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Abstract

We propose a contrastive hashing method to
compress and interpret the contextual repre-
sentation of pre-trained language models into
binary codes. Unlike previous work that gener-
ates token-level tags, our method narrows the
representation bottleneck to codes with only
24 bits, retaining task-relevant information in
a more interpretable and fine-grained format
without sacrificing performance (in most cases).
We provide experiments and discussions on var-
ious structured prediction tasks, such as part-of-
speech tagging, named entity recognition, and
constituency parsing, to demonstrate the effec-
tiveness and interpretability of our method.

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019; Lewis et al., 2020; Radford et al.,
2019; He et al., 2021) have already become the
de-facto infrastructure of modern natural language
processing. They have significantly improved per-
formance on various tasks and, at the same time
have profoundly and permanently changed the re-
search paradigm. However, lacking interpretability
still keeps them a black box to humans, the inabil-
ity to explain their decision-making mechanisms
hinders researchers from further improving them.
Fortunately, two recently published papers, which
focus on compressing and interpreting continuous
representation as discrete tags from pre-trained lan-
guage models, have shed some light on this issue.

On the one hand, Li and Eisner (2019) pro-
pose to compress the contextual representation
from pre-trained language models into discrete tags.
They utilize the variational information bottleneck
(Tishby and Zaslavsky, 2015; Alemi et al., 2017)
to nonlinearly interpret high-dimensional contin-
uous vectors into discrete tags, retaining only the
information that aids the downstream parsing task.
These obtained tags form an alternative tag set and
contain necessary syntactic properties. Moreover,
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Figure 1: The architecture of the hashing stage model
for named entity recognition. The transformer hash
layer (§3.1) produces both contextual representation h
and ego-attention scores s (§3.1) for the task-specific
fine-tuning and contrastive hashing (§2.1), respectively.
Solid lines indicate the positive instance, while dotted
lines show negatives. Note that the token Frodo appears
twice in different sentences, thus, to avoid including
false positives and false negatives (§2.2), there is no
arrow pointing from the first Frodo to the second one.

the mechanism of the variational information bottle-
neck, on which their method relies, is to maximize
the mutual information between latent discrete tags
and targets, while simultaneously minimizing the
mutual information between inputs and latent dis-
crete tags. In this way, only the task-relevant infor-
mation remains in these tags.

On the other hand, Kitaev et al. (2022) similarly
collapse vectors into discrete tags by employing
a narrow bottleneck that limits the size of the dis-
crete token vocabulary. Their approach consists of
two stages. In the first stage, the contextual vec-
tors of tokens are mapped to discrete tags via the
vector quantization method (van den Oord et al.,
2017). In the second stage, tags are fed into a down-
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stream model, referred to as the read-out network
in the original paper, for downstream constituency
parsing. Importantly, this read-out network has no
access to the continuous vectors but only to these
discrete tags, therefore, these tags are forced to en-
code all the needed syntactic information. Their
model achieves comparable performance with only
a few bits required for each word.

Different from the two methods above, we pro-
vide a novel contrastive hashing method to obtain
binary codes from high-dimensional hidden states
of pre-trained language models. We push the com-
pression limit by further narrowing the informa-
tion bottleneck to 24 bits. Following Kitaev et al.
(2022), we also introduce a stage to verify whether
the information is properly preserved in these bi-
nary codes. Additionally, we train an extremely
lightweight model using these binary codes as the
sole inputs. Experiments show that it successfully
reproduces comparable or even slightly better per-
formance than the original full-size model.

Moreover, our method hashes vectors into bit-
level binary codes, rather than using token-level
tags as in the two previous works. Therefore, the
compressed codes are much more interpretable and
compact. More specifically, our hashing results not
only indicate whether the syntactic properties of
two given tokens are different, but also distinguish
exactly which bits they differ in.

