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Abstract
We propose a novel system to help fact-
checkers formulate search queries for known
misinformation claims and effectively search
across multiple social media platforms. We in-
troduce an adaptable rewriting strategy, where
editing actions for queries containing claims
(e.g., swap a word with its synonym; change
verb tense into present simple) are automat-
ically learned through offline reinforcement
learning. Our model uses a decision trans-
former to learn a sequence of editing actions
that maximizes query retrieval metrics such as
mean average precision. We conduct a series
of experiments showing that our query rewrit-
ing system achieves a relative increase in the
effectiveness of the queries of up to 42%, while
producing editing action sequences that are hu-
man interpretable.

1 Introduction

With the wide spread of both human and automati-
cally generated misinformation, there is an increas-
ing need for tools that assist fact-checkers while
retrieving relevant evidence to fact-check a claim.
This process often involves searching for similar
claims across social media using initial clues or
keywords based on users’ intuition. However, the
available mechanisms for search on social media
sites are often platform-specific, with restrictions
on the allowed number of search queries and ac-
cess to retrieved documents. This can be attributed,
among others, to the dynamic nature of social me-
dia feeds, the differences among users’ interactions,
and the architectural differences in how platforms
perform search on their data. As a result, opti-
mizing for arbitrary black-box search end-points
containing ever-changing and different document
sets means that a generic claim rewriter operating
across all search end-points has a high chance of
being sub-optimal.

To address these challenges, we draw upon a
direct collaboration among fact-checkers and NLP
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Figure 1: Overview of our proposed approach: we train
a decision transformer with “state”, “action” and “re-
ward” sequences discovered by searching the space of
potential query edits. During the deployment stage, the
decision transformer predicts action(s) to rewrite the
claim into a more effective query.

researchers, and introduce an adaptive claim rewrit-
ing system that can be used for effective misin-
formation discovery. We develop an interface in
which users can edit individual tokens in the input
claim using a predefined set of actions, and obtain
updated queries leading to different levels of re-
trieval performance. Using this environment, we
build a system that learns to rewrite input claims
as effective queries by leveraging reinforcement
learning (RL) to maximize desired retrieval metrics
(e.g., average precision at K (AP@K)). An offline
RL agent is then trained to learn the best editing se-
quences using a decision transformer model (Chen
et al., 2021) as shown in Figure 1.

Given the limited access to social media search
APIs, we use off-the-shelf retrievers such as BM25
(Robertson and Zaragoza, 2009) and approxi-
mate K-nearest neighbours (kNN) (Malkov and
Yashunin, 2018) to simulate platform search end-
points. Our system is trained using a modified
version of FEVER (Thorne et al., 2018), a well
known misinformation dataset containing a mix of
true and false claims linked to Wikipedia evidence
sentences. We transform FEVER claims into se-
quences of (claim, edit action, reward) triplets by
using Breadth First Search (BFS) and heuristics
such as constraining search space depth. These
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triplets are used to train a decision transformer
model to autoregressively predict a sequence of
editing actions leading to retrieval improvements.

Through several experiments, we show that our
query rewriting approach leads to relative perfor-
mance improvements of up to 42% when compared
to using the original claim. We also find that a sim-
plified version of this approach— i.e., fine-tuning
a classifier to predict a single edit, leads to com-
parable performance while being more resource
efficient during training and inference. We conduct
ablation experiments to further evaluate the model
performance across several settings, including vari-
ations on the retriever type, the reward metric, and
the presence of negative training examples.

To the best of our knowledge, our system is the
first to leverage RL to learn to edit text from a set of
human-readable actions only. From a practical per-
spective, it provides initial experimental evidence
on the potential of interpretable systems in helping
users, including fact-checkers, media writers, and
platform trust and safety teams, to more effectively
discover misinformation on the Internet.

2 Prior Work

Our work is closely related to three previous re-
search directions.

Finding Similar Claims. The problem of finding
similar claims has been explored from the perspec-
tive of system building, and supports a key step
in human-led fact-checking (Nakov et al., 2021).
Shaar et al. (2020) conducted retrieval and rank-
ing of previously fact-checked claims given an in-
put claim to detect debunked misinformation in
English. Kazemi et al. (2021) tackled a similar
problem in non-English languages. Kazemi et al.
(2022) investigated systems and models for finding
applicable fact-checks for tweets.

While most prior work on this area has focused
on building retrieval systems to identify similar
claims, our work focuses on query rewriting to
assist fact-checkers in the discovery of misinfor-
mation. During this process we assume that the
retrieval system is a black-box to which we only
have search access.

