
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 408–419

November 1–4, 2023. ©2023 Association for Computational Linguistics

408

24-bit Languages

Yiran Wang1, Taro Watanabe2, Masao Utiyama1, Yuji Matsumoto3

1National Institute of Information and Communications Technology (NICT), Kyoto, Japan
2Nara Institute of Science and Technology (NAIST), Nara, Japan

3RIKEN Center for Advanced Intelligence Project (AIP), Tokyo, Japan
yiran.wang@nict.go.jp, taro@is.naist.jp,

mutiyama@nict.go.jp, yuji.matsumoto@riken.jp

Abstract

We propose a contrastive hashing method to
compress and interpret the contextual repre-
sentation of pre-trained language models into
binary codes. Unlike previous work that gener-
ates token-level tags, our method narrows the
representation bottleneck to codes with only
24 bits, retaining task-relevant information in
a more interpretable and fine-grained format
without sacrificing performance (in most cases).
We provide experiments and discussions on var-
ious structured prediction tasks, such as part-of-
speech tagging, named entity recognition, and
constituency parsing, to demonstrate the effec-
tiveness and interpretability of our method.

1 Introduction

Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019; Lewis et al., 2020; Radford et al.,
2019; He et al., 2021) have already become the
de-facto infrastructure of modern natural language
processing. They have significantly improved per-
formance on various tasks and, at the same time
have profoundly and permanently changed the re-
search paradigm. However, lacking interpretability
still keeps them a black box to humans, the inabil-
ity to explain their decision-making mechanisms
hinders researchers from further improving them.
Fortunately, two recently published papers, which
focus on compressing and interpreting continuous
representation as discrete tags from pre-trained lan-
guage models, have shed some light on this issue.

On the one hand, Li and Eisner (2019) pro-
pose to compress the contextual representation
from pre-trained language models into discrete tags.
They utilize the variational information bottleneck
(Tishby and Zaslavsky, 2015; Alemi et al., 2017)
to nonlinearly interpret high-dimensional contin-
uous vectors into discrete tags, retaining only the
information that aids the downstream parsing task.
These obtained tags form an alternative tag set and
contain necessary syntactic properties. Moreover,

Pre-trained Language Model

Transformer Hash Layer

Classifier + CRF

Angmar stabbed Frodo with a bladeFrodo held the ring

S-PER O S-PER O O OS-PER O B-PROD E-PROD

<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h
<latexit sha1_base64="Lw1f0gRM7mqy+RYTFtsKVTrEUKQ=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZkRXwsXBTcuK9oH1Coz07QdOi+SjFBKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fw3CXwhLes1Z8zMzs0v5BcLS8srq2vF9Y26iFPusZoXBzFvuo5ggR+xmvRlwJoJZ07oBqzhDk5VvHHLuPDj6FIOE9YOnV7kd33PkURdX7lx0BHDkJZRf3xTLFllSw9zGtgZKCEb1bj4git0EMNDihAMESThAA4EfS3YsJAQ18aIOE7I13GGMQqkTSmLUYZD7IDmHu1aGRvRXnkKrfbolIB+TkoTO6SJKY8TVqeZOp5qZ8X+5j3SnupuQ1rdzCskVqJP7F+6SeZ/daoWiS6OdQ0+1ZRoRlXnZS6pfhV1c/NLVZIcEuIU7lCcE/a0cvLOptYIXbt6W0fH33SmYtXey3JTvKtbUoPtn+2cBvW9sn1YPjjfL1VOslbnsYVt7FI/j1DBGaqokTfHI57wbFwYQ+POuP9MNXKZZhPfhvHwAYJtlX4=</latexit>

h

<latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s <latexit sha1_base64="ZqgjQsBvEy/CgWyE4H7t4fuNVFY=">AAAC0XicjVHLSgMxFD0dX7W+qi7dDBbBVZmKr4WLghuXFe0D2ioz07QOnRdJRhhKQdz6A271p8Q/0L/wJk5BLaIZJjk5956T3Fwn9j0hLes1Z8zMzs0v5BcLS8srq2vF9Y2GiBLusrob+RFvObZgvheyuvSkz1oxZ3bg+KzpDE9VvHnLuPCi8FKmMesG9iD0+p5rS6KuOk7k90Qa0DIS4+tiySpbepjToJKBErJRi4ov6KCHCC4SBGAIIQn7sCHoa6MCCzFxXYyI44Q8HWcYo0DahLIYZdjEDmke0K6dsSHtlafQapdO8ennpDSxQ5qI8jhhdZqp44l2Vuxv3iPtqe6W0upkXgGxEjfE/qWbZP5Xp2qR6ONY1+BRTbFmVHVu5pLoV1E3N79UJckhJk7hHsU5YVcrJ+9sao3Qtau3tXX8TWcqVu3dLDfBu7olNbjys53ToLFXrhyWD873S9WTrNV5bGEbu9TPI1Rxhhrq5M3xiCc8GxdGatwZ95+pRi7TbOLbMB4+AJyYlYk=</latexit>s

Figure 1: The architecture of the hashing stage model
for named entity recognition. The transformer hash
layer (§3.1) produces both contextual representation h
and ego-attention scores s (§3.1) for the task-specific
fine-tuning and contrastive hashing (§2.1), respectively.
Solid lines indicate the positive instance, while dotted
lines show negatives. Note that the token Frodo appears
twice in different sentences, thus, to avoid including
false positives and false negatives (§2.2), there is no
arrow pointing from the first Frodo to the second one.

the mechanism of the variational information bottle-
neck, on which their method relies, is to maximize
the mutual information between latent discrete tags
and targets, while simultaneously minimizing the
mutual information between inputs and latent dis-
crete tags. In this way, only the task-relevant infor-
mation remains in these tags.