Our method builds upon contrastive hashing. We
introduce a recently proposed Hamming similarity
approximation (Hoe et al., 2021) to combine con-
trastive learning with deep hashing methods. In
addition, we introduce an instance selection strat-
egy aimed at mitigating issues related to contextual
false positives and false negatives. Moreover, we
design a novel transformer-based hash layer, in
which each attention head corresponds to a single
bit. The entire model is trained to learn to hash
by using both the downstream task objective and
the contrastive hashing objective simultaneously.
These two objectives share a portion of the atten-
tion matrix from the hash layer, ensuring that the
learned binary codes are likely to properly preserve
task-relevant information.

2 Proposed Method

For many tasks, the standard approach of modern
language processing is first feeding the input sen-
tence, i.e, w1, . . . , wn, into a pre-trained language
model to assign each token a continuous vector,

Angmar   stabbed   Frodo   with      a      blade
476e71               81e529           fb63e6      e8853d    51cd5c     210628

PER PER

Frodo    held     the    ring
fb63a5       a5bc2d     4cf759    a10628

PER PROD

Figure 2: Examples of our method on the named entity
recognition task. We assign each word a binary code,
i.e., these hexadecimal numbers, and use them as the
sole input to recognize entities. PER and PROD are the
entity labels for person and product, respectively.

i.e., xi ∈ Rd, and leveraging them in the down-
stream task. In this work, we aim to interpret these
continuous vectors as discrete binary codes, i.e.,
ci ∈ {−1,+1}K , which contains task-relevant in-
formation as well. In this way, our method con-
verts continuous vectors to an interpretable format,
thereby making the internal mechanism more trans-
parent and comprehensible.

Our framework consists of two stages. In the
first stage, i.e., hashing stage, we learn to hash the
continuous vectors as discrete tokens. We append
a transformer-based hash layer (§3.1) to the end of
a pre-trained language model and train the entire
model to learn to hash by fine-tuning it on the down-
stream task. Novelly, we employ the contrastive
hashing method (§2.1) and carefully exclude poten-
tially false positive and negative instances with a
selection strategy (§2.2). After training, we utilize
the hash layer to re-annotate the entire dataset by
assigning each token a binary code.

In the second stage, i.e., the validation stage,
we evaluate whether these binary codes preserve
task-relevant information or simply contain mean-
ingless bits. Using these binary codes as the sole in-
puts, we train a much more lightweight model from
scratch. Experiments show that even with such lim-
ited capability, our model still achieves comparable
or even slightly better performance than the origi-
nal full-size model. Therefore, we claim that our
method properly preserves task-relevant informa-
tion in these binary codes. The pseudocode can be
found in Algorithm 1.

2.1 Contrastive Hashing

Contrastive learning (Chopra et al., 2005; Oord
et al., 2018; Chen et al., 2020; Zbontar et al., 2021;
Grill et al., 2020) has already been shown to be an
effective representation learning method. Its fun-
damental concept involves employing an encoder
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network to map instances into a continuous repre-
sentation, i.e., x ∈ Rd. It then pulls together the
positive pairs and pushes apart the negative pairs
by applying the following objective function1.

Lself =− log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′) −s(x,x+)

where X is the instance batch, and s(x,y) returns
the similarity between the two given instances.
Contrastive learning commonly expects instances
uniformly distributed on a unit hypersphere. There-
fore, the most commonly used similarity function
is the cosine function,

s(x,y) =
x⊤y

∥x∥ · ∥y∥
(1)

Deep hashing methods (Cao et al., 2017; Su et al.,
2018; Hoe et al., 2021) also aim at mapping in-
stances into informative representation but in dis-
crete space, i.e., c ∈ {−1,+1}K . They first utilize
an encoder network to map instances to continuous
score vectors, i.e., s ∈ RK , and then obtain binary
codes by taking signs, i.e., c = sign (s). Besides,
deep hashing methods also pull together the posi-
tive pairs by encouraging all their bits to become
the same and at the same time making negatives
pairs have as many as possible different bits. Com-
monly, this is implemented as Hamming similarity.
To be more specific, for two given score vectors,
x,y ∈ RK , the similarity is defined as,

s(x,y) =

K∑
i=1

sign (xi) · sign (yi) (2)

We notice that deep hashing shares the common
fundamental concept with contrastive learning, ex-
cept it represents instances in a K-dimensional
Hamming space, i.e., {−1,+1}K , instead of a unit
hypersphere, i.e., Rd−1. Therefore, we propose
introducing Hamming similarity to extend the con-
trastive learning to learn to hash.

