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Abstract

Detecting out-of-scope (OOS) utterances is cru-
cial in task-oriented dialogue systems, but ob-
taining enough annotated OOS dialogues to
train a binary classifier directly is difficult in
practice. Existing data augmentation meth-
ods generate OOS dialogues automatically, but
their performance usually depends on an exter-
nal corpus. This dependence not only induces
uncertainty, but also reduces the quality of gen-
erated dialogues. Specifically, all of them are
out-of-domain (OOD).

Herein we propose SILVER, a self data aug-
mentation method that does not use external
data. It addresses issues of previous research
and improves the accuracy of OOS detection
(false positive rate: 90.5% → 47.4%). Fur-
thermore, SILVER successfully generates high-
quality in-domain (IND) OOS dialogues in
terms of naturalness (percentage: 8% → 68%)
and OOS correctness (percentage: 74% →
88%), as evaluated by human workers.

1 Introduction

Task-oriented dialogue systems are ubiquitous
(Budzianowski et al., 2018; Chiu et al., 2022).
However, they require human operators to deal
with complicated intentions that are beyond their
capacities. Thus, out-of-scope (OOS) detection
remains a serious issue.

Due to the lack of OOS annotations in open-
world settings, previous research usually detects
OOS samples indirectly such as resorting to in-
scope (INS) samples. Recently, data augmenta-
tion methods (Ng et al., 2020; Razumovskaia et al.,
2022) have made it possible to detect OOS directly
using a binary classifier.

One such method is GOLD (Chen and Yu, 2021).
GOLD uses simple rules to replace utterances in
known OOS dialogues with sentences selected
from a large pool, making it possible to train a
binary classifier to decide OOS dialogues directly.

Figure 1: Comparison of GOLD and SILVER. To auto-
matically generate an OOS dialogue, SILVER replaces
the first utterance with an IND utterance, while GOLD
replaces the third utterance with an OOD utterance, mak-
ing the dialogue become OOD and incomprehensible.

However, three issues ([I1] to [I3]) have pre-
vented the realization of GOLD’s full potential:

• [I1] (ref. §3.1) Because GOLD depends on
an external utterance pool, the generated dia-
logues are generally OOD.1 Furthermore, an
external pool is sometimes difficult to obtain
in practice.

• [I2] (ref. §3.2) GOLD elects OOS using
simple rules built upon the outputs of support-
ing model (e.g. max(output probability) >
threshold) and combines these results by ma-
jority voting. However, the accuracy is insuf-
ficient.

• [I3] (ref. §3.3) To ensure sufficient OOS
dialogues are generated, GOLD elects from
a large candidate list.2 A large candidate list

1See below for the discussion about “scope” and “domain.”
2Each utterance corresponds to 1, 024 candidates in official

implementation: https://github.com/asappresearch/

https://github.com/asappresearch/gold/blob/master/app.py
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is a tradeoff with the performance due to the
existence of low-quality dialogues.

To overcome these issues, we propose a method
called Self Iterative OOS Labeling via Ensembling
Trees (SILVER). SILVER consists of solutions
([S1] to [S3]), which correspond to [I1] to [I3],
respectively.

• [S1] (ref. §4.1) Build pools from training
data and elect candidates in a novel way.

• [S2] (ref. §4.2) Detect OOS using an ensem-
ble of decision trees (Mason et al., 1999).

• [S3] (ref. §4.3) Generate OOS dialogues iter-
atively.

Figure 1 compares dialogues generated by
GOLD and SILVER. The effectiveness of each so-
lution is verified in Section 5, and follow-up ex-
periments (Section 6) deepen the understanding of
SILVER’s behavior.

1.1 Preliminary: Domain and Scope
Throughout this paper, we distinguish two con-
cepts: domain and scope. We define them as fol-
lows.

Definition 1 (domain). Domain is the subject or
topic of a dialogue. Given a set of predefined do-
mains, if the domain of a dialogue belongs to this
set, then the dialogue is in-domain (IND). Other-
wise, the dialogue is out-of-domain (OOD).

