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Abstract
Relation Classification (RC)—the task of iden-
tifying the relation between a pair of target
entities—is a fundamental sub-task of infor-
mation extraction. RC models built on top of
entity information are prevalent, with differ-
ent variants using entity information, especially
entity type information, differently. However,
RC models are often benchmarked on datasets
that human annotators provide near-perfect en-
tity information, and, state-of-the-art results
are reported using gold entity type information.
We believe there is a need to understand how
the effectiveness of RC models is affected by
the correctness of entity type information be-
cause in practice this information is provided
by imperfect entity recognition models. Our re-
sults on six datasets across four domains show
that although using gold entity type improves
the effectiveness of RC models, incorrect en-
tity types may cause large effectiveness drops
on some (but not all) datasets. We propose
using Pointwise Mutual Information (PMI) to
identify datasets on which RC models may be
negatively impacted by incorrect entity type
information.

1 Introduction

Relation extraction is a fundamental sub-task of in-
formation extraction that aims to extract structured
information from unstructured text. It can be useful
for many downstream applications, such as opinion
mining, question answering, and knowledge graph
construction (Choi et al., 2006; Ji and Grishman,
2011; Nickel et al., 2015; Zhang et al., 2019a). One
common approach to relation extraction is pipeline-
based, where Named Entity Recognition (NER)
models are first used to identify entity names in
text and then the identified entities are fed into a
Relation Classification (RC) model, identifying the
relation between a pair of target entities (See an
example in Figure 1).

Previous studies (Soares et al., 2019; Peng et al.,
2020; Zhong and Chen, 2021; Zhou and Chen,

He received Rx for potassium to help with cramps .

TrAP (Treatment is administered for medical problem)

Figure 1: An example taken from I2B2-2010 (Uzuner
et al., 2011). It contains the ‘TrAP’ relation between
two entities: Rx (entity type: Treatment) and cramps
(entity type: Problem). Note that this sentence contains
another relation between ‘potassium’ and ‘cramps’.

2022) show that adding information on entity posi-
tion and type is critical for the RC models to learn
useful relation representations, and the RC model
heavily relies on the entity information, especially
entity type information. However, the effective-
ness of proposed methods of incorporating entity
information into the RC model is largely bench-
marked on datasets where human-annotated entity
information is provided. Start-of-the-art results are
reported with RC models using gold entity type
information (Lyu and Chen, 2021; Zhou and Chen,
2022; Han et al., 2022). There is a gap in the lit-
erature to investigate how the effectiveness of RC
models is affected by the correctness of entity type
information. In other words, given that no NER
model is perfect, how may the availability of ac-
curate entity type information affect our choice of
RC models?

To answer this research question, we present the
following contributions:

• We compare different approaches of
Transformer-based RC models that incor-
porate entity type information via minimal
architecture change. Based on experimental
results on six datasets across four domains,
we find that incorporating gold entity type
information using special markers outper-
forms other approaches using entity type
embeddings or entity type as part of the initial
decoder input.

• We conduct a sensitivity analysis of the RC
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model with respect to the correctness of entity
type information. Our results show that entity
type errors may cause a large effectiveness
drop on some (but not all) datasets, and this
phenomenon may change the decision of how
to incorporate entity type information to RC
models.

• We show that Pointwise Mutual Information
(PMI) can be used to identify datasets on
which RC models may be negatively impacted
by incorrect entity types and help decide how
to use entity type for the RC model.

2 Related work

In earlier literature, Relation Classification (RC)
models rely on manually defined features (Craven
and Kumlien, 1999; Mintz et al., 2009), convolu-
tional neural network (Zeng et al., 2014; dos Santos
et al., 2015), recurrent neural network (Zhang and
Wang, 2015; Miwa and Bansal, 2016) or graph neu-
ral network (Guo et al., 2019) to build relation rep-
resentation. To effectively capture the interaction
between entities, in addition to entity information,
these models either explicitly make use of syntac-
tic information (Mintz et al., 2009) or use neural
networks to learn context information (Vu et al.,
2016; Sorokin and Gurevych, 2017).