On the other hand, Kitaev et al. (2022) similarly
collapse vectors into discrete tags by employing
a narrow bottleneck that limits the size of the dis-
crete token vocabulary. Their approach consists of
two stages. In the first stage, the contextual vec-
tors of tokens are mapped to discrete tags via the
vector quantization method (van den Oord et al.,
2017). In the second stage, tags are fed into a down-

409

stream model, referred to as the read-out network
in the original paper, for downstream constituency
parsing. Importantly, this read-out network has no
access to the continuous vectors but only to these
discrete tags, therefore, these tags are forced to en-
code all the needed syntactic information. Their
model achieves comparable performance with only
a few bits required for each word.

Different from the two methods above, we pro-
vide a novel contrastive hashing method to obtain
binary codes from high-dimensional hidden states
of pre-trained language models. We push the com-
pression limit by further narrowing the informa-
tion bottleneck to 24 bits. Following Kitaev et al.
(2022), we also introduce a stage to verify whether
the information is properly preserved in these bi-
nary codes. Additionally, we train an extremely
lightweight model using these binary codes as the
sole inputs. Experiments show that it successfully
reproduces comparable or even slightly better per-
formance than the original full-size model.

Moreover, our method hashes vectors into bit-
level binary codes, rather than using token-level
tags as in the two previous works. Therefore, the
compressed codes are much more interpretable and
compact. More specifically, our hashing results not
only indicate whether the syntactic properties of
two given tokens are different, but also distinguish
exactly which bits they differ in.

Our method builds upon contrastive hashing. We
introduce a recently proposed Hamming similarity
approximation (Hoe et al., 2021) to combine con-
trastive learning with deep hashing methods. In
addition, we introduce an instance selection strat-
egy aimed at mitigating issues related to contextual
false positives and false negatives. Moreover, we
design a novel transformer-based hash layer, in
which each attention head corresponds to a single
bit. The entire model is trained to learn to hash
by using both the downstream task objective and
the contrastive hashing objective simultaneously.
These two objectives share a portion of the atten-
tion matrix from the hash layer, ensuring that the
learned binary codes are likely to properly preserve
task-relevant information.

2 Proposed Method

For many tasks, the standard approach of modern
language processing is first feeding the input sen-
tence, i.e, w1, . . . , wn, into a pre-trained language
model to assign each token a continuous vector,

Angmar stabbed Frodo with a blade
476e71 81e529 fb63e6 e8853d 51cd5c 210628

PER PER

Frodo held the ring
fb63a5 a5bc2d 4cf759 a10628

PER PROD

Figure 2: Examples of our method on the named entity
recognition task. We assign each word a binary code,
i.e., these hexadecimal numbers, and use them as the
sole input to recognize entities. PER and PROD are the
entity labels for person and product, respectively.

i.e., xi ∈ Rd, and leveraging them in the down-
stream task. In this work, we aim to interpret these
continuous vectors as discrete binary codes, i.e.,
ci ∈ {−1,+1}K , which contains task-relevant in-
formation as well. In this way, our method con-
verts continuous vectors to an interpretable format,
thereby making the internal mechanism more trans-
parent and comprehensible.

Our framework consists of two stages. In the
first stage, i.e., hashing stage, we learn to hash the
continuous vectors as discrete tokens. We append
a transformer-based hash layer (§3.1) to the end of
a pre-trained language model and train the entire
model to learn to hash by fine-tuning it on the down-
stream task. Novelly, we employ the contrastive
hashing method (§2.1) and carefully exclude poten-
tially false positive and negative instances with a
selection strategy (§2.2). After training, we utilize
the hash layer to re-annotate the entire dataset by
assigning each token a binary code.

In the second stage, i.e., the validation stage,
we evaluate whether these binary codes preserve
task-relevant information or simply contain mean-
ingless bits. Using these binary codes as the sole in-
puts, we train a much more lightweight model from
scratch. Experiments show that even with such lim-
ited capability, our model still achieves comparable
or even slightly better performance than the origi-
nal full-size model. Therefore, we claim that our
method properly preserves task-relevant informa-
tion in these binary codes. The pseudocode can be
found in Algorithm 1.

2.1 Contrastive Hashing

Contrastive learning (Chopra et al., 2005; Oord
et al., 2018; Chen et al., 2020; Zbontar et al., 2021;
Grill et al., 2020) has already been shown to be an
effective representation learning method. Its fun-
damental concept involves employing an encoder

410

network to map instances into a continuous repre-
sentation, i.e., x ∈ Rd. It then pulls together the
positive pairs and pushes apart the negative pairs
by applying the following objective function1.

Lself =− log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′) −s(x,x+)

where X is the instance batch, and s(x,y) returns
the similarity between the two given instances.
Contrastive learning commonly expects instances
uniformly distributed on a unit hypersphere. There-
fore, the most commonly used similarity function
is the cosine function,

s(x,y) =
x⊤y

∥x∥ · ∥y∥
(1)

Deep hashing methods (Cao et al., 2017; Su et al.,
2018; Hoe et al., 2021) also aim at mapping in-
stances into informative representation but in dis-
crete space, i.e., c ∈ {−1,+1}K . They first utilize
an encoder network to map instances to continuous
score vectors, i.e., s ∈ RK , and then obtain binary
codes by taking signs, i.e., c = sign (s). Besides,
deep hashing methods also pull together the posi-
tive pairs by encouraging all their bits to become
the same and at the same time making negatives
pairs have as many as possible different bits. Com-
monly, this is implemented as Hamming similarity.
To be more specific, for two given score vectors,
x,y ∈ RK , the similarity is defined as,

s(x,y) =

K∑
i=1

sign (xi) · sign (yi) (2)

We notice that deep hashing shares the common
fundamental concept with contrastive learning, ex-
cept it represents instances in a K-dimensional
Hamming space, i.e., {−1,+1}K , instead of a unit
hypersphere, i.e., Rd−1. Therefore, we propose
introducing Hamming similarity to extend the con-
trastive learning to learn to hash.