Definition 2 (scope). Scope is the capability of
a chatbot system. Given a chatbot system, if a
dialogue can be understood by this chatbot, then the
dialogue is in-score (INS). Otherwise, the dialogue
is out-of-scope (OOS).

To clarify their distinction, the following key-
points should be emphasized.

First, domains (e.g., movie, finance, travel,
etc.) reflect the characteristics of dialogues, while
scopes (e.g., hotel reservation is beyond the scope
of bank chatbot) reflect the characteristics of chat-
bots.

Second, when we say a dialogue is OOD or OOS,
we consider the dialogue as a whole. This means
that even if a dialogue is OOD or OOS, it is possible
that the first few utterances are IND or INS.

Third, the relationships of IND, OOD, INS and
OOS are as follows in general:

INS ⊆ IND,

gold/blob/master/app.py.

and
OOD ⊆ OOS.

The reason is that when we design a chatbot (e.g.
finance chatbot), we expect that the chatbot should
be able to understand all dialogues in some do-
mains (e.g. finance domain), i.e., INS = IND for a
perfect chatbot. However, generally the real chat-
bot can only understand some dialogues in that do-
main, i.e., INS ⊂ IND. This indicates the existence
of IND & OOS dialogues (e.g. pink dialogues in
Figure 1).

2 Related Works

2.1 OOS detection
Different natural language processing (NLP) tasks
employ OOS detection. Examples include text clas-
sification (Fumera et al., 2003; Tan et al., 2019)
and question answering (Rajpurkar et al., 2018;
Kamath et al., 2020). Various methods have been
proposed to detect OOS such as extrapolating to
OOS samples (Daumé III, 2007; Yogatama et al.,
2019), deciding whether to predict or abstain on
test examples (Dong et al., 2018; Feng et al., 2019),
etc. Below, three methods, which are the building
blocks of both GOLD and SILVER, are reviewed.

(1) MaxProb (Hendrycks and Gimpel, 2017). A
supporting model for a classification task (e.g., in-
tent classification) is trained in advance. If the
maximum value of the output probability distribu-
tion is below a predetermined threshold, then the
input is classified as OOS.

(2) BertEmbed (Podolskiy et al., 2021). For
each category, embeddings of all its samples are cal-
culated by fine-tuned BERT (Devlin et al., 2019). If
an input’s embedding is sufficiently far (measured
by cosine distance), then the input is classified as
OOS.

(3) Dropout (Gal and Ghahramani, 2016). If the
predictions of models whose nodes are dropped out
randomly agree with each other, then the input is
classified as INS.

SILVER builds a strong classifier by combining
these methods to accurately detect OOS dialogues.

2.2 Data augmentation
Typical data augmentation methods in NLP modify
training data by perturbing text directly (Wei and
Zou, 2019), perturbing latent embedding space (Liu
et al., 2019), or paraphrasing (Zhang et al., 2019).
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In the context of dialogue, data augmentation meth-
ods have been proposed for natural language under-
standing (Hou et al., 2018) or intent detection (Niu
and Bansal, 2019). New dialogues are created by
utilizing neural networks such as generative adver-
sarial networks (Marek et al., 2021) or designing
training strategies (Cubuk et al., 2018).

Unlike typical methods above, SILVER gener-
ates OOS samples via ensemble learning. Its im-
plementation is straightforward with the help of
off-the-shelf libraries, while the diverse features
for classification provide a flexible architecture.

2.3 GOLD: Generating Out-of-scope Labels
with Data Augmentation

GOLD (Chen and Yu, 2021) is the data augmen-
tation method most closely related to this work.
Given a small set of annotated OOS dialogues (1%
of the size of INS), GOLD replaces utterances with
sentences selected from an external pool to gener-
ate new OOS dialogues. Selected sentences should
be in the neighborhood of the original utterances.
Then GOLD defers to the methods described in
Section 2.1 to filter the generated OOS. Majority
voting combines predictions of different methods.
Filtered OOS dialogues are concatenated with the
original annotated OOS dialogues and are used to
train a binary classifier.

GOLD has a practical appeal. Labor-intensive
data collection and annotation of OOS are unnec-
essary, and the data augmentation method is or-
thogonal to the classification improvements. Both
advantages extend its applicability to real scenar-
ios. However, the issues detailed in the next section
limit its performance.