However, the Hamming similarity above is not
differentiable, introducing it directly is intractable.
Recently, Hoe et al. (2021) proposed a novel sim-
ilarity function that takes the sign of one of its in-
puts before computing their cosine similarity. They

1We omit the temperature τ for clarity.

Algorithm 1 PyTorch-like style pseudocode.

def flatten(tokens):
"""
removes <pad> and concatenates the remaining tokens.
e.g., say the <pad> token is 0, and the given tokens are,
>>> [[1, 2, 3, 4, 5], [6, 7, 0, 0, 0], [8, 9, 10, 0, 0]]
then this function returns
>>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""

def compute_hash_loss(x, y, tokens):
# Equation 3
score = cos(x[:, None], y[None, :].sign(), dim=-1)
score = score / tau # [tok, tok]

# excludes potentially false positives and negatives
mask = tokens[:, None] == tokens[None, :] # [tok, tok]
score[mask ^ eye] = -float('inf')

# Equation 4
return (score.logsumexp(dim=-1) - score.diag()).mean()

def fine_tuning_step(plm, task_model, inputs, targets):
h1, s1 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]
h2, s2 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]

task_loss1 = compute_task_loss(task_model(h1), targets)
task_loss2 = compute_task_loss(task_model(h2), targets)
task_loss = task_loss1 + task_loss2

s1 = flatten(s1) # [tok, K]
s2 = flatten(s2) # [tok, K]
tokens = flatten(inputs) # [tok]

hash_loss1 = compute_hash_loss(s1, s2, tokens)
hash_loss2 = compute_hash_loss(s2, s1, tokens)
hash_loss = hash_loss1 + hash_loss2

# Equation 10
return task_loss + beta * hash_loss

def reannotate(plm, dataset):
new_dataset = []

for inputs in dataset:
_, s = plm(inputs) # [bsz, snt, k]
codes = s.sign() # [bsz, snt, k]
new_dataset.extend(codes)

return new_dataset

def validation_step(lite_task_model, codes, targets):
logits = lite_task_model(codes)
task_loss = compute_task_loss(logits, targets)

return task_loss

plm: the pre-trained language model with an additional transformer layer;
task_model: the task-specific model; lite_task_model: the lightweight
task-specific model with binary code embedding; bsz: the batch size; snt:
the sentence length; tok: the total number of tokens in this batch.

demonstrate that maximizing this similarity pre-
serves semantic information as well. Therefore, we
instead introduce this approach to our contrastive
learning framework to learn to hash.

s(x,y) = cos (x, sign (y)) (3)

2.2 Instance Selection

One of the most appealing properties of contrastive
learning is that it successfully converts tasks from
wh-questions to yes-no questions. Conventional
classification requires specifying target labels for
all instances, but contrastive learning only demands
knowing whether two instances are identical or not.

Due to this benefit, effective representation learn-
ing becomes possible even in unsupervised settings.
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Gao et al. (2021) pass instances into a neural net-
work twice to obtain two semantically identical
but slightly augmented representations, i.e., x and
x+, relying on the independently sampled dropout
masks (Srivastava et al., 2014). They employ the
objective Lself to perform representation learning,
treat these two views as positive to each other, and
consider all existing instances in the batch as nega-
tives. This simple method surprisingly works well
and results in expressive representation.

Furthermore, in supervised settings, Khosla et al.
(2020) proposed leveraging label information by in-
troducing an objective function capable of handling
cases with multiple positive instances.

Lsup =
−1

|X+|
∑

x+∈X+

log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′)

− 1

|X+|
∑

x+∈X+

s(x,x+)

where the X+ is the set of positive instances. Obvi-
ously, the first term of Lsup and Lself are identical.
The difference between their the second terms is
that Lself pulls together only one positive while
Lsup pulls together all positive instances.