After the introduction of BERT (Devlin et al.,
2019), the pre-training-then-fine-tuning paradigm
dominated. RC models based on pre-trained lan-
guage representation models have also gained sig-
nificant success (Wu and He, 2019; Alt et al., 2019;
Wei et al., 2019). Recent research can be divided
into three groups. One research direction contin-
ues to improve pre-trained models via injecting
factual and linguistic knowledge, usually with the
help of external knowledge base consisting of rela-
tion tuples (Peters et al., 2019; Soares et al., 2019;
Zhang et al., 2019b; Yamada et al., 2020; Wang
et al., 2021). Another line of research designs spe-
cialised pre-training objectives to help better mod-
elling spans, which usually refer to entities (Joshi
et al., 2020; Lin et al., 2021). The last category fo-
cuses on the fine-tuning stage where modifications
are proposed to incorporate syntactic features (Adel
and Strötgen, 2021) and entity information (Bilan
and Roth, 2018; Eberts and Ulges, 2020; Li et al.,
2020; Zhou and Chen, 2022; Han et al., 2022).

Our study falls in the last category, and we focus
on analysing how the correctness of entity types
may impact the effectiveness of RC models.

Although we focus on a pipeline-based approach
for relation extraction, our work also relates to an-
other group of relation extraction methods that
model NER and RC jointly (Miwa and Bansal,
2016; Lin et al., 2020; Eberts and Ulges, 2020; Yan
et al., 2022). On the one hand, both approaches em-
ploy methods of incorporating entity information
into RC, and design options can be shared. On the
other hand, although joint models aim to mitigate
error propagation via modelling entity and relation
representations together, they still rely on ground
truth entity information for training the relation
component. For example, Eberts and Ulges (2020)
train the relation classifier via drawing negative ex-
amples from gold entity pairs that are not labelled
with any relation. We believe our analysis can pro-
vide insights into designing components used in
joint models when high-quality entity information
is unavailable.

Debates about the usefulness of entity type in-
formation for RC models Peng et al. (2020) ob-
serve that Context+EntityType—replacing entity
names with their entity types—achieves compara-
ble results on TACRED with Context+EntityName
for BERT. They argue that using original entity
names may be biased by the entity distributions
in the training set and the RC models may not
generalise well to unseen entities. By the same con-
sideration, Zhang et al. (2018); Joshi et al. (2020)
use entity types to replace entity names. Zhou and
Chen (2022) argue that if the RC models should
not consider entity names, it is unreasonable to sup-
pose that they can be improved by external knowl-
edge graphs, which is an active research area in
the literature. They propose to insert special typed
markers around original entity names (detailed in
Section 3.2) and show that the proposed variant
achieves state-of-the-art effectiveness on multiple
datasets. However, Zhou and Chen notice that us-
ing entity type information brings smaller improve-
ments on a clean test set than a noisy test set. They
hypothesise that this result may be attributed to
annotation biases. That is, some annotators may
label the relation only based on target entities with-
out reading the context. The paradigm proposed
by Lyu and Chen (2021) makes stronger assump-
tions about the correctness of entity types, which
are used to filter candidate relations. A specific
classifier is individually learned for each pair of
entity types to predict a specific set of candidate
relations.
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3 Preliminaries of RC Models

Problem Formulation Relation classification is
framed as a task where given a text sequence X =
[x0, · · · , xn] and two entity names e1 and e2, the
RC model predicts either (1) a relation r ∈ R that
holds between two entities; or, (2) NA relation (no
relation or none of the pre-defined relation hold).
We aim to investigate how to effectively incorporate
entity types of e1 and e2 in RC models, and how
the effectiveness of the RC model is affected by the
correctness of these entity types.

In the following, we first group existing RC mod-
els into three categories: span-based, marker-based
and prompt-based, and then describe how entity
type can be incorporated into these models.

3.1 Span-based Models

The span-based RC models usually consist of three
components: (1) a token encoder, (2) a relation
encoder, and (3) a classifier. The token encoder
takes X as input and generates a list of contextual
token representations H = [h0, · · · , hn].

