
protected computers that were accessible only
research team members. Other researchers
only had access to coded data.

4. Videos were stored on a securely man-
aged, password-protected server and each re-
searcher was given his/her own secure login
and password. Any local copies of videos
were deleted.

5. Videos were not linked to any other identify-
ing information except what is contained in
the video.

6. During transcription, identifiers were re-
moved.

7. The master list was stored in a password-
protected computer, was kept separate from
data and was only kept during data collection.
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A The LDP Corpus: Recruitment and
Demographics

The data collection of the LDP corpus is fully de-
scribed in Goldin-Meadow et al. (2014). To re-
cruit participants, advertisements were posted in
the Chicago Parent magazine, a recruitment letter
was written and sent out, flyers were posted, and
daycare centers were contacted. 50$ were given
per visit to parents for an approximately 2-hour-
long visit. Parents who responded participated in
a screening questionnaire over the phone during
which information was gathered on ethnicity, in-
come, education, language(s) spoken in the home,
and child gender.

Sixty-four English-speaking families were se-
lected to match as closely as possible the 2000
census data on family income and ethnicity in the
greater Chicago area.

B Computational Simulations

In this section we report additional details of the
computational simulations. The number of param-
eters of our model is much smaller than that of the
original BERT model (16960546 for the Manch-
ester data, and 17373499 for LDP5). We set the
hyperparameters of the models (specified in section
4.1) manually, after a few trials. Given the smaller
size of models and data, they can even be trained
on a laptop with a modest CUDA-compatible GPU
(training time is shorter than 8 hours in an MSI
Prestige A10SC-006NL with an NVIDIA GeForce
GTX 1650).

The training data for the Manchester corpus
consists of 351223 child-directed sentences and
1767057 word tokens. In the case of the LDP cor-
pus, the full size of the training data (also consisting
of child-directed sentences) is 646040 sentences
and 2544468 word tokens. Table 3 reports the train-
ing data available to the model at each age, for the
version of the model trained incrementally.

To test the model, we use child-produced (rather
than child directed) sentences, hence the training
and test data do not have any overlap. In the case
of the Manchester corpus, the number of sentences
used to test the model are enumerated in Table
4, separated by individual child. The equivalent
information for the LDP corpus is summarized in
Figure 7 (given the greater number of children,
this more compact visualization is more convenient

5Note that parameters vary with vocabulary size.

than a table). The size of the test data used to
analyze the model by age is presented in Table 5.

Age Sentences Words (tokens)
14 63649 214612
18 64660 219182
22 60574 215085
26 59538 225807
30 57358 225877
34 53787 217869
38 59619 239189
42 53237 215223
46 47364 196980
50 46950 208677
54 39555 175709
58 41128 190258

Table 3: Training data size for LDP, by children’s age.

DETERMINER+NOUN
Child Sentences
Anne 1133
Aran 1731

Becky 1340
Carl 3627

Dominic 389
Gail 848
Joel 1080

John 1755
Liz 1392

Nicole 690
Ruth 792

Warren 2256

Table 4: Test data size of Manchester corpus, by child.

DETERMINER+NOUN
Age Sentences

14 51
18 414
22 850
26 2062
30 3073
34 3546
38 4388
42 4010
46 4576
50 4468
54 3781
58 3973

Table 5: Test data size of LDP corpus, by children’s age.

C Average Maximum Probability

Our model provides a probability distribution over
the vocabulary items, which is then used to predict
the word that should fill in the masked slot. As a
decoding strategy, we choose the word with max-
imum probability (the mode). To make sure that
this is not an ill-founded choice (as the probability
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Figure 7: Histogram of the size of the test data by in-
dividual child in the LDP corpus, for n=63 children
(the data of 64th child was deemed unusable due to not
having enough observations).

mass attributed to the mode may still be a small
percentage of the overall mass), we report the av-
erage probability mass that the model attributed to
the predicted words.

For the model trained on the Manchester cor-
pus, the average probability mass for the preferred
determiner (for predictions of the exact same de-
terminer) was 0.41±0.24. This is quite substantial,
considering that the model needs to distribute this
probability between all the units in its vocabulary.
If we consider all the sentences for which the model
predicted a determiner, then the average probabil-
ity mass of the top prediction is 0.37±0.23. The
average maximum probability across all the tested
sentences is 0.24 ±0.19.

A similar pattern is observed for LDP, although
in this case the model has higher certainty, likely be-
cause of the greater amount of training data. When
trained on this dataset, the average probability mass
for the preferred determiner (for predictions of the
exact same determiner) was 0.52±0.21. When con-
sidering all the sentences for which the model pre-
dicted a determiner, then the average probability
mass of the top prediction is 0.49±0.21. The av-
erage maximum probability across all the tested
sentences is 0.46 ±0.22.

D Onset measure applied to individual
children in LDP

Figure 8 shows the Onset metric applied to LDP
data, for children and model predictions. Each
subgraph corresponds to an individual child and its
corresponding model (i.e. a model tested with the

t-statistic p-value
1 -1.633 0.178
2 0.552 0.601
3 1.000 0.374
4 0.111 0.919
5 -1.400 0.220
6 -1.581 0.175
7 -1.718 0.161
8 0.542 0.611
9 0.535 0.621
10 -0.159 0.880

Table 6: Results of significance test, applied over
model predictions on child-produced and child-directed
speech.

utterances produced by the individual child).

E Control Experiment

To control for the possibility that the good fit of our
model to the children data was due to testing the
model using child-produced speech, we ran the fol-
lowing experiment: for each session, we sampled
utterances with determiner constructions (n=48)
separately for child utterances and for parent utter-
ances, and used them as test frames for the model.
We computed the productivity of our model for
each set of sentences and performed a paired sta-
tistical test. We repeated this experiment 10 times,
and none of these tests yielded a significant differ-
ence between predictions for determiner-noun test
frames taken from parent speech and predictions
for determiner-noun test frames taken from child
speech. This result rules out the hypothesis that our
findings are due to the linguistic context of child-
produced speech. The results can be found in Table
6.
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Figure 8: Number of noun types that appear with both determiners, for individual children (orange dots) and
corresponding model (blue line). Dashed line corresponds to lower boundary to achieve our criterion for productivity
(2 nouns with 2 determiners). Horizontal axis represents age, in months old.