3 Empirical Investigation of GOLD

Experiments in this section are conducted on the
STAR dataset (Mosig et al., 2020). To ensure com-
parability with Chen and Yu (2021), we followed
their configurations and used the same split for
train/dev/test.

3.1 Issue 1: Dependence on an external pool

Although an external pool of utterances is an essen-
tial component of GOLD, it is not always available
for real applications. For example, to make a dia-
logue system of low-resource languages, collecting
enough utterances from native speakers is difficult,
let alone generating good dialogues.

Even assuming the accessibility of external

Method OOS Naturalness

GOLD 74% 8%
SILVER 88% 68%

Table 1: Human evaluation results of 50 dialogues gen-
erated by GOLD and SILVER. Numbers are the percent-
ages of real OOS/natural dialogues.

pool of utterance, as reported by Chen and Yu
(2021), GOLD’s performance largely depends on
the choice of the external pool. We argue that there
is a second issue: the generated dialogues are all
OOD in general. They differ significantly from the
IND OOS dialogues in the original training data
(see Figure 1 for an example). This deviation limits
the effect of generated dialogues on improving the
classifier’s performance.

To verify this argument quantitatively, we asked
3 human workers to evaluate 50 randomly sam-
pled dialogues generated by GOLD to decide (1)
whether the generated dialogue is really an OOS
and (2) whether the generated dialogue is natural
enough for comprehension. The first row of Table
1 shows the evaluation results. Although most gen-
erated dialogues (> 50%) are OOS, only a small
number are natural.

3.2 Issue 2: Simple election rules
Election, the stage where OOS dialogues are se-
lected and INS dialogues are removed, is a core
component of GOLD. If an INS dialogue mistak-
enly remains and is used to train the classifier, then
it is no surprise that the classification fails.

Election in GOLD is built upon the three meth-
ods introduced in Section 2.1.3 These methods are
too simple to detect OOS dialogues accurately.

For simplicity, let’s consider only MaxProb and
BertEmbed. We collect (1) the maximum values
from the output probability distributions generated
by the supporting model, and (2) the minimum
cosine distances of the embeddings between each
dialogue and all dialogues from other categories.
Figure 2 shows these distributions. The distribu-
tions of the first value are similar for both INS
and OOS dialogues. Specifically, the modes are
both in the interval “0.95−,” which is consistent
with observations in previous research (Yilmaz and
Toraman, 2022). For the second value, the distribu-
tions for INS and OOS dialogues differ. However,

3To be precise, GOLD also considered Mahalanobis dis-
tances of representations calculated by RoBERTa. However,
our discussions here are valid for both cases.
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Figure 2: Left: Distribution of the maximum value of probabilities generated by supporting model. Right:
Distribution of the minimum value of the cosine distances of the embeddings between each dialogue and all
dialogues from other categories. INS and OOS dialogues are calculated separately.
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Figure 3: Candidate list must be enlarged to reach the
target number. Dialogues tend to be real OOS in a small
candidate list, but may be INS in a large candidate list.
Bold utterances are from the pool.

there is a large overlap region between the two
distributions.

To summarize, it is impossible to accurately sep-
arate INS and OOS for both MaxProb and BertEm-
bed, regardless of the set threshold value. Conse-
quently, employing simple rules for election intro-
duces a large amount of noise in the generated data,
degrading the classification performance.

3.3 Issue 3: Low quality of generated data

GOLD must enlarge the candidate list size to gen-
erate enough dialogues. However, this strategy
inevitably introduces a large amount of noise (i.e.,
INS dialogues) into the generated training data (Fig-
ure 3), which is intolerable for classifier training.

4 SILVER: Methodology

SILVER is proposed to overcome the aforemen-
tioned issues of GOLD. Figure 5 outlines the frame-
work. First, we sample a small set of dialogues
from the training data. These dialogues are known
OOS. Then candidates are generated by randomly
choosing one utterance from seed OOS dialogues
and swapping it with an utterance extracted from
INS (ref. §4.1). After generating numerous can-
didates, an ensemble classifier is used for election
(ref. §4.2). Selected dialogues are concatenated
to seed OOS samples, increasing the number of
available OOS dialogues. Iterating this process sev-
eral times provides sufficient data to train a binary
classifier for OOS detection (ref. §4.3).