After the contextual token presentations H are
obtained from the token encoder, span-based mod-
els first build span (e.g., entity names, the context
span between two target entities) representations
from H. There are many options for the fusion
function proposed in the literature. For example,
Eberts and Ulges (2020) max-pool contextual to-
ken representations to obtain span embeddings;
Wu and He (2019) apply the average operation
to obtain span embeddings; Yu et al. (2020) use
biaffine attention to build span embeddings; and,
concatenating token representations corresponding
to boundary tokens for span embeddings (Joshi
et al., 2020). Our preliminary experiments find that
max-pooling (Eberts and Ulges, 2020) performs
best, although the difference between these vari-
ants is very small.

Eberts and Ulges (2020) propose to concatenate
three span embeddings—corresponding to two enti-
ties and the context between them—as the relation
representation ℏ. We also investigate concatenat-
ing more spans (e.g., context before the first entity
names and context after the last entity names) or
the hidden states corresponding to the [CLS] to-
ken, but find that these variants do not improve
the effectiveness of the RC models. We denote the
model variant by Eberts and Ulges (2020) as SpU
in experimental results (Table 3).

Incorporating entity type information via seg-
ment embeddings To provide the RC model with
entity type information, we propose incorporating
segment embedding into the input of the token en-
coder (Sorokin and Gurevych, 2017). We first mark
each token in the entity names using their entity
types. An embedding matrix, E ∈ R(c+1)×768 (c
is the total number of entity types), is then used
to convert these entity types into the segment em-
bedding, and finally, we sum the segment, token,
and position embeddings and feed them into the
token encoder. In our preliminary experiments, we
also investigate concatenating segment embeddings
with token encoder outputs but find it underper-
forms the variant where segment embeddings are
fed into the token encoder. We denote this variant
as SpT in Table 3.

3.2 Marker-based Models

Methods belonging to this category usually mod-
ify the original text sequence by either inserting
special markers or using special markers to replace
original entity names. Then the hidden states corre-
sponding to these special markers are used to build
the relation representation. For example, Soares
et al. (2019) insert special markers, i.e., [E1], [/E1],
[E2] and [/E2], before and after target entities, and
then concatenate hidden states corresponding to
[E1] and [E2] as the relation representation. Argu-
ing that these newly introduced markers, such as
[E1] and [E2], are not well pre-trained, Zhou and
Chen (2022) propose to use punctuation markers
such as @ and # to enclose target entities. Zhou
and Chen also use special markers to incorporate
the entity type. That is, they use ∗ and ∧ to enclose
entity type and prepend to entity names. We denote
the variant of using untyped markers as MaU and

MaU received @ Rx @ for potassium to help
with # cramps #

MaTi received @ * treatment * Rx @ for potas-
sium to help with # ∧ problem ∧ cramps
#

MaTr received @ * treatment * @ for potas-
sium to help with # ∧ problem ∧ #

Table 1: Examples of the modified input. MaU: untyped
marker; MaTi: typed marker (insert); MaTr: typed
marker (replace). The hidden states of underlined tokens
are concatenated and used as the relation representation.



377

He received Rx for potassium to help with cramps .

Encoder

[X] Rx [Y] cramps [Z]

Decoder

treatment problem

treatment is administered for medical problem

Template

Relation label verbalization

<s> [X] [Y] [Z]

Figure 2: A high-level illustration of prompt-based RC model. Note that [X], [Y], [Z] are three sentinel tokens in
the template, and we omit trainable prompt embeddings in the template for the sake of simplicity. We refer readers
to (Han et al., 2022) for more details.

the one using typed markers as MaTi in Table 3,
and examples of the modified text are shown in
Table 1.

Zhang et al. (2017); Joshi et al. (2020) replace en-
tities by their entity types such as ‘[SUBJ-TYPE]’
and ‘[OBJ-TYPE]’ and predict the relation type
using the hidden states of [CLS] token. We find
concatenating hidden states corresponding to two
beginning markers—punctuation markers instead
of newly introduced markers—performs better, and
we denote this variant as MaTr (See example in
Table 1).