However, we observe that tokens are likely as-
signed different information in varying contexts,
making it challenging to determine whether two
identical tokens truly form a positive pair. For ex-
ample, in Figure 1, the token Frodo appears in both
sentences. It serves as the subject in the first sen-
tence and as the object in the second, resulting in
dissimilar parses. Therefore, identical tokens may
contain distinct task-relevant information and, in
such cases, deserve different binary codes.

Since it is difficult to determine whether two
identical tokens contain identical task-relevant in-
formation in practice, we opt not to include them
in either the positive or the negative set. For the nu-
merator part of the objective function, we remove
all identical token pairs and retain only the aug-
mented version of themselves as the sole positive
instance, thereby reverting to the single positive
instance scenario. For the denominator part, we
also remove all identical tokens from X to exclude

potential false negatives.

Lhash = − log
exp s(x,x+)∑

x′∈{x+}∪X− exp s(x,x′)
(4)

Where X− only contains tokens that are different
from x. More specifically, as shown in Figure 1, we
consider the second Frodo as neither a positive nor
a negative instance to the first Frodo, so we remove
it from both the numerator and the denominator.

The pseudocode of this objective function can be
found in the compute_hash_loss of Algorithm 1.

3 Architecture

Before introducing our transformer-based hashing
layer, we briefly review the mechanism of multi-
head attention (Vaswani et al., 2017). The attention
layer first projects the input vectors into queries,
keys, and values. It then constructs output vectors
by aggregating desired information from these key-
value pairs.

shi,j =
(Wh

qxi)
⊤(Wh

kxj)√
dh

(5)

ahi,j = softmaxj (s
h
i,j) (6)

zh
i =

∑
j

ahi,j(W
h
vxj) (7)

oi = Wo

[
z1
i , . . . ,z

H
i

]
(8)

where Wh
q ,W

h
k ,W

h
v ∈ Rdh×d are the projection

weights of query, key, and value of the h-th head,
respectively. The Wo ∈ Rd×(H×dh) is the output
weight, d, dh, H are the input dimension, head di-
mension, and the number of heads, respectively.
[·, . . . , ·] indicate concatenation and bias terms are
omitted for clarity. These hidden states oi are then
fed into a feed-forward network to obtain the out-
put vectors hi = FFN (oi) ∈ Rd for downstream
tasks. Conventionally, the head size dh is simply
bounded to d and H , but we let the dh become an
independent hyper-parameter, therefore, d does not
have to equal to dh ×H in our implementation.

3.1 Transformer Hash Layer
Intuitively speaking, the mechanism of attention is
to selectively aggregate information from tokens.
The attention score si,j ∈ R estimates the amount
of desired information that token i may obtain from
token j. Specifically, si,i estimates how much de-
sired information is retained in token i itself. Fur-
thermore, by increasing the number of heads to K,
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the vector si,i ∈ RK reflects the desired informa-
tion scores of token i from K different aspects, and
can produce K bits by taking their signs.

Therefore, we add an additional transformer
layer with its number of heads increased to K, and
use the diagonal entries si,i of its attention matrix
as the hashing scores to learning to hash, and take
their signs to generate binary codes as the hashing
results after training, i.e., ci = sign (si,i). Since
si,i represents a form of attention directed at one-
self, to distinguish it from the commonly known
term self-attention, we use the term ego-attention
to describe it in the remainder of this paper.

In summary, the full attention matrix si,j is uti-
lized in a dual manner: it not only serves the con-
ventional purpose in the Transformer architecture
for computing the output vector for target predic-
tion, but also lends its diagonal entries si,i to learn
to hash. Given that a portion of the attention matrix
is shared between these two objectives, the learned
binary codes are inclined to preserve task-relevant
information. This hypothesis is demonstrated by
our experimental results in the validation stage.

3.2 Hashing Stage Architecture

The architecture of the hashing stage model, as
shown in Figure 1, consists of one pre-trained
language model, one transformer-based hash
layer, and the task-specific layers. We initialize
RoBERTa (Liu et al., 2019) with the checkpoint
roberta-base as the pre-trained language model.

Part-of-speech Tagging We employ an one-
layered classifier and a conditional random field
(CRF) (Lafferty et al., 2001) to compute the log-
likelihood and utilize the Viterbi algorithm (Forney,
1973) for inference.