4.1 Self candidate generation

Candidates are generated by swapping utterances
in seed OOS dialogues with those in the pool. To
achieve this, two questions must be answered.

How should the utterance pool be built? All
utterances of INS dialogues in the training data are
used to build the utterance pool because we aim to
generate candidates without using external corpora.
Furthermore, for a task-oriented dialogue system,
we assume that utterances from the user and system
are in different clusters. Hence, two pools are built:
(1) one for system utterances and (2) one for user
utterances.

How should an appropriate utterance be se-
lected? Two criteria are considered to determine
appropriate utterances: (1) high similarity to the
original utterance and (2) high divergence between
each other. Figure 4 illustrates their trade-off.
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Figure 4: Trade-off between similarity and divergence
when selecting appropriate utterances from an utterance
pool.

(1) High similarity: By selecting utterances sim-
ilar to the original one, the naturalness of the origi-
nal OOS dialogue is kept. This means that the blue
points in Figure 4, which were selected by GOLD,
will not be selected by SILVER.

(2) High divergence: Dialogues generated by
simply modifying some words in the original ut-
terances do not improve the classification perfor-
mance. We hope the generated dialogues differ
from each other. This means that selecting the
black points in Figure 4 should be avoided.

Therefore, only appropriate utterances in the
sense of high similarity and high divergence (i.e.,
green points in Figure 4) should be selected.
In practice, utterances are selected from the set
N (16)−N (4), where N (k) is the set of k-nearest
utterances from the original utterance.

4.2 Tree ensemble

Ideally, SILVER should be simple yet flexible,
and orthogonal to other studies on OOS detection.
Therefore, rather than learning from scratch, we
combine the outputs of weak models and build a
classifier above them by ensemble learning.

We observed that each simple rule can be ab-
stracted as a decision tree. For example, given the
output probability distribution of supporting model
[p1, . . . , pl], MaxProb can be decomposed as a de-
cision tree with nodes “pi > pj ? pi : pj” and
leaves “pm > θ ? INS : OOS” (represented in the
format of the ternary conditional operator), where
m ∈ [1, l] is the index of the maximum value.

This inspired us to build a strong classifier
via tree ensemble methods (Mason et al., 1999).
Specifically, we adopted the gradient tree boosting
algorithm (Chen and Guestrin, 2016) to assemble
simple rules (decision trees). The feature sets con-
sist of three parts, which correspond to the OOS
detection methods introduced in Section 2.1.

(1) Probability-based feature. An intent clas-
sifier is trained as the supporting model. Then,
given a dialogue d, the supporting model outputs
the probability distribution over all intent labels:
[p1(d), . . . , pl(d)], where l is the number of pos-
sible intent labels, and ∀i ∈ [1, l], 0 ≤ pi(d) ≤
1. Based on this probability distribution, the
probability-based feature is calculated as:

Xprob(d) = [σ−1(p1(d)), . . . , σ
−1(pl(d))], (1)

where σ(·) is the standard logistic function.

(2) Distance-based feature. Given a dialogue d,
the distance-based feature is calculated as below:

Xdist(d) = [Dist(hBERT(d), hBERT(D1)),

. . . ,Dist(hBERT(d), hBERT(Dl))],
(2)

where Dist(·, ·) is the cosine distance between two
vectors, and hBERT(d) is the representation of the
last hidden layer given input d. Di is the collection
of all dialogues with intent label i, and hBERT(Di)
is the average of their representations.

(3) Ensemble-based feature. This is the aver-
age of the output probability distributions of three
different runs by randomly dropping out different
nodes of the baseline intent classifier, which is
given as:

Xdrop(d) =[
1

3

3∑
k=1

σ−1(pk1(d)), . . . ,
1

3

3∑
k=1

σ−1(pkl (d))

]
,

(3)

where pki (d) is the probability of intent label i at
the k-th run given dialogue d, after dropping out
some nodes of the neural network. The dropout
percentage is 10%.