3.3 Prompt-based Models

Prompt-based models employ encoder-decoder ar-
chitecture and convert the classification problem to
a text generation problem (Han et al., 2022; Chen
et al., 2022; Xu et al., 2022). That is, the original
text sequence X is reformulated by adding a cloze-
style phrase called template. The modified text
sequence is then taken as the input of the seq2seq
model, and the model generates a sequence of to-
kens called relation label verbalisation and can be
mapped from relation labels R. See Figure 2 for a
high-level illustration.

Instead of the handcrafted template (such as ‘The
relation between Rx and cramps is <mask>’, Han
et al. (2022) design a method that uses a series
of learnable continuous tokens as prompts. They
copy target entity names after the original text se-
quence and use three sentinel tokens ([X], [Y], [Z])
to separate target entity names in the template (See
example in Figure 2). Then, the original text se-

quence and the template are mapped to a sequence
of continuous vectors via the token embedding
layer. After this transformation, a few learnable
vectors, which are jointly optimised by gradient de-
scent, are inserted in front of token embeddings cor-
responding to these three sentinel tokens. Finally,
the new sequence of token embeddings, which is
summed together with the position embedding, is
fed into the encoder.

To use entity type information to influence the
choice of possible candidate relations, Han et al.
append the entity type tokens as part of the ini-
tial decoder inputs. We denote this variant called
GenPT as PrT and the variant without entity type
information—the initial decoder input is ‘<s> [Z]’—
as PrU.

3.4 Other Baselines

• Random prediction: we count label distribu-
tion from the training set and assign labels to
test examples based on the obtained distribu-
tion.

• Sentence classification: we take the original
text sequence as input and use the hidden
states corresponding to the [CLS] token as
the relation representation. Since no entity
information is provided, the encoded relation
representation is sub-optimal. However, the
model may still learn heuristics that the sen-
tence mentions the relation (Rosenman et al.,
2020). It is also worth noting that if multiple
relations exist in the sentence, it is impossible
for this baseline model to distinguish between
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DDI 2013 I2B2-2010 RETACRED SCIERC TACRED RADGRAPH

# entity pairs 31,784 65,210 91,467 4,648 106,264 25,848
no-relation pairs 84.5% 85.6% 63.2% 0.0% 79.5% 50.0%

# relations 5 9 40 7 42 4
# entity types 4 3 16 6 17 4

Avg # tokens per sentence 27.9 19.5 36.3 25.5 36.4 111.4
Avg # entities per sentence 4.6 4.5 2.2 7.4 2.1 29.2

Avg # tokens per entity 1.3 2.4 1.6 2.4 1.6 1.0
Avg # tokens btw pairs 15.4 12.2 12.0 6.2 12.1 2.7

Table 2: The descriptive statistics of the datasets.

them.

• Entity name only: we keep two target entities
and remove all other tokens. Taking the sen-
tence in Figure 1 as an example, the sentence
becomes ‘Rx cramps’ and is fed as input to
the sentence classifier.

• Entity type only: instead of entity names, we
use entity type and remove all other tokens.
The example sentence in Figure 1 becomes
‘Treatment Problem’.

4 Datasets and Experimental Setup

We choose six datasets—all in English—that are
sampled from four different domains:

DDI 2013 (Segura-Bedmar et al., 2013) is sam-
pled from biomedical publications. Four en-
tity types—brand, drug, drug_n and group—
and four relation types—advise, effect, int,
and mechanism—are annotated in the dataset.

I2B2-2010 (Uzuner et al., 2011) is sampled from
clinical notes. Three entity types—test, prob-
lem and treatment—and eight relation types—
TrWP, TrNAP, TeCP, TrCP, TrIP, TrAP, TeRP
and PIP—are annotated in the dataset.