Named Entity Recognition We transform the
sequence of vectors from the sub-token level back
to the token level by taking the average of the sub-
token vectors of each individual token. We use the
same task-specific layers as part-of-speech tagging.

Constituency Parsing Similarly, we generate the
token-level representation by averaging the vec-
tors of sub-tokens. In addition, following Zhang
et al. (2020), we use a biaffine span classifier
along with a tree-structured CRF. We identify the
most probable tree from all valid trees using the
Cocke-Kasami-Younger (CKY) algorithm (Kasami,
1965). Following Kitaev et al. (2022), we also in-
corporate GPT-2 (Radford et al., 2019) using the

gpt2-medium checkpoint for incremental parsing.

3.3 Validation Stage Architecture
As mentioned above, this stage is only to validate
if the task-relevant information has been properly
preserved in these binary codes, and is not to distill
knowledge into a lightweight model. In this stage,
we introduce an extremely lightweight model to
ensure that the model lacks the capacity to learn
the tasks from scratch. As such, any performance
gains can only be owed to the information already
preserved within the binary codes. The architec-
ture for this validation stage consists of a binary
code embedding layer, a conventional one-layered
transformer as encoder, and the same task-specific
layers used during the hashing stage.

The binary code embedding layer produces code
embeddings through constructing instead of look-
ing up. For a given binary code, c ∈ {−1,+1}K ,
the binary code embedding layer simply flips the
direction of each bit embedding bi, and returns
the concatenation of these flipped vectors, where
bi ∈ Rd/K is the embedding of the i-th bit.

w = [c1b1, . . . , cKbK ] ∈ Rd (9)

Compared with the learned discrete tags of Ki-
taev et al. (2022), our binary codes literally encode
information at the bit level, while their tags remain
at the token level. Thus, although Kitaev et al.
(2022) emphasize that their model requires only K
bits per word, in practice, their model demands an
embedding matrix with shape 2K × d, while our

real bit-level embedding needs only K × d

K
.

3.4 Training and Inference
In the hashing stage, we balance the task-specific
loss Ltask and the hashing loss Lhash, as the
fine_tuning_step function in Algorithm 1. Be-
sides, our training procedure is also simpler than
Kitaev et al. (2022), since we don’t need to employ
the k-mean algorithm (Ackermann et al., 2012) to
initialize the centroids in the first two epochs.

L = Ltask + β · Lhash (10)

In the validation stage, we re-annotate the entire
dataset first and then use the task-specific loss
Ltask only to train the lightweight model with only
these binary codes as inputs. The procedures for
reannotate and validation_step are described
in Algorithm 1, respectively.
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MODEL

POS NER PARSING PARSING

ROBERTA ROBERTA ROBERTA GPT2

ACC |θ| F1 |θ| F1 |θ| F1 |θ|

Kitaev et al. (2019) - - - - 95.59 342.8M 93.95 362.5M
Kitaev et al. (2022) - - - - 95.55 361.4M 94.97 381.1M

BASELINE 98.27 134.2M 90.24 134.2M 95.92 136.0M 95.04 422.5M

16 BITS
98.37 132.6M 90.21 132.6M 96.00 134.4M 95.02 420.4M
98.38 0.6M 90.28 0.6M 95.24 2.9M 93.76 5.3M

24 BITS
98.38 134.2M 90.27 134.2M 95.92 136.0M 95.14 422.5M
98.38 0.6M 90.39 0.6M 95.51 2.9M 93.82 5.3M

32 BITS
98.40 135.7M 90.12 135.7M 95.97 137.6M 95.15 424.6M
98.41 0.6M 90.31 0.6M 95.65 2.9M 94.02 5.3M

Table 1: The main results on three datasets. The results of our methods are displayed in two rows, which indicate
the performance in hashing and validation stages, respectively. |θ| columns show the number of parameters, and the
bold numbers indicats the best validation performance of each setting.

4 Experiments

4.1 Settings

We implement our models with the deep learn-
ing framework PyTorch (Paszke et al., 2019) and
fetch weights of pre-trained language model from
huggingface/tramsformers (Wolf et al., 2020).