Query Rewriting. Query reformulation methods
such as relevance feedback and local or global
query expansion have been well-studied within the
information retrieval literature. Lavrenko and Croft
(2001) proposed the relevance model, an unsuper-

vised local expansion method in which the proba-
bility of adding a term to the query is proportional
to the probability of the term being generated from
language models of the original query and the doc-
ument the term appears in. Cao et al. (2008) pro-
posed a supervised pseudo relevance feedback in
which expansion terms are selected by a classifier
that determines their usefulness to the query per-
formance. Li et al. (2014) introduced REC-REQ,
an iterative double-loop relevance feedback pro-
cess in which a user provides relevance feedback
to a classifier that is trained to identify relevant
documents.

RL approaches have been previously applied
to query rewriting. Nogueira and Cho (2017)
and Narasimhan et al. (2016) used RL to learn
to pick terms from pseudo-relevant documents that
upon addition to the query improve retrieval perfor-
mance metrics such as recall. In more recent work,
Wu et al. (2021) proposed CONQRR, a system
that rewrites conversational queries into standalone
questions. The authors first trained a T5 model to
generate human rewritten queries for the QReCC
dataset (Anantha et al., 2021) and then used them
to generate candidate queries, which are selected
based on maximizing search utility by an RL agent.

A key difference between our method and prior
work is that we do not use information from the
retrieved documents to reformulate queries as the
queries themselves are the only input to the model.

Text Editing Models. Also related to our work
is research done on “text-editing” models (Malmi
et al., 2022). This line of research has gained trac-
tion in recent years as models such as EdiT5 and
LEWIS (Mallinson et al., 2022; Reid and Zhong,
2021) promise hallucination-free and controlled
text generation for tasks where the input and output
texts are similar enough so that a model can learn
to transform the input into the output by apply-
ing a limited number of editing actions. Stahlberg
and Kumar (2020) proposed Seq2Edits, a fast text-
editing model for text generation tasks such as
grammatical error correction and text simplifica-
tion. Seq2Edits uses an edited transformer encoder
and decoder to generate sequences of edits for the
positions in the input text that need to be altered
with suggested new tokens. Reid and Zhong (2021)
introduced a multi-span text editing algorithm that
uses Levenstein edit operations for the tasks of
sentiment and politeness transfer in text, based on
the intuition that text style transfer usually can be
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done with a few edits on the input text. Overall,
text-editing models are usually faster than other
sequence generation models such as seq2seq, since
they only predict actions on a few input tokens
rather than regenerating the whole sequence.

3 Methods

3.1 Problem Definition

In this paper, we focus on the task of query rewrit-
ing for discovering similar claims from an opaque
search end-point. We have a collection of input
claims (C1, C2, ..., Cn) that contain at least one
fact-checkable claim. For any given claim Ci in the
collection, there exists one or more collections of
similar claims (SCi1, SCi2, ..., SCim), either sup-
porting or refuting the claim in-part or as a whole.
The RL agent operates on a fixed set of actions
A = {A1, A2, ..., Ak} that can be applied to any of
Ci’s tokens (Ti1, Ti2, ..., Tiq), where k is the num-
ber of possible actions, q is the number of tokens in
Ci. We rewrite the query by applying the sequence
of actions (Aij , 1 ≤ i ≤ k, 1 ≤ j ≤ q) generated
by the RL model to the original query. We can then
use this improved query to retrieve related evidence
statements.

3.2 Model Overview

Our system rewrites a query using concepts from
RL and query expansion. We pass the query into a
pre-trained language model and then use the pooled
representation from the final layer as the state rep-
resentation. We use a decision transformer archi-
tecture, where states, actions, and rewards are pro-
vided to the model as a flattened sequence. The
decision transformer uses a decoder-only GPT ar-
chitecture (Radford et al., 2018) to learn the opti-
mal policy during training time. During inference
time, it autoregressively predicts actions for a given
state. An overview of our model architecture is
shown in Figure 2. Below, we describe important
elements of the model architecture related to the
query rewriting process.
Rewriting Actions. Queries are rewritten using
the following set of actions.
(1) Add synonym: adds the synonym of a selected
word to the query. Previous work by work by Rie-
zler and Liu (2010); Mandal et al. (2019), showed
that rewriting queries with synonyms can improve
query performance by potentially resolving am-
biguous query terms.
(2) Swap with synonym: replaces a specific word
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Figure 2: Model architecture. R, S, A represent reward,
state and action, respectively. For instance, the state S0

corresponds to a query, and the reward R0 is the retrieval
score such as AP@K. After we apply the action A0 to
the query S0, the query becomes S1. In inference time,
the decision transformer predicts a series of actions
{A′

0, A
′
1, · · · } to apply to the original query.

from the query with its synonym. This action
has the same goal as add synonym. Note that
it includes the removal of the original token re-
move(original_token) .
(3) Change tense to present simple: changes verb
tense into present simple for selected verbs in the
input. Changing verbs to their morphological vari-
ants has been previously found useful for query
rewriting (Rafiei and Li, 2009; Haviv et al., 2021).
(4) Remove: deletes selected words from the query.
Previous work has found that deleting words in
queries can lead to higher coverage of the search
content (Jones and Fain, 2003).