TACRED and RETACRED by (Zhang et al.,
2017) and (Stoica et al., 2021) are sam-
pled from newswire and the web. Forty-
one relations, such as per:date_of_birth and
org:shareholders exist in TACRED. The orig-
inal relation labels of TACRED are obtained
by crowd-sourcing, and the later work (Alt
et al., 2020; Stoica et al., 2021) show that
the quality of crowd-sourced annotations is
a major factor contributing to the overall er-
ror rate of models on TACRED. Therefore,
we use both TACRED and RETACRED,
a label-corrected version released by Stoica
et al. (2021).

SCIERC (Luan et al., 2018) is sampled from
computer science publications. Six entity
types—Method, Generic, Material, Task,
Metric and OtherScientificTerm—and seven
relation types—USED-FOR, EVALUATE-
FOR, CONJUNCTION, HYPONYM-OF,
FEATURE-OF, COMPARE and PART-OF—
are annotated in the dataset.

RADGRAPH (Jain et al., 2021) is sampled from
clinical notes. Radiology reports are anno-
tated with four types of entities: Anatomy,
Definitely Present Observation, Uncertain Ob-
servation, and Definitely Absent Observation;
and three types of relations: Suggestive Of,
Located At, and Modify.

The descriptive statistics of the datasets are listed
in Table 2. On TACRED, RETACRED and RAD-
GRAPH, we use the official train-dev-test split. We
use the split of SCIERC from Gururangan et al.
(2020); both DDI 2013 and I2B2-2010 from the
BLUE benchmark (Peng et al., 2019).

We use ROBERTA-large as the backbone model
in all our experiments except for the prompt-based
models. We use BART-large in prompt-based ex-
periments because BART is an encoder-decoder
model that is pre-trained by reconstructing the orig-
inal text from the corrupting text.

For each model variant, we fine-tune the whole
model and perform a grid search to find the best
combination of the number of training epochs and
the learning rate on each development set. Once
the best combination is found, we repeat all exper-
iments three times using different random seeds,
and medium test Micro and Macro F1 scores are
reported. In addition to evaluation results on all
test examples, we follow (Zhou and Chen, 2022)
and report results on filtered test sets, where test ex-
amples containing entities observed in the training
set are removed.
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Dataset

Method DDI 2013 I2B2-2010 RETACRED SCIERC TACRED RADGRAPH AVG

random prediction 5.5/6.6 3.6/2.7 4.7/1.4 28.1/12.7 1.5/0.8 22.3/14.5 10.9/6.5
w/o entity info 41.5/35.4 48.1/37.8 42.8/28.9 60.9/43.0 24.1/20.6 1.7/0.9 36.5/27.8
entity name only 13.8/10.0 63.9/39.8 65.8/31.8 67.9/53.7 47.2/24.6 92.8/90.3 58.6/41.7
entity type only 4.2/3.4 48.1/15.0 56.2/19.3 61.5/32.6 33.1/8.7 74.2/78.6 46.2/26.3

SpU Span-based 82.6/78.2 77.5/63.9 88.1/76.6 87.9/81.6 68.0/53.1 94.0/95.3 83.0/74.8
SpT + entity type 82.6/77.1 77.7/66.5 88.8/75.6 88.4/81.5 68.3/52.9 94.2/94.5 83.3/74.7
MaU Marker-based 84.2/79.0 80.4/69.9 90.5/80.5 88.8/81.5 70.2/55.2 93.8/93.3 84.7/76.6
MaTi + entity type (insert) 84.2/80.3 82.2/71.1 90.7/82.0 89.8/83.9 73.9/60.6 95.9/96.3 86.1/79.0
MaTr + entity type (replace) 83.6/80.1 80.1/70.6 86.5/75.6 88.2/82.0 71.9/56.1 92.6/94.0 83.8/76.4
PrU Prompt-based 74.8/70.6 74.3/61.3 90.2/81.9 89.9/84.9 71.1/55.9 93.1/94.2 82.2/74.8
PrT + entity type 75.2/71.8 77.1/66.5 90.6/84.3 90.0/84.6 73.5/60.4 95.2/96.1 83.6/77.3

Table 3: A comparison of methods incorporating entity type information to the RC model. Both Micro F1 and
Macro F1 are reported. Underlined results indicate the improvement due to the incorporation of entity types is
statistically significant (Wilcoxon signed-rank test, p < 0.05). The best Micro and Macro F1 results for each dataset
are boldfaced.