However, the Hamming similarity above is not
differentiable, introducing it directly is intractable.
Recently, Hoe et al. (2021) proposed a novel sim-
ilarity function that takes the sign of one of its in-
puts before computing their cosine similarity. They

1We omit the temperature τ for clarity.

Algorithm 1 PyTorch-like style pseudocode.

def flatten(tokens):
"""
removes <pad> and concatenates the remaining tokens.
e.g., say the <pad> token is 0, and the given tokens are,
>>> [[1, 2, 3, 4, 5], [6, 7, 0, 0, 0], [8, 9, 10, 0, 0]]
then this function returns
>>> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
"""

def compute_hash_loss(x, y, tokens):
Equation 3
score = cos(x[:, None], y[None, :].sign(), dim=-1)
score = score / tau # [tok, tok]

excludes potentially false positives and negatives
mask = tokens[:, None] == tokens[None, :] # [tok, tok]
score[mask ^ eye] = -float('inf')

Equation 4
return (score.logsumexp(dim=-1) - score.diag()).mean()

def fine_tuning_step(plm, task_model, inputs, targets):
h1, s1 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]
h2, s2 = plm(inputs) # [bsz, snt, dim], [bsz, snt, K]

task_loss1 = compute_task_loss(task_model(h1), targets)
task_loss2 = compute_task_loss(task_model(h2), targets)
task_loss = task_loss1 + task_loss2

s1 = flatten(s1) # [tok, K]
s2 = flatten(s2) # [tok, K]
tokens = flatten(inputs) # [tok]

hash_loss1 = compute_hash_loss(s1, s2, tokens)
hash_loss2 = compute_hash_loss(s2, s1, tokens)
hash_loss = hash_loss1 + hash_loss2

Equation 10
return task_loss + beta * hash_loss

def reannotate(plm, dataset):
new_dataset = []

for inputs in dataset:
_, s = plm(inputs) # [bsz, snt, k]
codes = s.sign() # [bsz, snt, k]
new_dataset.extend(codes)

return new_dataset

def validation_step(lite_task_model, codes, targets):
logits = lite_task_model(codes)
task_loss = compute_task_loss(logits, targets)

return task_loss

plm: the pre-trained language model with an additional transformer layer;
task_model: the task-specific model; lite_task_model: the lightweight
task-specific model with binary code embedding; bsz: the batch size; snt:
the sentence length; tok: the total number of tokens in this batch.

demonstrate that maximizing this similarity pre-
serves semantic information as well. Therefore, we
instead introduce this approach to our contrastive
learning framework to learn to hash.

s(x,y) = cos (x, sign (y)) (3)

2.2 Instance Selection

One of the most appealing properties of contrastive
learning is that it successfully converts tasks from
wh-questions to yes-no questions. Conventional
classification requires specifying target labels for
all instances, but contrastive learning only demands
knowing whether two instances are identical or not.

Due to this benefit, effective representation learn-
ing becomes possible even in unsupervised settings.

411

Gao et al. (2021) pass instances into a neural net-
work twice to obtain two semantically identical
but slightly augmented representations, i.e., x and
x+, relying on the independently sampled dropout
masks (Srivastava et al., 2014). They employ the
objective Lself to perform representation learning,
treat these two views as positive to each other, and
consider all existing instances in the batch as nega-
tives. This simple method surprisingly works well
and results in expressive representation.

Furthermore, in supervised settings, Khosla et al.
(2020) proposed leveraging label information by in-
troducing an objective function capable of handling
cases with multiple positive instances.

Lsup =
−1

|X+|
∑

x+∈X+

log
exp s(x,x+)∑
x′∈X exp s(x,x′)

= log
∑
x′∈X

exp s(x,x′)

− 1

|X+|
∑

x+∈X+

s(x,x+)

where the X+ is the set of positive instances. Obvi-
ously, the first term of Lsup and Lself are identical.
The difference between their the second terms is
that Lself pulls together only one positive while
Lsup pulls together all positive instances.

However, we observe that tokens are likely as-
signed different information in varying contexts,
making it challenging to determine whether two
identical tokens truly form a positive pair. For ex-
ample, in Figure 1, the token Frodo appears in both
sentences. It serves as the subject in the first sen-
tence and as the object in the second, resulting in
dissimilar parses. Therefore, identical tokens may
contain distinct task-relevant information and, in
such cases, deserve different binary codes.

Since it is difficult to determine whether two
identical tokens contain identical task-relevant in-
formation in practice, we opt not to include them
in either the positive or the negative set. For the nu-
merator part of the objective function, we remove
all identical token pairs and retain only the aug-
mented version of themselves as the sole positive
instance, thereby reverting to the single positive
instance scenario. For the denominator part, we
also remove all identical tokens from X to exclude

potential false negatives.

Lhash = − log
exp s(x,x+)∑

x′∈{x+}∪X− exp s(x,x′)
(4)

Where X− only contains tokens that are different
from x. More specifically, as shown in Figure 1, we
consider the second Frodo as neither a positive nor
a negative instance to the first Frodo, so we remove
it from both the numerator and the denominator.

The pseudocode of this objective function can be
found in the compute_hash_loss of Algorithm 1.