We implement these actions using WordNet
(Miller, 1994) and the spaCy’s part-of-speech tag-
ger. Note that only certain actions are permitted
for each part of speech tag: verbs support all four
actions, nouns, adjectives and adverbs support all
actions except changing verb tense, and stop words
and other parts of speech support only the remove
action.
State Representation. We use sentence embed-
dings of the input claim as its state representation.
An input claim Ci is passed through a Sentence-
BERT (Reimers and Gurevych, 2019) network .
The weights of the underlying pretrained language
model (LM) are fine-tuned together with the deci-
sion transformer.
Action Representation. Our action space is two-
dimensional: the first dimension represents the four
action types (add synonym, swap with synonym,
change tense to present simple and remove) and
the second dimension represents the position of the
token under edit, up to a maximum of 32 tokens.
We pack these dimensions into a single dimension
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Action # Edit, Position
action 0: swap with synonym, position 0
action 1: swap with synonym, position 1

... ...
action 32: add synonym, position 0
action 33: add synonym, position 1

... ...
action 126: remove, position 30
action 127: remove, position 31

Table 1: A 2D space of actions types and token indices
mapped onto a linear action space.

by taking their product, as shown in Table 1. Simi-
lar to the original implementation of the decision
transformer, we pass the actions through a learned
embedding layer to obtain an action vector repre-
sentation.
Rewards. We use the retrieval score for the edited
query as the system reward at time step t. Since the
decision transformer uses returns-to-go to inform
the model about future rewards, we use the sum of
future rewards as a returns-to-go Rt =

∑T
t′=t rt′ .

We also experimented with a delayed reward strat-
egy, where we set the returns-to-go for the last time
step to be the maximum score for given claim seen
during the data generation process, and zero for
intermediate steps. During inference, we initialize
returns-to-go to the maximum reward and decrease
it by the achieved score after we apply an action.

3.3 Retriever

Since access to social media API search endpoints
is limited, it is difficult to train an RL agent on top
of them. Furthermore, the changing nature of mis-
information on social media is another important
factor to take into account, given that misinfor-
mative posts are periodically removed from social
media platforms and are thus no longer available
once fact-checked. These issues made us opt for a
simulated search environment, with the added ben-
efit of making our methods adaptable to arbitrary
search endpoints. We experiment with two main
systems:
BM25. A retriever frequently used in the literature
as a retrieval baseline (Robertson and Zaragoza,
2009). We use the Elasticsearch implementation of
BM25 with the default parameters.
Approximate kNN. A kNN retriever implemented
using Elasticsearch’s dense vector retrieval. We
encode our data using pre-trained Sentence-BERT
(Reimers and Gurevych, 2019) and use the embed-
dings to conduct an approximate kNN search using

the Hierarchical Navigable Small Worlds (HNSW)
algorithm (Malkov and Yashunin, 2018).

4 Data

4.1 FEVER Dataset

The FEVER dataset (Thorne et al., 2018) is a col-
lection of manually written claims from Wikipedia
that are connected with evidence sentences that
either “support” or “refute” them. Since we are
interested in claims linked to related evidence, we
discard the claims in the dataset labeled as “NotE-
noughInfo.” This leaves us with 102,292 claims
in the training and 13,089 claims in the develop-
ment sets. (Schuster et al., 2019) identified issues
caused by the construction processes of the original
FEVER dataset such as uses of negation in claims
being heavily correlated with the “refute” outcome,
therefore causing a “claim only” fact verification
system to performs as well as an evidence-aware
fact verification system. However, since our work
is not concerned with the fact verification applica-
tion of FEVER, we do not find this to be an issue.

FEVER is a well-known dataset among the mis-
information and fact-checking communities. Even
if FEVER is not a social media dataset, it is
nonetheless based on user-contributed data, and
thus we believe that the findings obtained using
this dataset can be generalized to claims on social
media platforms with minor domain-specific revi-
sions, especially since the linguistic structure of
claims and discussions around them is similar to
the claims in the FEVER dataset.