SpU SpT MaU MaTi PrU PrT
DDI 2013 (479) 80.0 81.0 81.8 82.1 73.3 78.7

I2B2-2010 (10132) 74.4 75.2 77.1 80.3 71.3 74.8
RETACRED (3736) 87.9 87.5 90.4 91.1 90.1 90.8

SCIERC (561) 88.2 88.9 88.6 90.0 90.2 89.8
TACRED (4470) 72.7 72.5 74.6 78.5 74.4 77.8
RADGRAPH (44) 71.8 76.2 71.4 81.8 68.2 81.8

AVG 79.2 80.2 80.6 84.0 77.9 82.3

Table 4: Micro F1 results on filtered test sets, where
examples containing seen entities from the training sets
are removed. Numbers in parentheses are the number
of examples in the filtered test sets.

5 Results and Analysis

The first observation from Table 3 is that incorpo-
rating gold entity type information can improve
the effectiveness of marker-based models. On four
out of six datasets, inserting typed makers (MaTi)
significantly outperforms using untyped markers
(MaU) in terms of Micro F1, and the averaged
improvement of Micro F1 over all datasets is 1.4
(Macro of 2.4). Similarly, the averaged improve-
ment of Micro F1 using entity type information
with prompt-based models is 0.6 and span-based
is 0.3 (the averaged Macro F1 of span-based mod-
els slightly decreases 0.1 when entity type infor-
mation is incorporated). Secondly, we observe
that marker-based models outperform span-based
and prompt-based models on most of these evalua-
tions, except on RETACRED and SCIERC, where
prompt-based models achieve the highest Micro
or Macro F1. Thirdly, replacing entity names us-
ing typed markers (MaTr) under-performs inserting
typed markers before and after entity names (MaTi)
with a large margin (on average 2.3 Micro F1). Fi-

nally, we observe that the benefits of incorporating
entity type information seem to be dataset depen-
dent. For example, MaTi significantly outperforms
MaU on SCIERC, TACRED, and RADGRAPH in
terms of both Micro and Macro F1 scores. PrT
significantly outperforms PrU on I2B2-2010, RE-
TACRED, TACRED, and RADGRAPH in terms
of both F1 scores.

When RC models are evaluated on examples
containing unseen entities (Table 4), we can see
incorporating entity type information brings larger
improvements compared to results on the complete
test set (on average 1.0 vs 0.3 with span-based;
3.4 vs 1.4 with marker-based; and 4.4 vs 1.4 with
prompt-based models). This result shows that using
entity type information improves the generalisation
of the RC models to unseen entities.

5.1 Effectiveness Drop due to Incorrect Entity
Type Information

After we investigate the benefits of incorporating
gold entity type information to the RC model, the
next question is: what will happen if incorrect en-
tity type information is used during inference? We
believe that gold (human-annotated) entity type in-
formation may be available on a small scale and
can be used to train the RC model. However, it is
impractical to expect entity type information to be
always correct when the RC model is employed
in the wild. Therefore, we focus on analysing
the robustness of RC models against incorrect en-
tity types and measuring how the effectiveness of
trained RC models is affected by the correctness of
entity type information during inference.

For each target entity in the test example, we
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(a) SpT: Span-based models
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(b) MaTi: Marker-based models
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(c) PrT: Prompt-based models

Figure 3: (a): negligible effectiveness drop due to in-
correct entity types using span-based models; (b): large
drop on some (but not all) datasets using marker-based
models; (c): moderate drop using prompt-based models.
High p values indicate more entity type errors.

use a binomial distribution, p ∈ [0, 1], to randomly
decide whether its entity type should be corrupted.
If yes, we select another entity type—the incorrect
type with the highest output probability based on a
span-based NER model—as the replacement. Note
that we also investigate randomly sampling erro-
neous entity types and observe a pattern similar to
NER-based errors.