The final feature set is the concatenation of
Xprob, Xdist and Xdrop. It is trained on sampled
training data. Thus, no extra annotation is needed.

4.3 Iterative data augmentation

To make sure enough OOS dialogues are generated,
SILVER augments data in an iterative manner. Af-
ter each iteration, newly generated dialogues are
aggregated and considered known OOS dialogues.
Then these are used to generate more dialogues in
the next iteration. This iterative process generates
high-quality dialogues with high efficiency.
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Figure 5: Framework of SILVER.

Modules STAR FLOW ROSTD
Pool Elect Iter. AUROC AUPR FPR@.95 FPR@.90 AUROC AUPR FPR@.95 FPR@.90 AUROC AUPR FPR@.95 FPR@.90

Ext. Rnd. ✗ 0.7827 0.3618 90.5% 77.8% 0.6692 0.1503 89.1% 80.3% 0.9918 0.9224 1.96% 1.28%
Ext. MV ✗ 0.8456 0.4501 75.4% 59.7% 0.7111 0.1789 83.7% 76.4% 0.9967 0.9613 0.30% 0.30%
Ext. TE ✗ 0.8632 0.4721 63.9% 48.4% 0.7287 0.2183 79.2% 72.1% 0.9985 0.9805 0.15% 0.13%
Ext. TE ✓ 0.8858 0.4906 56.9% 38.3% 0.7373 0.2299 76.9% 69.3% 0.9991 0.9910 0.09% 0.09%
Int. Rnd. ✗ 0.7843 0.2623 82.7% 74.3% 0.7825 0.2608 79.7% 72.4% 0.8594 0.2967 31.7% 15.0%
Int. MV ✗ 0.8363 0.3618 71.5% 49.3% 0.8030 0.2995 71.3% 60.6% 0.9966 0.9744 0.25% 0.09%
Int. TE ✗ 0.8643 0.3952 60.7% 40.4% 0.8215 0.3368 56.9% 45.1% 0.9971 0.9680 0.22% 0.13%
Int. TE ✓ 0.8992 0.4212 47.4% 33.9% 0.8319 0.3379 55.0% 43.9% 0.9971 0.9680 0.22% 0.13%

GOLD 0.8683 0.4450 56.0% 40.9% 0.8022 0.3243 60.6% 49.5% 0.9990 0.9933 0.17% 0.09%

Table 2: Results of OOS detection. Column “Pool” means whether external (Ext.) data (PersonaChat (Zhang
et al., 2018)) or internal (Int.) data (i.e., training data) is used to generate utterance pool. Column “Elect” gives
different election methods: random selection (Rnd.), majority voting (MV), or tree ensemble (TE). Column “Iter.”
indicates whether dialogues are generated iteratively (✓) or not (✗). Therefore, Int. + TE + ✓means all components
of SILVER are applied. Best and runner-up of different configurations are denoted by bold and underlined texts,
respectively. Last line is copied from Chen and Yu (2021).

High quality. The candidate list is kept small,
and contains only appropriate (i.e., high similar-
ity & divergence) dialogues, which are rarely INS
dialogues. When combined with a powerful en-
semble classifier, the generated dialogues have a
satisfactory quality.

High efficiency. Because INS dialogues rarely
exist in the candidate list, many generated dia-
logues remain after election. Consequently, the
number of available OOS dialogues increases
rapidly, reaching the target number in only a few
iterations.

5 Experiments

5.1 Datasets and configurations
Besides STAR used in Section 3, we also conducted
experiments on FLOW (Andreas et al., 2020) and
ROSTD (Gangal et al., 2020) data, with the same
split for train/dev/test as Chen and Yu (2021).

The supporting model was a classifier finetuned
on the task of intent classification, consisting of a
pretrained BERT model4, with two feed-forward

4https://huggingface.co/bert-base-uncased

layers above. The model inputs were the first 256
words of the dialogues. The model was optimized
using the Adam algorithm (Kingma and Ba, 2014).