4.2 Generating RL-Friendly Training Data

To generate training data, we transform FEVER
pairs (claim, evidence set) into sequences of edit-
ing actions that improve upon the original query.
These transformations are obtained by exploring
the state space of possible outcomes after apply-
ing different permutations of edits on the initial
claims. We use a Breadth-First Search (BFS) strat-
egy that applies editing actions to an input claim
Ci0 and finds the collection of the action sequences
of (Cij−1, Aj , Cij , R) that can improve the initial
claim, where Cij is the generated claim after ap-
plying the edit Aj to the claim Cij−1, and R is the
reward of Q(Cij) (querying retriever with Cij).

Although understanding the effects of different
search algorithms on our model remains an inter-
esting problem for future work, our experiments
show that using simple heuristics on BFS search
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Figure 3: Sample sequence of claims generated by dif-
ferent actions: remove, change tense to present simple,
swap with synonym, add synonym highlight the token
to remove, the corresponding tokens to change tense
as well as to swap to its synonym, or the correspond-
ing places to add synonym in red, green, yellow and
blue, respectively. We report the corresponding AP@50
scores below each claim. Section 3.2 Rewriting Ac-
tions provides intuitions of why these actions lead to
better scores.

is effective while generating training data from the
FEVER dataset. For instance, we find that limit-
ing the depth of the breadth-first exploration to K
levels is effective for improving the query results.
Also, when conducting parallel runs on different
sections of the dataset, even for K = 4, the vanilla
depth-limited BFS takes a half to 2 days to gen-
erate the training data. Additionally, we find that
restricting the state-space search to include only
improvement edits at every step reduces the size
of the search space. We also prune search paths
leading to minor improvements (i.e. less than 3%)
or at random in 5% of instances. Since most edits
do not lead to significant improvements, it is un-
likely we skip meaningful paths during the search.
Finally, we only include sequences with the highest
gains through serial edits, e.g. picking the top 50
or 100 most beneficial editing sequences for each
claim, in our training set. Overall, these heuristics
improve the generation speed and quality of the
training instances.

Moreover, our ability to learn good editing ac-
tions depends on how well we can generate training
examples. By setting K, the maximum depth for
search to 4, we are able to get improvements up to
41.21 AP@50 scores for 45,658 claims, on aver-
age, against the BM25 retriever. We also discard
training examples with reward values already at
maximum, since it is impossible to improve beyond

Remove Swap_Syn Add_Syn Present

% 76.64 13.71 6.36 3.30
∆ 11.56 12.36 12.84 12.28

Table 2: Percentage (%) and mAP@50 (∆) improve-
ments per rewriting action against the BM25 retriever.

the perfect score, and also edited claims leading to
no improvement. Figure 3 shows examples of the
sequences of claims generated by different actions.
Table 2 reports the distribution of actions as well
as the average improvement of AP@50 scores for
each action when tested against the BM25 retriever.

5 Experiments

We perform several experiments to determine the
effectiveness of our adaptable query rewriting strat-
egy. As a search environment, we use the BM25
and approximate kNN information retrieval meth-
ods described in Section 3.3.

5.1 Experiment Settings

During our experiments, we use the original de-
cision transformer implementation.1 We use a 6-
layer decoder-only transformer with 8 heads, em-
bedding dimension of 768. We set K (also called
a block size) to be the maximum number of ed-
its to the original query. We pad all sequences
shorter than K. After flattening all the returns-to-
go, states and actions, our sequence becomes of
length K ∗ 3. We use the all-mpnet-base-v2 em-
bedding model from the Huggingface’s sentence
transformers library.2 We also experimented with
the all-MiniLM-L12 model from the sentence trans-
formers, but the results were worse, possibly be-
cause of all-MiniLM-L12 being a smaller model.
Our intermediate state representations for an input
claim is a vector of size 768. Our model is trained
with cross entropy loss for 5 epochs performed on
one Nvidia 2080Ti GPU.

5.2 Results

Results in Table 3 show that the decision trans-
former model with fine-tuned state embeddings and
dense rewards outperforms all systems with BM25
as retriever and AP@50 as reward. The same model
trained with sparse rewards—hiding the intermedi-
ate rewards during training—does slightly worse

1https://github.com/kzl/decision-transformer
2https://huggingface.co/sentence-transformers

https://github.com/kzl/decision-transformer
https://huggingface.co/sentence-transformers
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Model mAP@50

Original Claim 26.83
Random Baseline 21.44
Decision Transformersparse reward 32.43
Decision Transformerdense reward 33.14
Fine-Tuned One Action Classifier 31.95

Table 3: Experiment results with BM25 as retriever.

than the dense reward setting, suggesting that pro-
viding more granular information about each ac-
tion’s reward during training brings performance
advantages. Both models turn the input into a sig-
nificantly more effective query with performance
improvements of up to 23% (relatively) as com-
pared to just searching for the original claim. Ac-
cording to Table 4 these gains are the highest for
kNN as retriever and recall as reward. Table 3 also
shows that performing a random sequence of edit
actions negatively affects performance. This sug-
gests that there is a “query improvement process"
that needs to be learned and applying a random se-
quence of edits by itself does not bring any inherent
advantages, i.e. our systems do well not because
there is an inherent gain in how we transform the
problem, since if that was true, applying random ac-
tion sequences should have yielded improvements
over the claim baseline, which it did not.