For each batch, we keep collating sentences un-
til the total number of tokens reaches 1024. The
reason that we don’t use the number of sentences
as batch size is to stabilize contrastive learning,
since it is performed at token-level, not at sentence-
level. We employ AdamW (Kingma and Ba, 2014;
Loshchilov and Hutter, 2019) with 50,000 training
steps and 6% warm-up steps. In the hashing stage,
we evaluate the performance with different number
of bits, specifically K ∈ {16, 24, 32}.

We run experiments on a single NVIDIA Tesla
V100 graphics card. The hashing stage training
takes about 2 hours, while the validation stage re-
quires only around 30 minutes. We run the experi-
ments four times with different random seeds. The
reported numbers in the following tables are their
averages. For comparison, we additionally conduct
a baseline experiment for each task without using
the contrastive hashing loss, i.e., β = 0.

Part-of-speech Tagging We conduct experi-
ments on the English Penn Treebank (Marcus et al.,
1993) datasets. The task involves assigning a syn-
tactic label to each token in a given sentence. We
report the accuracy scores on the test split.

Named Entity Recognition The OntoNotes En-
glish dataset (Pradhan et al., 2013) is used for eval-
uation. We transform span annotations into the
BIOES encoding scheme (Ramshaw and Marcus,
1995), and report the F1 scores on the test split.

Constituency Parsing We evaluate on the En-
glish Penn Treebank (Marcus et al., 1993). Follow-
ing Zhang et al. (2020) and Kitaev et al. (2022), we
transform the original tree into those of Chomsky
normal form and adopt left binarization with NLTK
(Bird et al., 2009). We report the F1 scores on the
WSJ test split.

4.2 Main Results
As presented in Table 1, experiments on the part-of-
speech tagging show that 32 bits achieve slightly
better results than 16 bits and 24 bits on both stages.
Besides, we notice that results in the validation
stage are constantly superior to hashing stage re-
sults, no matter how many bits are used.

For named entity recognition, we achieve 90.39
in F1 score with 24 bits, which is even slightly
higher than its hashing stage performance, i.e.,
90.27. For 16 bits and 32 bits, the validation stage
performance also consistently surpasses their hash-
ing stage performance. We hypothesize that this is
because hashing the ego-attention scores may im-
plicitly exclude some unconfident attention scores
that might lead to wrong predictions. For example,
consider a token that barely contains the desired
information of a query, it should be ignored by
getting a small attention score. However, if the
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s(x,y) Lcontrastive NER

cos (x,y)
Lself 90.12 → 88.74
Lsup 90.07 → 86.91
Lhash 90.19 → 88.94

cos (x, sign (y))
Lself 90.15 → 90.21
Lsup 90.19 → 90.04
Lhash 90.27 → 90.39

Table 2: Comparison of different similarity functions
and objective functions on the OntoNotes dataset. The
numbers on the left and right sides of → represent the
hashing and validation performance, respectively.

network unconfidently assigns it an attention score
that is only slightly less than 0, then its informa-
tion still occupies a certain proportion in the final
output. On the contrary, our method truncates the
attention scores to be −1 or +1, and eases the issue
in some degree.

For constituency parsing, our method outper-
forms Kitaev et al. (2022) with 32 bits in the bidi-
rectional parsing task, even they introduce much
more tags, i.e., 256 in total. Besides, our 16 bits
and 24 bits settings also achieve remarkable per-
formance and are only slightly inferior to theirs.
In this task, all experiments in the validation stage
show worse results than the corresponding hashing
stage results. We hypothesize that this is because
constituency parsing is a span-level classification
task, token-level hashing is unable to capture the
span information completely. This may also be
the reason that our method works well on part-of-
speech and named entity recognition tasks since
they are just at the token level.

For all these tasks, with such a lightweight model
in validation stages, our codes still reproduce com-
parable or even slightly better performance than
the original full-size model. We claim that these
results demonstrate that our learned binary codes
have properly preserved task-relevant information.