3 Architecture

Before introducing our transformer-based hashing
layer, we briefly review the mechanism of multi-
head attention (Vaswani et al., 2017). The attention
layer first projects the input vectors into queries,
keys, and values. It then constructs output vectors
by aggregating desired information from these key-
value pairs.

shi,j =
(Wh

qxi)
⊤(Wh

kxj)√
dh

(5)

ahi,j = softmaxj (s
h
i,j) (6)

zh
i =

∑
j

ahi,j(W
h
vxj) (7)

oi = Wo

[
z1
i , . . . ,z

H
i

]
(8)

where Wh
q ,W

h
k ,W

h
v ∈ Rdh×d are the projection

weights of query, key, and value of the h-th head,
respectively. The Wo ∈ Rd×(H×dh) is the output
weight, d, dh, H are the input dimension, head di-
mension, and the number of heads, respectively.
[·, . . . , ·] indicate concatenation and bias terms are
omitted for clarity. These hidden states oi are then
fed into a feed-forward network to obtain the out-
put vectors hi = FFN (oi) ∈ Rd for downstream
tasks. Conventionally, the head size dh is simply
bounded to d and H , but we let the dh become an
independent hyper-parameter, therefore, d does not
have to equal to dh ×H in our implementation.

3.1 Transformer Hash Layer
Intuitively speaking, the mechanism of attention is
to selectively aggregate information from tokens.
The attention score si,j ∈ R estimates the amount
of desired information that token i may obtain from
token j. Specifically, si,i estimates how much de-
sired information is retained in token i itself. Fur-
thermore, by increasing the number of heads to K,

412

the vector si,i ∈ RK reflects the desired informa-
tion scores of token i from K different aspects, and
can produce K bits by taking their signs.

Therefore, we add an additional transformer
layer with its number of heads increased to K, and
use the diagonal entries si,i of its attention matrix
as the hashing scores to learning to hash, and take
their signs to generate binary codes as the hashing
results after training, i.e., ci = sign (si,i). Since
si,i represents a form of attention directed at one-
self, to distinguish it from the commonly known
term self-attention, we use the term ego-attention
to describe it in the remainder of this paper.

In summary, the full attention matrix si,j is uti-
lized in a dual manner: it not only serves the con-
ventional purpose in the Transformer architecture
for computing the output vector for target predic-
tion, but also lends its diagonal entries si,i to learn
to hash. Given that a portion of the attention matrix
is shared between these two objectives, the learned
binary codes are inclined to preserve task-relevant
information. This hypothesis is demonstrated by
our experimental results in the validation stage.

3.2 Hashing Stage Architecture

The architecture of the hashing stage model, as
shown in Figure 1, consists of one pre-trained
language model, one transformer-based hash
layer, and the task-specific layers. We initialize
RoBERTa (Liu et al., 2019) with the checkpoint
roberta-base as the pre-trained language model.

Part-of-speech Tagging We employ an one-
layered classifier and a conditional random field
(CRF) (Lafferty et al., 2001) to compute the log-
likelihood and utilize the Viterbi algorithm (Forney,
1973) for inference.

Named Entity Recognition We transform the
sequence of vectors from the sub-token level back
to the token level by taking the average of the sub-
token vectors of each individual token. We use the
same task-specific layers as part-of-speech tagging.

Constituency Parsing Similarly, we generate the
token-level representation by averaging the vec-
tors of sub-tokens. In addition, following Zhang
et al. (2020), we use a biaffine span classifier
along with a tree-structured CRF. We identify the
most probable tree from all valid trees using the
Cocke-Kasami-Younger (CKY) algorithm (Kasami,
1965). Following Kitaev et al. (2022), we also in-
corporate GPT-2 (Radford et al., 2019) using the

gpt2-medium checkpoint for incremental parsing.

3.3 Validation Stage Architecture
As mentioned above, this stage is only to validate
if the task-relevant information has been properly
preserved in these binary codes, and is not to distill
knowledge into a lightweight model. In this stage,
we introduce an extremely lightweight model to
ensure that the model lacks the capacity to learn
the tasks from scratch. As such, any performance
gains can only be owed to the information already
preserved within the binary codes. The architec-
ture for this validation stage consists of a binary
code embedding layer, a conventional one-layered
transformer as encoder, and the same task-specific
layers used during the hashing stage.

The binary code embedding layer produces code
embeddings through constructing instead of look-
ing up. For a given binary code, c ∈ {−1,+1}K ,
the binary code embedding layer simply flips the
direction of each bit embedding bi, and returns
the concatenation of these flipped vectors, where
bi ∈ Rd/K is the embedding of the i-th bit.

w = [c1b1, . . . , cKbK] ∈ Rd (9)

Compared with the learned discrete tags of Ki-
taev et al. (2022), our binary codes literally encode
information at the bit level, while their tags remain
at the token level. Thus, although Kitaev et al.
(2022) emphasize that their model requires only K
bits per word, in practice, their model demands an
embedding matrix with shape 2K × d, while our

real bit-level embedding needs only K × d

K
.

3.4 Training and Inference
In the hashing stage, we balance the task-specific
loss Ltask and the hashing loss Lhash, as the
fine_tuning_step function in Algorithm 1. Be-
sides, our training procedure is also simpler than
Kitaev et al. (2022), since we don’t need to employ
the k-mean algorithm (Ackermann et al., 2012) to
initialize the centroids in the first two epochs.

L = Ltask + β · Lhash (10)

In the validation stage, we re-annotate the entire
dataset first and then use the task-specific loss
Ltask only to train the lightweight model with only
these binary codes as inputs. The procedures for
reannotate and validation_step are described
in Algorithm 1, respectively.