5.3 Analysis
Figure 4 shows the mean AP@50 (mAP@50) score
changes for all the generated sequences for the ex-
periment of decision transformer with sparse re-
ward. We plot the mAP@50 scores for queries gen-
erated at each step, where the x-axis shows the num-
ber of edits, with 1 representing the original claim
and 5 the final rewritten query. The size of the
circle indicates the number of queries at each turn.
If the claim achieves the perfect score, no further
rewrites will be generated in the next turn and we
stop early. We observe sequences with improved
mAP@50 scores shrink along the turns. This in-
dicates that some claims reach a perfect mAP@50
score after only one or two modifications. In con-
trast, for sequences with a decreased mAP@50
scores, the circle sizes remain the same while per-
formance drops. This suggests that for such claims,
the more the model modifies it, the worse its per-
formance is. For the sequence of claims with the
same mAP@50 scores at the beginning and the
end, there is a slight up and down for the slopes for
the lines in between. This suggests that there are
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Figure 4: mAP@50 scores for all rewritten queries in
the development set run against BM25. The x-axis in-
dicates the claim rewriting sequence. The size of each
circle represents the number of queries at each turn.The
subscripts “e” and “b” correspond to “end” and “begin-
ning” of the claim rewriting sequence, respectively.
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Figure 5: Distribution of predicted actions (remove,
swap with synonym, add synonym and change to present
tense) with AP@50 reward and BM25 retriever.

some sequences where the modified query achieves
a better score while later modifications hurt the per-
formance or vice versa. However, such scenarios
are rare. Of the 13,089 claims in the development
set, 1541 claims have the same AP@50 scores at
the beginning and the end. Among these, 1243 are
constant along the entire sequence and 271 have
minor score changes, as reflected in Figure 4 as the
blue line (mAP@50e = mAP@50b).

Figure 5 shows the distribution of actions in the
model output corresponding to increased perfor-
mance, no changes in performance, and decreased
performance. We can see that most of the actions
lead to no performance change. The remove and
swap with synonym actions result more often in
increases in performance than decreases. In con-
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Figure 6: Average change in AP@50 scores of the
predicted actions (remove (Rmv), swap with synonym
(S_ Syn), add synonym (A_ Syn) and change tense to
present simple (Pre)) against BM25. Statistics for ac-
tions with no changes in AP@50 are excluded as this
results in 0 scores.

trast, add synonym and change tense to present
simple more often result in performance reduc-
tion. Figure 6 shows the average change per action.
In this plot we observe that the net performance
changes for remove and swap with synonym are pos-
itive, with an average of 1.83 and 0.88, respectively.
The net performance changes for add synonym and
change tense to present simple are negative, with
an average of -0.34 and -0.98, respectively. We
hypothesize that the model does not learn add syn-
onym and change tense to present simple actions
well due to the sparsity of such examples in the
data as shown in Table 2. We further discuss the
importance of these actions in Section 6.

5.4 Ablations

We conduct ablation experiments to evaluate the
ability of our system in adapting to arbitrary end-
points and different performance metrics. Although
the space of possible ablations is far larger than
what we present here, we pick three dimensions
of ablations that could be useful for practitioners
and future researchers: (i) retriever type (BM25
or kNN), (ii) reward metric (average precision, re-
call, reciprocal rank) and (iii) presence of negative
training examples.

Table 4 shows the results on each ablation when
compared against a baseline of just using the ini-
tial claim. Across different metrics and retrievers
we observe improvements in query performance:
our system improves the original claim of up to
11% absolute recall points (42% relative improve-

ment) and works on both BM25 and kNN retriev-
ers. We also observe that the inclusion of training
sequences with query performance decrease (neg-
ative training examples), consistently leads to per-
formance decreases on all metrics and retrievers as
compared to just training on positive edit sequences
–with the only exception of querying kNN with RR
as reward. We posit that this performance gap is
due to the difference in data quality, i.e, providing
our models with noiseless training signals leads
to more effective queries. However, even in cases
where we include negative training examples our
models still meaningfully improve over the original
claim.