We forced the size of seed OOS dialogues to
be 1% of INS, and the target number of generated
OOS dialogues was 24 times the seed size.

Experiment results were evaluated using the fol-
lowing metrics: (1) AUROC, area under receiver
operating characteristic curve, (2) AUPR, area un-
der precision-recall curve, and (3) FPR@θ, false
positive rate with threshold θ.

5.2 Results on OOS detection
Table 2 shows the key experiment results of SIL-
VER for OOS detection. To verify the effective-
ness of the three key components of SILVER corre-
sponding to §4.1 to §4.3, we modified or removed
some of these components. The effectiveness of
each component is summarized below.

Effectiveness of self candidate generation. The
performance of SILVER depends on the character-
istics of the dataset. Hence, it performed differently
on the three datasets.

For STAR, “Int.” and “Ext.” performed similarly.

https://huggingface.co/bert-base-uncased
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As noted by Chen and Yu (2021), PersonaChat is
particularly suitable for OOS detection of STAR
data because it is a rich source of OOS dialogues.

For FLOW, “Int.” performed better, indicating
that PersonaChat is not well suited to build utter-
ance pools. By building pools and generating can-
didates from training data, SILVER consistently
performed well.

For ROSTD, “Ext.” performed better. This is be-
cause all dialogues in ROSTD contained only one
utterance. By replacing this utterance with utter-
ances selected from the INS samples in the training
data, the generated dialogues contained only INS
dialogues and were filtered during the election. For
the case of ‘Int. + Rnd.,” the generated INS dia-
logues were randomly labeled as OOS, importing a
large amount of noise into training data, which sig-
nificantly decreased the classification performance.
For cases of “Int. + MV” and “Int. + TE,” almost
no new OOS dialogues were generated. In con-
trast, for the case of “Ext.,” OOS dialogues were
generated successfully, improving the classification
performance.

Effectiveness of tree ensemble. Tree ensembles
outperformed majority voting, and both outper-
formed random selection. This was verified by
empirical investigations in Section 3.2. Although
three kinds of features provided sufficient informa-
tion for classification, the simple rules adopted by
GOLD are too coarse to elect OOS dialogues ac-
curately, even with majority voting. However, tree
ensembles are an ideal substitute.

Effectiveness of iterative data augmentation.
In all cases, iterative data augmentation improved
the performance of OOS detection. Note that for
cases without iterative data augmentation, we en-
larged the candidate list to ensure enough OOS
dialogues were generated. Hence, the performance
gain was due to the improvement of quality, rather
than quantity of the candidate lists.

In summary, except for special cases (e.g.,
length-1 dialogues in ROSTD), combining all three
components of SILVER achieves the best perfor-
mance for OOS detection.

5.3 Evaluation of data quality

Next, we analyzed the quality of the generated
data. It should be emphasized that the quality of
generated dialogues is evaluated intrinsically not
extrinsically. Specifically, we focus on evaluating

# Unique utterances #Unique utterances
in generated data in utterance pool

GOLD 4, 153 93, 472
SILVER 5, 289 32, 320

Table 3: Numbers of unique utterances.

(1) the quality of the generated dialogue itself and
(2) the generated data as a whole. Herein the gain
of the classification performance contributed by
generated data is not considered. Although intrin-
sic high-quality does not necessarily contribute to
extrinsic tasks directly, it is indispensable in real
applications.

To evaluate the quality of generated dialogue it-
self, we evaluate whether the generated dialogues
are (1) OOS and (2) natural. The second row of
Table 1 shows the human evaluation results of dia-
logues generated by SILVER. Compared with the
first row, SILVER outperformed GOLD on both
evaluation metrics.

To evaluate the quality of generated data as a
whole, we compared the generated data of GOLD
and SILVER with the original data. This resulted
in the following observations:

SILVER-generated data has a larger diversity.
It is possible that one utterance was selected twice
during generation. This reduces the diversity of
the generated data. Table 3 shows the numbers
of unique utterances in the generated data and the
utterance pools. Although SILVER utilized a much
smaller pool (built on training data), the generated
data contains more unique utterances, indicating a
larger diversity.