413

MODEL

POS NER PARSING PARSING

ROBERTA ROBERTA ROBERTA GPT2

ACC |θ| F1 |θ| F1 |θ| F1 |θ|

Kitaev et al. (2019) - - - - 95.59 342.8M 93.95 362.5M
Kitaev et al. (2022) - - - - 95.55 361.4M 94.97 381.1M

BASELINE 98.27 134.2M 90.24 134.2M 95.92 136.0M 95.04 422.5M

16 BITS
98.37 132.6M 90.21 132.6M 96.00 134.4M 95.02 420.4M
98.38 0.6M 90.28 0.6M 95.24 2.9M 93.76 5.3M

24 BITS
98.38 134.2M 90.27 134.2M 95.92 136.0M 95.14 422.5M
98.38 0.6M 90.39 0.6M 95.51 2.9M 93.82 5.3M

32 BITS
98.40 135.7M 90.12 135.7M 95.97 137.6M 95.15 424.6M
98.41 0.6M 90.31 0.6M 95.65 2.9M 94.02 5.3M

Table 1: The main results on three datasets. The results of our methods are displayed in two rows, which indicate
the performance in hashing and validation stages, respectively. |θ| columns show the number of parameters, and the
bold numbers indicats the best validation performance of each setting.

4 Experiments

4.1 Settings

We implement our models with the deep learn-
ing framework PyTorch (Paszke et al., 2019) and
fetch weights of pre-trained language model from
huggingface/tramsformers (Wolf et al., 2020).

For each batch, we keep collating sentences un-
til the total number of tokens reaches 1024. The
reason that we don’t use the number of sentences
as batch size is to stabilize contrastive learning,
since it is performed at token-level, not at sentence-
level. We employ AdamW (Kingma and Ba, 2014;
Loshchilov and Hutter, 2019) with 50,000 training
steps and 6% warm-up steps. In the hashing stage,
we evaluate the performance with different number
of bits, specifically K ∈ {16, 24, 32}.

We run experiments on a single NVIDIA Tesla
V100 graphics card. The hashing stage training
takes about 2 hours, while the validation stage re-
quires only around 30 minutes. We run the experi-
ments four times with different random seeds. The
reported numbers in the following tables are their
averages. For comparison, we additionally conduct
a baseline experiment for each task without using
the contrastive hashing loss, i.e., β = 0.

Part-of-speech Tagging We conduct experi-
ments on the English Penn Treebank (Marcus et al.,
1993) datasets. The task involves assigning a syn-
tactic label to each token in a given sentence. We
report the accuracy scores on the test split.

Named Entity Recognition The OntoNotes En-
glish dataset (Pradhan et al., 2013) is used for eval-
uation. We transform span annotations into the
BIOES encoding scheme (Ramshaw and Marcus,
1995), and report the F1 scores on the test split.

Constituency Parsing We evaluate on the En-
glish Penn Treebank (Marcus et al., 1993). Follow-
ing Zhang et al. (2020) and Kitaev et al. (2022), we
transform the original tree into those of Chomsky
normal form and adopt left binarization with NLTK
(Bird et al., 2009). We report the F1 scores on the
WSJ test split.

4.2 Main Results
As presented in Table 1, experiments on the part-of-
speech tagging show that 32 bits achieve slightly
better results than 16 bits and 24 bits on both stages.
Besides, we notice that results in the validation
stage are constantly superior to hashing stage re-
sults, no matter how many bits are used.

For named entity recognition, we achieve 90.39
in F1 score with 24 bits, which is even slightly
higher than its hashing stage performance, i.e.,
90.27. For 16 bits and 32 bits, the validation stage
performance also consistently surpasses their hash-
ing stage performance. We hypothesize that this is
because hashing the ego-attention scores may im-
plicitly exclude some unconfident attention scores
that might lead to wrong predictions. For example,
consider a token that barely contains the desired
information of a query, it should be ignored by
getting a small attention score. However, if the

414

s(x,y) Lcontrastive NER

cos (x,y)
Lself 90.12 → 88.74
Lsup 90.07 → 86.91
Lhash 90.19 → 88.94

cos (x, sign (y))
Lself 90.15 → 90.21
Lsup 90.19 → 90.04
Lhash 90.27 → 90.39

Table 2: Comparison of different similarity functions
and objective functions on the OntoNotes dataset. The
numbers on the left and right sides of → represent the
hashing and validation performance, respectively.

network unconfidently assigns it an attention score
that is only slightly less than 0, then its informa-
tion still occupies a certain proportion in the final
output. On the contrary, our method truncates the
attention scores to be −1 or +1, and eases the issue
in some degree.

For constituency parsing, our method outper-
forms Kitaev et al. (2022) with 32 bits in the bidi-
rectional parsing task, even they introduce much
more tags, i.e., 256 in total. Besides, our 16 bits
and 24 bits settings also achieve remarkable per-
formance and are only slightly inferior to theirs.
In this task, all experiments in the validation stage
show worse results than the corresponding hashing
stage results. We hypothesize that this is because
constituency parsing is a span-level classification
task, token-level hashing is unable to capture the
span information completely. This may also be
the reason that our method works well on part-of-
speech and named entity recognition tasks since
they are just at the token level.

For all these tasks, with such a lightweight model
in validation stages, our codes still reproduce com-
parable or even slightly better performance than
the original full-size model. We claim that these
results demonstrate that our learned binary codes
have properly preserved task-relevant information.

4.3 Ablation Studies

Table 2 shows that the similarity and objective func-
tions are essential to our method. Using the cosine
similarity, the model shows relatively high perfor-
mance in the hashing stage, however, the naive
cosine similarity can not preserve information prop-
erly, as its performance dramatically drops in vali-
dation stage. Furthermore, the fact that Lhash con-
sistently outperforms both Lsup and Lself demon-

β 0 0.001 0.005 0.01 0.05

NER
90.24 90.25 90.27 90.10 90.02
79.60 90.29 90.39 90.24 90.23

Table 3: Named Entity Recognition experiments with
β. The two rows display hashing and validation perfor-
mance, respectively.

strates our hypothesis that false positives and false
negatives are harmful.