6 Discussion

Do we need to use (offline) RL for claim rewrit-
ing? It can be argued that a computationally ex-
pensive RL agent for query rewriting could be re-
placed by more economic design choices such as
a sequence labeling model by fine-tuning a pre-
trained language model. In fact, as we discussed
in the prior work section (2), researchers have in-
deed taken several different approaches for training
neural text-editing models. In order to dig deeper
into this question, we chose AP@50 as reward and
trained a classifier on only the first edit in the train-
ing instances as 128-way classification (4 actions *
32 tokens), and the resulting classifier performed
slightly worse than the RL agent trained on the
whole edit sequence. However, we also observe
from Figure 4 that when using the BM25 retriever
and AP@50 as reward, the first action in training
data is four times more effective than the follow-
ing three actions on average, which means that the
comparison between the classifier and the RL agent
might not be a fair one. However, we also inter-
pret the strong performance of the classifier as a
more efficient alternative to training expensive re-
inforcement learning models. We leave a deeper
comparison of the capabilities of sequence classifi-
cation modeling and offline reinforcement learning
for future work.

Are pretrained sentence embeddings good candi-
dates for state representation? In our initial set
of experiments we used frozen pretrained Sentence-
BERT embeddings as state representation, and we
did not see significant improvements over the initial
claim. We observed a significant performance jump
( 5 mAP@50 points) once the sentence embeddings
were also trained alongside the RL agent. This
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Retriever(Query) ↑ rewards only ↑ + ↓ rewards
mAP@50 Recall RR mAP Recall RR

BM25(RL[Claim]) 32.43 35.8 30.23 31.50 32.82 29.80
BM25(Claim) 26.82 29.68 22.30 26.82 29.68 22.30

kNN(RL[Claim]) 36.69 36.95 29.17 34.49 35.06 29.79
kNN(Claim) 28.40 25.93 21.27 28.40 25.93 21.27

Table 4: Ablation experiments, RR refers to reciprocal rank.

improvement highlights the importance of state
representation and shows that task-specific em-
beddings perform better than general-purpose
embeddings. This finding also indicates that the
presence of Wikipedia data in the training data of
LLMs does not simplify our task. Furthermore,
there is significant prior work emphasizing the role
and difficulty of the combinatorial and composi-
tional nature of the state space in language tasks for
reinforcement learning. (Côté et al., 2018), which
also makes text-based RL agents a good choice for
advancing our understanding of natural language.

What is the relation between query rewriting
with sequence action learning and keyword ex-
traction? We find that some of our models pre-
dict the remove action the vast majority of times,
upwards of 80% in the case of using BM25 as re-
triever and AP@50 as reward. This brings up a
natural question around how our method compares
with keyword extraction methods, since the preva-
lence of remove edits during inference suggests
that our approach works similar to keyword ex-
traction. Our initial experiments with KeyBERT
(Grootendorst, 2020) show that this is not the case
as keyword extraction does not perform com-
parably with the claim baseline on BM25 and
AP@50 as reward. Although further analysis is
required to make firm conclusions, it could be im-
plied that including actions other than remove for
rewriting queries can bring in significant gains.

7 Conclusion

In this paper, we presented our findings on us-
ing an offline RL agent that learns editing strate-
gies for query rewriting, so that fact-checkers can
discover misinformation across social media plat-
forms more effectively. Using a decision trans-
former, we showed that we can learn to rewrite
misinformation claims by applying a series of inter-
pretable actions such as adding synonyms or remov-
ing specific words. These actions can transform
the claims into more effective queries, leading to
a relative performance increase of up to 42% over

a simpler kNN retriever baseline. Additionally,
we conducted further analyses and ablation studies
to develop a better understanding of our system,
which showed that its adaptable to a variety of met-
rics and search engines. Our findings are an initial
step towards building AI-assisted technologies to
help fact-checkers discover online misinformation
more effectively.

Future Work. While our work lays the grounds
on using RL for building effective misinformation
discovery tools, the practical application of our
model requires further work to account for the lim-
ited access to social network APIs. This means ad-
ditional constraints such as: (1) learning to rewrite
claims under a fixed budget of training queries, and
(2) learning without supervision. While there are
already several solutions available for (2) (Shaar
et al., 2020; Kazemi et al., 2021), we believe (1)
is an exciting area for further exploration. Addi-
tionally, we posit our approach to be applicable on
languages other than English since the RL agent
we train is mainly language-agnostic.