4.3 Ablation Studies

Table 2 shows that the similarity and objective func-
tions are essential to our method. Using the cosine
similarity, the model shows relatively high perfor-
mance in the hashing stage, however, the naive
cosine similarity can not preserve information prop-
erly, as its performance dramatically drops in vali-
dation stage. Furthermore, the fact that Lhash con-
sistently outperforms both Lsup and Lself demon-

β 0 0.001 0.005 0.01 0.05

NER
90.24 90.25 90.27 90.10 90.02
79.60 90.29 90.39 90.24 90.23

Table 3: Named Entity Recognition experiments with
β. The two rows display hashing and validation perfor-
mance, respectively.

strates our hypothesis that false positives and false
negatives are harmful.

Additionally, as indicated in Equation 10, the
coefficient β serves to balance the two terms. Ac-
cording to Table 3, even though the contrastive
hashing loss requires only a minor proportion of
the overall loss, demonstrated by the optimal per-
formance of a small β = 0.005, it is critical for
preserving information. Experiments reveal that
removing the contrastive hashing loss, i.e., β = 0,
results in a dramatic performance drop.

4.4 Case Studies

We present the hashing and constituency parsing
results in Figure 3 to demonstrate the interpretabil-
ity of our learned binary codes. For comparison
with Kitaev et al. (2022), we use the exact same ex-
amples as in their paper. Additional parsing results
can be found in Appendix D.

We begin by discussing bidirectional parsing. In
our transformer-based hash layer, each head cor-
responds to a single bit, and these heads operate
independently of one another. This design allows
each bit to capture distinct and orthogonal syntac-
tic and semantic properties. Notably, we observe
that the generated binary codes cluster based on the
part-of-speech properties. For example, the past
tense verbs brought and approved receive similar
codes even when they appear in different sentences,
differing by only four bits. Similarly, the common
nouns groceries and proposal share 28 bits, high-
lighting their shared noun properties.

Moreover, since both groceries and proposal fi-
nalize a similar noun phrase, the article the before
them is assigned the same code. However, the ar-
ticle the before the council retains quite different
bits. We hypothesize these bits indicate the varied
attachment locations. Besides, for the two sen-
tences on the left side, the final attachments him
and himself determine the attachment location of
the for phrases. We observe that there are only 2
bits differ between them, and hypothesize these
two bits reflect the differences in the attachment
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Figure 3: Examples of the hashing and constituency parsing results. There are three numbers below each token, the
first two are represented in hexadecimal (32 bits), and indicate the hashing results of the bidirectional (RoBERTa)
and unidirectional (GPT2) pre-trained language models, respectively. The third number is taken from Kitaev et al.
(2022) for comparison and is represented in decimal. The red and blue parts indicate the exact different bits.

locations. Apart from that, the subject Lucas and
the predicate verb brought also flip one bit, respec-
tively, to indicate the different phrase structures.
Similarly, for the right side sentences, Monday and
taxes differ in 5 bits, and the attachment locations
of all the phrases that depend on this phrase are
influenced, thus, approved, the, and proposal alters
their bits as well.

Besides, incremental parsing disallows the in-
formation from future tokens, and the future to-
kens potentially contain syntactic properties that is
needed for committing parsing decisions. There-
fore, compressed codes should not only retain the
already revealed information but also be open to
all possible upcoming tokens, as called speculation
free in Kitaev et al. (2022). Therefore, needed infor-
mation is mostly distributed in the last tokens, and
thus they are likely to obtain varied codes reflect-
ing varied phrases. For example, on the left side,
the last noun tokens him and himself obtain quite
different codes, 5 bits different in total, more than
the 2 bits in the bidirectional parsing case above.
Besides, incremental parsing model also commits
similar bits for the article the before groceries and
proposal, i.e., only 1 different bit, but assigns a

much different code to the article the before coun-
cil, which has 15 nonidentical bits. By comparison,
even Kitaev et al. (2022) also assign them distinct
tags, e.g., 11, 92, and 122, but it is hard for them
to tell how different they are and where the differ-
ences lie exactly. Thus, we claim that our binary
codes are much more informative and interpretable.