Additionally, as indicated in Equation 10, the
coefficient β serves to balance the two terms. Ac-
cording to Table 3, even though the contrastive
hashing loss requires only a minor proportion of
the overall loss, demonstrated by the optimal per-
formance of a small β = 0.005, it is critical for
preserving information. Experiments reveal that
removing the contrastive hashing loss, i.e., β = 0,
results in a dramatic performance drop.

4.4 Case Studies

We present the hashing and constituency parsing
results in Figure 3 to demonstrate the interpretabil-
ity of our learned binary codes. For comparison
with Kitaev et al. (2022), we use the exact same ex-
amples as in their paper. Additional parsing results
can be found in Appendix D.

We begin by discussing bidirectional parsing. In
our transformer-based hash layer, each head cor-
responds to a single bit, and these heads operate
independently of one another. This design allows
each bit to capture distinct and orthogonal syntac-
tic and semantic properties. Notably, we observe
that the generated binary codes cluster based on the
part-of-speech properties. For example, the past
tense verbs brought and approved receive similar
codes even when they appear in different sentences,
differing by only four bits. Similarly, the common
nouns groceries and proposal share 28 bits, high-
lighting their shared noun properties.

Moreover, since both groceries and proposal fi-
nalize a similar noun phrase, the article the before
them is assigned the same code. However, the ar-
ticle the before the council retains quite different
bits. We hypothesize these bits indicate the varied
attachment locations. Besides, for the two sen-
tences on the left side, the final attachments him
and himself determine the attachment location of
the for phrases. We observe that there are only 2
bits differ between them, and hypothesize these
two bits reflect the differences in the attachment

415

S

VP

NP

PP

NP

him
1613119d

a5ba4dc5

[11]

for
481789a3

2cbc9d31

[24]

NP

groceries
35dff849

f0831d05

[7]

the
4654f232

646b55c0

[11]

brought
3aad6c55

bf453442

[6]

NP

Lucas
b8e44edc

9fb50530

[16]

S

VP

PP

NP

Monday
1625159d

e8ee6ec5

[246]

on
2a054912

7cce9d88

[93]

NP

proposal
365ff8c9

c4c63cfd

[81]

the
4654f232

646b55e0

[92]

approved
33bd6e55

cf6e149e

[145]

NP

Council
a6e9efb9

c6409039

[120]

The
dc687816

d4b181f8

[122]

S

VP

PP

NP

himself
0633119d

ecb84c45

[16]

for
481789a3

2cbc9d31

[24]

NP

groceries
35dff849

f0831d05

[7]

the
4654f232

646b55c0

[11]

brought
3abd6c55

bf453442

[6]

NP

Lucas
b8e44edd

9fb50530

[16]

S

VP

NP

PP

NP

taxes
1533159c

b442adc1

[255]

on
2a054912

7cce9d88

[93]

proposal
f7de7909

c4c63cfd

[81]

the
4674f233

646b55e0

[92]

approved
319d6f45

cf6e149e

[145]

NP

Council
a6e9efb9

c6409039

[120]

The
dc687816

d4b181f8

[122]

Figure 3: Examples of the hashing and constituency parsing results. There are three numbers below each token, the
first two are represented in hexadecimal (32 bits), and indicate the hashing results of the bidirectional (RoBERTa)
and unidirectional (GPT2) pre-trained language models, respectively. The third number is taken from Kitaev et al.
(2022) for comparison and is represented in decimal. The red and blue parts indicate the exact different bits.

locations. Apart from that, the subject Lucas and
the predicate verb brought also flip one bit, respec-
tively, to indicate the different phrase structures.
Similarly, for the right side sentences, Monday and
taxes differ in 5 bits, and the attachment locations
of all the phrases that depend on this phrase are
influenced, thus, approved, the, and proposal alters
their bits as well.

Besides, incremental parsing disallows the in-
formation from future tokens, and the future to-
kens potentially contain syntactic properties that is
needed for committing parsing decisions. There-
fore, compressed codes should not only retain the
already revealed information but also be open to
all possible upcoming tokens, as called speculation
free in Kitaev et al. (2022). Therefore, needed infor-
mation is mostly distributed in the last tokens, and
thus they are likely to obtain varied codes reflect-
ing varied phrases. For example, on the left side,
the last noun tokens him and himself obtain quite
different codes, 5 bits different in total, more than
the 2 bits in the bidirectional parsing case above.
Besides, incremental parsing model also commits
similar bits for the article the before groceries and
proposal, i.e., only 1 different bit, but assigns a

much different code to the article the before coun-
cil, which has 15 nonidentical bits. By comparison,
even Kitaev et al. (2022) also assign them distinct
tags, e.g., 11, 92, and 122, but it is hard for them
to tell how different they are and where the differ-
ences lie exactly. Thus, we claim that our binary
codes are much more informative and interpretable.

4.5 Bit Distribution

To further analyze what specific information is pre-
served by each bit, we display the bit distribution
for named entity recognition in Figure 4.