We train span-based NER models (Zhong and

Chen, 2021; Dai and Karimi, 2022) separately on
the corresponding training sets using entity anno-
tations. The model enumerates all possible spans
and determines whether a span is a valid entity
and its entity type. The accuracy—given an en-
tity name in the context, predict its entity type—of
these trained NER models are high on DDI 2013
(93.4), I2B2-2010 (91.4), RADGRAPH (91.7) and
relatively low on RETACRED (71.7), TACRED
(71.4), SCIERC (71.6). Two possible factors are
causing this accuracy divergence. On the one hand,
this difference reflects that classifying entity names
of different types has various levels of inherent dif-
ficulty (e.g., it may be easy to identify drug names
in DDI 2013, but difficult to identify the metric
names in SCIERC). On the other hand, the low
accuracy on some datasets can be attributed to the
scarcity of entity annotations or the noisy annota-
tions (e.g., entity names in RETACRED and TA-
CRED are not fully annotated).

The sensitivity analysis results show that span-
based models are robust against incorrect entity
types (Figure 3a). When entity types are incorrect,
the RC models still maintain similar effectiveness
as the gold entity types used. In contrast, incor-
rect entity types cause large effectiveness drop on
some (but not all) datasets with mark-based mod-
els (Figure 3b) and moderate drop with prompt-
based models (Figure 3c). For example, when 10%
of entity types are incorrect (p = 0.1), marker-
based models have had great effectiveness drop on
I2B2-2010 (8.7), RETACRED (9.1), TACRED
(6.3), and RADGRAPH (6.7). We argue this re-
sult shows state-of-the-art models (Zhou and Chen,
2022)—inserting typed markers before and after
entity names—to be a questionable design option
in practice, although they indeed achieve the high-
est F1 scores on most of the evaluations when gold
entity type information is used. It is also worth
noting that on DDI 2013 and SCIERC, even when
50% of target entities have incorrect entity types,
the drop of mark-based models is still very small
(0.0 and 1.2, respectively).

5.2 What can associations between relation
and entity types tell us?

To understand why on some, but not all, datasets
marker-based and prompt-based models have per-
formance drop using incorrect entity types, we use
Pointwise Mutual Information (PMI), an associ-
ation measure to quantify the strength of associ-
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Dataset

6

4

2

0

2

4

6

PM
I

Figure 4: Association between relation (e.g., ‘TrAP’)
and entity type pair (e.g., (‘Treatment’, ‘Problem’)),
measured using PMI values, on different datasets.

ation between relation and entity types. Taking
the sentence in Figure 1 as an example, we denote
the relation ‘TrAP’ as r and a pair of entity types
(‘Treatment’, ‘Problem’) as e. We calculate PMI
by considering the number of occurrences in the
training set:

PMI(r, e) = log
#(r, e)× |D|
#(r)×#(e)

, (1)

where |D| is the total number of examples, #(r)
is the frequency of relation, #(e) is the frequency
of entity type pair, #(r, e) is the frequency r and e
occur.

The measured PMI values on different datasets
are shown in Figure 4. On DDI 2013 and SCIERC,
possible combinations of relation and entity type
pairs are more evenly distributed and centred at
zero, indicating the strength of association on these
datasets is weak. Therefore, even if a large portion
of incorrect entity types are provided, the RC model
is still able to make the correct prediction (see the
negligible drop in Figure 3). In contrast, values
of other datasets have more imbalance distribu-
tion across a larger range. It indicates that relation
types have stronger—either positive or negative—
association with entity type pairs. Therefore, if
incorrect entity types are provided, the RC model
is more likely to make a wrong prediction (see the
large drop in Figure 3b and Figure 3c).

5.3 A closer look at the examples

We provide a few representative examples in this
section to demonstrate how (incorrect) entity type
information might affect the effectiveness of RC
models:

• The correct entity type information helps
the relation prediction. For example, given
the sentence taken from the SciERC dataset,

‘Hitherto , smooth motion has been encour-
aged using a trajectory basis , yielding a hard
combinatorial problem with time complexity
growing exponentially in the number of frames
.’, the marker-based approach (MaU) predicts
the relation between ‘time complexity’ and

‘hard combinatorial problem’ is ‘FEATURE-
OF’ when no entity type information used.
This prediction is likely to be influenced by
the preposition ‘with’ between these two en-
tity mentions. However, once the correct en-
tity type information (‘Metric’ and ‘Task’) is
given, the model (MaTi) correctly predicts the
‘EVALUATE-FOR’ relation.