4.5 Bit Distribution

To further analyze what specific information is pre-
served by each bit, we display the bit distribution
for named entity recognition in Figure 4.

The sub-figure above illustrates the distribution
of bits related to different syntactic information,
which serves to indicate the boundary of each en-
tity. It is noteworthy that the bit distributions for
the non-entity label O are uniform, such that in all
these positions the probability of being assigned
a 1 is roughly around 50%. In contrast, the distri-
bution of bits for other labels exhibits a clear bias.
For instance, on the 9-th bit position, we observed
that the label S and B have 80% and 73% probabili-
ties of being assigned a 1, while the numbers drop
to only 47% and 17% for the E and I labels. We
hypothesize the reason is that both S and B can in-
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Figure 4: The heatmap of bits distribution. The sub-figure above shows the distribution of bits concerning different
syntactic information, while the one below corresponds to semantic information. The number inside cell represents
the probability of this label being assigned a 1 at the n-th bit position. For example, the 72 at the bottom left corner
indicates that among all of the WORK_OF_ART labels, 72% of them are assgiend a 1 at the first bit position.

dicate the beginning of an entity, but such syntactic
function is not shared by the other two labels.

The sub-figure below shows the bit distribution
related to semantic information and reveals more
distinct distributional features. Although the non-
entity label O continues to display uniform dis-
tribution characteristics, labels MONEY, NORP, and
PERCENT show that the probabilities at the 4-th and
17-th bits are skewed to 100% and 0%, respectively.
Such a clear tendency, low entropy in other words,
suggests that task-relevant information is clearly
and deterministically preserved within these bits,
such that each bit carries a distinct meaning.

5 Conclusions

In this paper, we have proposed a contrastive hash-
ing method to generate interpretable binary codes
from pre-trained language models. We designed a
transformer-based hash layer, incorporated it into
the contrastive hashing framework, and introduced
a novel instance selection strategy to exclude false
positives and negatives. Experimental results indi-
cate that our lightweight model achieves superior
performance and preserve task-relevant informa-
tion properly with even fewer bits. Further anal-
yses show that the generated binary codes retain
syntactic and semantic information in a highly in-
terpretable and fine-grained format. Although we

only focus on structured prediction tasks in this
paper, as a novel interpretable representation, our
method can be easily adapted to other tasks and
may inspire future research on designing efficient
architectures.

6 Limitations

Although our methods surpass previous work, there
is still room for improvement in tasks not at the
token level, e.g., constituency parsing. Besides,
even the limit has been pushed to 24 bits, which is
much better than previous work. However, this is
still not the theoretical limit. For example, the total
number of labels of named entity recognition is 73,
thus, the limit is ⌈log2 73⌉ = 7 bits, which is still
fewer than ours. We remain solving this limitation
and further narrowing the information bottleneck
as future work.
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A Dataset Statistics

DATASET TRAIN DEV TEST LABEL
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PARSING 39,832 1,700 2,416 143

Table 4: Statistics of these three datasets.

B Ablation Study on Temperature τ

τ 0.01 0.02 0.05 0.1 0.2

NER
90.19 90.08 90.02 90.27 90.13
89.13 89.12 89.81 90.39 90.16

Table 5: OntoNotes ablation study results with the tem-
perature τ , which controls the strength of penalties on
hard negative samples (Wang and Liu, 2021).

C Hyper-parameter Settings

HYPER-PARAM POS NER PARSING

β 0.05 0.005 0.001
τ 0.1 0.1 0.1

DROPOUT 0.1 0.1 0.5
LEARNING RATE 5e-5 7e-5 5e-5

DROPOUT 0.1 0.2 0.3
LEARNING RATE 5e-4 3e-3 1e-3

Table 6: Hyper-parameters on all tasks. The first block
shows the hyper-parameters on hashing stage, while the
second one shows the validation stage.
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Figure 5: Derivation of the sentence The quick brown fox jumps over the lazy dog, and the sentence The lazy dog
jumps over the quick brown fox.
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Figure 6: Derivation of the sentence She ate the pumpkin that Luna smashed, and the sentence She ate the pumpkin
that was smashed by Luna.