The sub-figure above illustrates the distribution
of bits related to different syntactic information,
which serves to indicate the boundary of each en-
tity. It is noteworthy that the bit distributions for
the non-entity label O are uniform, such that in all
these positions the probability of being assigned
a 1 is roughly around 50%. In contrast, the distri-
bution of bits for other labels exhibits a clear bias.
For instance, on the 9-th bit position, we observed
that the label S and B have 80% and 73% probabili-
ties of being assigned a 1, while the numbers drop
to only 47% and 17% for the E and I labels. We
hypothesize the reason is that both S and B can in-

416

O

S

B

E

I

48 53 52 49 44 50 48 58 50 50 49 53 48 45 49 43 51 49 51 56 58 47 49 53

77 42 34 67 66 44 73 48 80 30 94 86 99 52 42 51 58 59 41 24 26 48 85 23

64 22 49 64 68 48 87 49 73 35 73 4 54 57 58 90 40 82 44 19 47 59 54 84

26 26 36 89 74 59 78 58 47 22 59 49 42 89 39 62 31 78 27 39 62 60 62 43

56 12 56 85 34 69 57 45 17 25 43 16 38 83 32 55 83 77 37 37 10 16 27 38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

O

ORG

PERSON

DATE

GPE

CARDINAL

MONEY

NORP

PERCENT

WORK_OF_ART

48 53 52 49 44 50 48 58 50 50 49 53 48 45 49 43 51 49 51 56 58 47 49 53

76 0 49 100 81 59 66 65 51 17 64 41 71 100 79 73 91 84 42 13 0 41 38 24

70 28 38 100 51 63 94 64 58 0 47 29 50 30 0 72 57 58 60 1 58 61 44 30

0 57 24 35 50 59 73 42 45 91 55 16 45 100 29 91 41 100 29 27 74 19 100 78

100 40 41 45 54 62 47 100 40 0 94 67 67 47 0 19 55 14 30 0 14 100 81 27

23 0 27 71 90 48 86 0 100 63 100 86 76 14 100 51 86 100 0 73 38 0 76 100

5 33 98 100 56 61 100 0 46 28 72 58 28 95 100 61 0 100 0 100 56 0 33 67

100 6 11 100 46 6 34 9 98 5 100 89 89 100 94 95 0 44 54 47 11 0 11 0

59 10 10 100 100 41 59 0 0 41 100 59 41 18 17 41 0 100 100 41 59 41 100 100

72 71 100 94 51 0 100 94 97 100 29 0 78 100 29 94 49 51 78 22 28 100 29 45

Figure 4: The heatmap of bits distribution. The sub-figure above shows the distribution of bits concerning different
syntactic information, while the one below corresponds to semantic information. The number inside cell represents
the probability of this label being assigned a 1 at the n-th bit position. For example, the 72 at the bottom left corner
indicates that among all of the WORK_OF_ART labels, 72% of them are assgiend a 1 at the first bit position.

dicate the beginning of an entity, but such syntactic
function is not shared by the other two labels.

The sub-figure below shows the bit distribution
related to semantic information and reveals more
distinct distributional features. Although the non-
entity label O continues to display uniform dis-
tribution characteristics, labels MONEY, NORP, and
PERCENT show that the probabilities at the 4-th and
17-th bits are skewed to 100% and 0%, respectively.
Such a clear tendency, low entropy in other words,
suggests that task-relevant information is clearly
and deterministically preserved within these bits,
such that each bit carries a distinct meaning.

5 Conclusions

In this paper, we have proposed a contrastive hash-
ing method to generate interpretable binary codes
from pre-trained language models. We designed a
transformer-based hash layer, incorporated it into
the contrastive hashing framework, and introduced
a novel instance selection strategy to exclude false
positives and negatives. Experimental results indi-
cate that our lightweight model achieves superior
performance and preserve task-relevant informa-
tion properly with even fewer bits. Further anal-
yses show that the generated binary codes retain
syntactic and semantic information in a highly in-
terpretable and fine-grained format. Although we

only focus on structured prediction tasks in this
paper, as a novel interpretable representation, our
method can be easily adapted to other tasks and
may inspire future research on designing efficient
architectures.

6 Limitations

Although our methods surpass previous work, there
is still room for improvement in tasks not at the
token level, e.g., constituency parsing. Besides,
even the limit has been pushed to 24 bits, which is
much better than previous work. However, this is
still not the theoretical limit. For example, the total
number of labels of named entity recognition is 73,
thus, the limit is ⌈log2 73⌉ = 7 bits, which is still
fewer than ours. We remain solving this limitation
and further narrowing the information bottleneck
as future work.

References
Marcel R Ackermann, Marcus Märtens, Christoph Rau-

pach, Kamil Swierkot, Christiane Lammersen, and
Christian Sohler. 2012. Streamkm++ a clustering
algorithm for data streams. Journal of Experimental
Algorithmics (JEA), 17:2–1.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and
Kevin Murphy. 2017. Deep variational information

https://openreview.net/forum?id=HyxQzBceg

417

bottleneck. In International Conference on Learning
Representations.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

Zhangjie Cao, Mingsheng Long, Jianmin Wang, and
Philip S. Yu. 2017. Hashnet: Deep learning to hash
by continuation. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), volume 1, pages
539–546. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

G David Forney. 1973. The viterbi algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894–6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and
Michal Valko. 2020. Bootstrap your own latent: A
new approach to self-supervised learning.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. DeBERTa: Decoding-enhanced
BERT with Disentangled Attention. In International
Conference on Learning Representations.

Jiun Tian Hoe, Kam Woh Ng, Tianyu Zhang, Chee Seng
Chan, Yi-Zhe Song, and Tao Xiang. 2021. One loss
for all: Deep hashing with a single cosine similarity
based learning objective. In Advances in Neural
Information Processing Systems.