8 Limitations

Although we conduct ablations across several ex-
perimental settings, there are still important design
decisions that require further research such as the
design of action space and the utility of human-
readable edits for explainability. Our action space
is one choice among the set of many possible text
editing actions, thus there could be more expres-
sive or efficient action spaces that lead to more
efficient queries. Although there is no need for
the rewrites to be explainable, our method has the
potential to be explainable since the rewriting pro-
cess is entirely human-readable. To understand the
explainability potential, a study augmented with hu-
man evaluation of the rewritten claims is necessary,
which we leave for future work.

Acknowledgements

We thank Lan Zhang, Qinyue Tan, and Davis Liang
for their help and feedback to this project. This



406

work was partially supported by a grant from Meta
and an award from the Robert Wood Johnson Foun-
dation (#80345). Any opinions, findings, and con-
clusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily
reflect the views of Meta or the Robert Wood John-
son Foundation.

References
Raviteja Anantha, Svitlana Vakulenko, Zhucheng Tu,

Shayne Longpre, Stephen Pulman, and Srinivas
Chappidi. 2021. Open-Domain Question Answer-
ing Goes Conversational via Question Rewriting. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Online,
520–534. https://doi.org/10.18653/v1/2021.
naacl-main.44

Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen
Robertson. 2008. Selecting good expansion terms
for pseudo-relevance feedback. In Proceedings of the
31st annual international ACM SIGIR conference on
Research and development in information retrieval.
243–250.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee,
Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind
Srinivas, and Igor Mordatch. 2021. Decision Trans-
former: Reinforcement Learning via Sequence Mod-
eling. In Advances in Neural Information Processing
Systems, M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan (Eds.), Vol. 34.
Curran Associates, Inc., 15084–15097. https:
//proceedings.neurips.cc/paper/2021/file/
7f489f642a0ddb10272b5c31057f0663-Paper.
pdf

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben
Kybartas, Tavian Barnes, Emery Fine, James Moore,
Matthew Hausknecht, Layla El Asri, Mahmoud
Adada, et al. 2018. Textworld: A learning environ-
ment for text-based games. In Workshop on Computer
Games. Springer, 41–75.

Maarten Grootendorst. 2020. KeyBERT: Minimal key-
word extraction with BERT. https://doi.org/10.
5281/zenodo.4461265

Adi Haviv, Jonathan Berant, and Amir Globerson. 2021.
BERTese: Learning to Speak to BERT. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume. Association for Computational Lin-
guistics, Online, 3618–3623. https://doi.org/
10.18653/v1/2021.eacl-main.316

R. Jones and Daniel C. Fain. 2003. Query word dele-
tion prediction. Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and
development in informaion retrieval (2003).

Ashkan Kazemi, Kiran Garimella, Devin Gaffney, and
Scott Hale. 2021. Claim Matching Beyond English
to Scale Global Fact-Checking. In Proceedings of the
59th Annual Meeting of the Association for Com-
putational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Online, 4504–4517. https:
//doi.org/10.18653/v1/2021.acl-long.347

Ashkan Kazemi, Zehua Li, Verónica Pérez-Rosas,
Scott A Hale, and Rada Mihalcea. 2022. Matching
Tweets With Applicable Fact-Checks Across Lan-
guages. arXiv preprint arXiv:2202.07094 (2022).

Victor Lavrenko and W Bruce Croft. 2001. Relevance
based language models. In Proceedings of the 24th
annual international ACM SIGIR conference on Re-
search and development in information retrieval. 120–
127.

Cheng Li, Yue Wang, Paul Resnick, and Qiaozhu Mei.
2014. Req-rec: High recall retrieval with query pool-
ing and interactive classification. In Proceedings of
the 37th international ACM SIGIR conference on Re-
search & development in information retrieval. 163–
172.

Yu A Malkov and Dmitry A Yashunin. 2018. Efficient
and robust approximate nearest neighbor search us-
ing hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelli-
gence 42, 4 (2018), 824–836.

Jonathan Mallinson, Jakub Adamek, Eric Malmi,
and Aliaksei Severyn. 2022. EdiT5: Semi-
Autoregressive Text-Editing with T5 Warm-Start.
arXiv preprint arXiv:2205.12209 (2022).

Eric Malmi, Yue Dong, Jonathan Mallinson, Alek-
sandr Chuklin, Jakub Adamek, Daniil Mirylenka,
Felix Stahlberg, Sebastian Krause, Shankar Ku-
mar, and Aliaksei Severyn. 2022. Text Genera-
tion with Text-Editing Models. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies: Tutorial Abstracts.
Association for Computational Linguistics, Seattle,
United States, 1–7. https://doi.org/10.18653/
v1/2022.naacl-tutorials.1

Aritra Mandal, Ishita K. Khan, and Prathyusha Senthil
Kumar. 2019. Query Rewriting using Automatic
Synonym Extraction for E-commerce Search. In
eCOM@SIGIR.