• The incorrect entity type information
causes erroneous predictions, whereas mod-
els without using entity type and models us-
ing correct entity type succeed. For example,
given the sentence taken from the TACRED
dataset, ‘The troubled insurance giant , which
has received multiple federal bailouts since
September , said that it would give the New
York Fed preferred stakes in two of the com-
pany ’s crown jewels Asian-based American
International Assurance , or AIA , and Amer-
ican Life Insurance Co. , or Alico , which
operates in more than 50 countries .’, both the
model without using entity type information
and the one using gold entity type information
can predict correctly the relation between ‘Al-
ico’ and ‘American Life Insurance Co.’ is
‘org:alternate_names’. However, when the
NER model makes a mistake and recognises
‘Alico’ as a person name, the relation model
is negatively affected and predicts the relation
‘org:top_members/employees’, a common re-
lation between a persona and an organisation.

• Incorrect entity type information does not
cause erroneous relation predictions. For
example, given the sentence taken from the
SciERC dataset, ‘Amorph recognises NE
items in two stages : dictionary lookup and
rule application .’, models with incorrect en-
tity type—NER model predicts both ‘dictio-
nary lookup’ and ‘rule application’ as ‘Task’
instead of ‘Method’—can still predict the rela-
tion between ‘dictionary lookup’ and ‘rule ap-
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plication’ as ‘conjunction’ relation due to the
existence of the conjunction between them.

5.4 Implications

RC models are usually employed as sub-
components of IE systems, and entity type informa-
tion is generated using an automated NER system.
Depending on the effectiveness of the NER and the
association between relation type and entity type
pairs, we suggest using different RC variants. If the
association between relation and entity type pairs is
weak (e.g., DDI 2013, SCIERC), we suggest using
the marker-based model with entity type informa-
tion used. If relation types have a strong association
with entity types (e.g., I2B2-2010, RADGRAPH,
TACRED, RETACRED), we suggest choosing
prompt-based models if relatively accurate entity
types are guaranteed or span-based models if entity
types are prone to errors.

6 Conclusions

Relation Classification (RC) is an active area of re-
search for a number of applications, such as knowl-
edge base construction and biomedical text min-
ing. The existing methods often heavily rely on
entity information, especially entity type informa-
tion. We conduct a comparison of methods of incor-
porating entity type information into the RC mod-
els on six datasets across four different domains.
Results show that when gold entity type informa-
tion is available, inserting typed markers before
and after target entities and using token represen-
tations corresponding to these typed markers for
relation representation is effective. However, when
entity types become inaccurate, methods that rely
on typed markers become less effective on some
(but not all) datasets. In contrast, span-based meth-
ods that use token representations to build span
representation and then relation representation are
robust when incorrect entity types are provided.
The latter is a more realistic scenario, given NER
models are practically never perfect. The prompt-
based method that uses entity type information as
part of the initial decoder inputs is located in the
middle of the spectrum. It is also affected by the
incorrect entity types, but its performance drop is
much smaller than the one with marker-based mod-
els.

We found that Pointwise Mutual Information, a
measure to quantify the association between rela-
tion and entity type pairs, can explain why on some

datasets entity type errors cause large effectiveness
drops. We suggest it as a cheap yet effective tool to
understand the dataset and help the decision about
how to use entity type for the RC model.

Limitations

Our work is motivated by debates on the useful-
ness of entity type information for relation clas-
sification. We investigated how the effectiveness
of relation classification models is affected by the
correctness of entity type information. However,
the effectiveness of relation classification models
can be affected by other factors, such as entity
names (whether the NER model can effectively
identify entity boundaries) and surrounding con-
text (whether there is sufficient context). We leave
the investigation of other factors for future work.
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