Tadao Kasami. 1965. An efficient recognition and
syntax-analysis algorithm for context-free languages.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. In Advances in Neural
Information Processing Systems, volume 33, pages
18661–18673. Curran Associates, Inc.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev, Thomas Lu, and Dan Klein. 2022.
Learned incremental representations for parsing. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3086–3095, Dublin, Ireland. As-
sociation for Computational Linguistics.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Xiang Lisa Li and Jason Eisner. 2019. Specializing
word embeddings (for parsing) by information bot-
tleneck. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
2744–2754, Hong Kong, China. Association for Com-
putational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

https://openreview.net/forum?id=HyxQzBceg
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.48550/ARXIV.2006.07733
https://doi.org/10.48550/ARXIV.2006.07733
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=2pJZSVcSZz
https://openreview.net/forum?id=2pJZSVcSZz
https://openreview.net/forum?id=2pJZSVcSZz
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/2022.acl-long.220
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.18653/v1/D19-1276
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004

418

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An
imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143–152, Sofia,
Bulgaria. Association for Computational Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Third
Workshop on Very Large Corpora.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929–1958.

Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian.
2018. Greedy hash: Towards fast optimization for
accurate hash coding in cnn. In Advances in Neural
Information Processing Systems, volume 31. Curran
Associates, Inc.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle.

Aaron van den Oord, Oriol Vinyals, and koray
kavukcuoglu. 2017. Neural discrete representation
learning. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Feng Wang and Huaping Liu. 2021. Understanding
the behaviour of contrastive loss. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2495–2504.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Perric
Cistac, Clara Ma, Yacine Jernite, Julien Plu, Can-
wen Xu, Teven Le Scao, Sylvain Gugger, Mariama

Drame, Quentin Lhoest, and Alexander M. Rush.
2020. Transformers: State-of-the-Art Natural Lan-
guage Processing. pages 38–45. Association for
Computational Linguistics.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and
Stephane Deny. 2021. Barlow twins: Self-supervised
learning via redundancy reduction. In Proceedings
of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine
Learning Research, pages 12310–12320. PMLR.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast
and accurate neural crf constituency parsing. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence, IJCAI-20, pages
4046–4053. International Joint Conferences on Arti-
ficial Intelligence Organization. Main track.

A Dataset Statistics

DATASET TRAIN DEV TEST LABEL

POS 39,832 1,700 2,416 45
NER 59,924 8,528 8,262 73

PARSING 39,832 1,700 2,416 143

Table 4: Statistics of these three datasets.

B Ablation Study on Temperature τ

τ 0.01 0.02 0.05 0.1 0.2

NER
90.19 90.08 90.02 90.27 90.13
89.13 89.12 89.81 90.39 90.16

Table 5: OntoNotes ablation study results with the tem-
perature τ , which controls the strength of penalties on
hard negative samples (Wang and Liu, 2021).

C Hyper-parameter Settings

HYPER-PARAM POS NER PARSING

β 0.05 0.005 0.001
τ 0.1 0.1 0.1

DROPOUT 0.1 0.1 0.5
LEARNING RATE 5e-5 7e-5 5e-5

DROPOUT 0.1 0.2 0.3
LEARNING RATE 5e-4 3e-3 1e-3

Table 6: Hyper-parameters on all tasks. The first block
shows the hyper-parameters on hashing stage, while the
second one shows the validation stage.

D More Hashing and Parsing Results

https://doi.org/10.48550/ARXIV.1807.03748
https://doi.org/10.48550/ARXIV.1807.03748
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
https://aclanthology.org/W95-0107
https://aclanthology.org/W95-0107
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://proceedings.neurips.cc/paper/2018/file/13f3cf8c531952d72e5847c4183e6910-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/13f3cf8c531952d72e5847c4183e6910-Paper.pdf
https://doi.org/10.48550/ARXIV.1503.02406
https://doi.org/10.48550/ARXIV.1503.02406
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/7a98af17e63a0ac09ce2e96d03992fbc-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v139/zbontar21a.html
https://proceedings.mlr.press/v139/zbontar21a.html
https://doi.org/10.24963/ijcai.2020/560
https://doi.org/10.24963/ijcai.2020/560

419

S

VP

PP

NP

dog
13703dd4

d1a31c1d

lazy
a37bdf46

52063510

the
4674f233

746b55c0

over
ea0f0101

58cfb51b

jumps
71bdb417

aa81744a

NP

fox
86e0eff0

b4039818

brown
c9d0cbc7

3201b918

quick
e162cf8d

5284b158

The
dc607816

d4b181f8

S

VP

PP

NP

fox
13703dd4

d4a31c1c

brown
c1d1db46

3201b918

quick
e362df4d

5284b158

the
4674f233

746b55c0

over
eb0f0101

58cfb50b

jumps
71bdb417

a881744a

NP

dog
86e0eff0

a081d819

lazy
e938cf87

52263510

The
dc607816

d4b181f8

Figure 5: Derivation of the sentence The quick brown fox jumps over the lazy dog, and the sentence The lazy dog
jumps over the quick brown fox.

S

VP

NP

SBAR

S

VP

smashed
133b7d57

9fff7c0a

NP

Luna
3c655f3a

afb28043

WHNP

that
b9c9d4eb

2c93612b

NP

pumpkin
c7defd89

d0021cbd

the
4674f233

746b55e0

ate
389d6f47

fe02344a

NP

She
b4e11add

ff904194

S

VP

NP

SBAR

S

VP

VP

PP

NP

Luna
1633159c

fd330c47

by
d21b4c98

6f978596

smashed
7f4e76c3

dde7740d

was
f66175fd

8cbbc066

WHNP

that
b9c9d4eb

2c93612b

NP

pumpkin
c7ceff89

d0021cbd

the
4674f233

746b55e0

ate
389d6f47

fe02344a

NP

She
b4e11add

ff904194

Figure 6: Derivation of the sentence She ate the pumpkin that Luna smashed, and the sentence She ate the pumpkin
that was smashed by Luna.