George A. Miller. 1994. WordNet: A Lexical Database
for English. In Human Language Technology: Pro-
ceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994. https://aclanthology.
org/H94-1111

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrón-Cedeño, Paolo
Papotti, Shaden Shaar, and Giovanni Da San Martino.

https://doi.org/10.18653/v1/2021.naacl-main.44
https://doi.org/10.18653/v1/2021.naacl-main.44
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/2021.eacl-main.316
https://doi.org/10.18653/v1/2021.eacl-main.316
https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.18653/v1/2021.acl-long.347
https://doi.org/10.18653/v1/2022.naacl-tutorials.1
https://doi.org/10.18653/v1/2022.naacl-tutorials.1
https://aclanthology.org/H94-1111
https://aclanthology.org/H94-1111


407

2021. Automated Fact-Checking for Assisting Hu-
man Fact-Checkers. In Proceedings of the Thirtieth
International Joint Conference on Artificial Intelli-
gence, IJCAI-21, Zhi-Hua Zhou (Ed.). International
Joint Conferences on Artificial Intelligence Organi-
zation, 4551–4558. https://doi.org/10.24963/
ijcai.2021/619 Survey Track.

Karthik Narasimhan, Adam Yala, and Regina Barzi-
lay. 2016. Improving Information Extraction by
Acquiring External Evidence with Reinforcement
Learning. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin,
Texas, 2355–2365. https://doi.org/10.18653/
v1/D16-1261

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
Oriented Query Reformulation with Reinforcement
Learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Copen-
hagen, Denmark, 574–583. https://doi.org/10.
18653/v1/D17-1061

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. (2018).

Davood Rafiei and Haobin Li. 2009. Wild Card Queries
for Searching Resources on the Web. arXiv preprint
arXiv:0908.2588 (2009).

Machel Reid and Victor Zhong. 2021. LEWIS: Leven-
shtein Editing for Unsupervised Text Style Transfer.
In Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021. Association for Compu-
tational Linguistics, Online, 3932–3944. https://
doi.org/10.18653/v1/2021.findings-acl.344

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics, Hong Kong,
China, 3982–3992. https://doi.org/10.18653/
v1/D19-1410

Stefan Riezler and Yi Liu. 2010. Query Rewriting Using
Monolingual Statistical Machine Translation. Com-
putational Linguistics 36, 3 (Sept. 2010), 569–582.
https://doi.org/10.1162/coli_a_00010

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: BM25 and beyond.
Now Publishers Inc.

Tal Schuster, Darsh Shah, Yun Jie Serene Yeo, Daniel
Roberto Filizzola Ortiz, Enrico Santus, and Regina
Barzilay. 2019. Towards Debiasing Fact Verification
Models. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing

and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP). Asso-
ciation for Computational Linguistics, Hong Kong,
China, 3419–3425. https://doi.org/10.18653/
v1/D19-1341

Shaden Shaar, Nikolay Babulkov, Giovanni Da San Mar-
tino, and Preslav Nakov. 2020. That is a Known
Lie: Detecting Previously Fact-Checked Claims.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, Online,
3607–3618. https://doi.org/10.18653/v1/
2020.acl-main.332

Felix Stahlberg and Shankar Kumar. 2020. Seq2Edits:
Sequence Transduction Using Span-level Edit Op-
erations. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP). Association for Computational Lin-
guistics, Online, 5147–5159. https://doi.org/
10.18653/v1/2020.emnlp-main.418

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a Large-scale Dataset for Fact Extrac-
tion and VERification. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long Papers). Association for Computational
Linguistics, New Orleans, Louisiana, 809–819.
https://doi.org/10.18653/v1/N18-1074

Zeqiu Wu, Yi Luan, Hannah Rashkin, David Reitter, and
Gaurav Singh Tomar. 2021. CONQRR: Conversa-
tional Query Rewriting for Retrieval with Reinforce-
ment Learning. arXiv preprint arXiv:2112.08558
(2021).

https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.18653/v1/D16-1261
https://doi.org/10.18653/v1/D16-1261
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/2021.findings-acl.344
https://doi.org/10.18653/v1/2021.findings-acl.344
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1162/coli_a_00010
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/D19-1341
https://doi.org/10.18653/v1/2020.acl-main.332
https://doi.org/10.18653/v1/2020.acl-main.332
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/2020.emnlp-main.418
https://doi.org/10.18653/v1/N18-1074