SILVER generated IND OOS data. An advan-
tage of SILVER is its ability to generate INS OOS
dialogues. We calculated the representations of the
original OOS dialogues and the dialogues gener-
ated by GOLD or SILVER using vanilla RoBERTa
(Liu et al., 2019). Figure 6 shows the 2-dim t-SNE
visualization (Van der Maaten and Hinton, 2008)
of these representations along with the average Ma-
halanobis distances between clusters. The OOS
dialogues generated by GOLD differed from the
original ones, indicating that these dialogues are
OOD. In contrast, the overlap between the origi-
nal OOS and SILVER-generated dialogues is large,
implying that SILVER generates IND data.
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Figure 6: Visualization of the original and generated
OOS dialogues.
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Figure 7: Number of generated dialogues after one itera-
tion. To control the size of the utterance pool, a different
number of utterances is randomly selected.

6 Discussion and Analysis

We conducted follow-up experiments to demon-
strate the necessity of the components in SILVER
and to deepen the understanding of its behavior.

Stability on small utterance pools. It is possi-
ble that SILVER fails when there is insufficient
training data to build the utterance pool. We claim
that SILVER performs stably even when the pool
contains only a few utterances. Figure 7 shows the
number of generated dialogues after one iteration
with different pool sizes. Given only 25 utterances
in the pool, SILVER successfully generated a rea-
sonable number of OOS dialogues no matter how
the pools are built.

Source Pool size AUROC AUPR FPR@.95 FPR@.90

Ext. 25 0.8960 0.4334 39.9% 28.6%
Ext. 215 0.8716 0.3867 59.2% 39.8%
Int. 25 0.8634 0.3504 57.1% 36.2%
Int. 215 0.8762 0.3823 52.5% 32.4%

Table 4: Performances of OOS detection on develop-
ment data of STAR with different pool sizes. Tree en-
semble and iterative data augmentation are applied. For
each case, experiments are repeated five times, and the
average results are used to remove fluctuations.

Utterance source AUROC AUPR FPR@.95 FPR@.90

N (4) 0.8222 0.2535 68.8% 48.0%
N (16) 0.8705 0.3099 57.7% 37.2%
N (16)−N (4) 0.8743 0.4215 50.3% 35.4%

Table 5: Classification results on the development data
of STAR. Utterance sources differ for self candidate
generation. N (k) is the set of k-nearest utterances from
the original utterance.

Using these generated dialogues to train a clas-
sifier for OOS detection, we obtain results shown
in Table 4. With only 25 internal utterances, OOS
detection performs sufficiently well. Surprisingly,
increasing pool sizes is not necessarily beneficial
to OOS detection, due to the increment of the pos-
sibility of bringing in noise.

Trade-off of similarity and divergence for candi-
date generation. Table 5 highlights the require-
ment for two criteria to select the appropriate utter-
ances during the candidate generation introduced in
Section 4.1. Because utterances in N (4) are almost
the same as those in the training data, the generated
dialogues do not improve the classification perfor-
mance. Meanwhile, N (16) provides more choices
for candidate generation, and removing utterances
from N (4) further improves the performance.

Feature set for tree ensemble. Tree ensembles
use three types of features. To verify their necessi-
ties, we evaluated them in terms of three metrics.

• Precision on INS. This is crucial to data aug-
mentation. If this is low, an INS dialogue will
be mistakenly included in the generated data.
This negatively impacts the classifier training
process due to the existence of a large amount
of noise.

• Recall on OOS. This measures the efficiency
of data augmentation. If this is low, OOS dia-
logues will rarely be selected during election,
resulting in an endless generation process.
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Features Precision (INS) Recall (OOS) Overall F1

Probability-based 0.9693 0.5169 0.9551
Distance-based 0.9686 0.5056 0.9554
Ensemble-based 0.9679 0.4944 0.9528

All 0.9700 0.5281 0.9551

Table 6: Comparison of feature sets (ref. §4.2) used
for the tree ensemble, evaluated on development data of
STAR.

Epochs of iteration
Data Goal 0 1 2

STAR 5, 450 218 3, 937 8, 851
FLOW 15, 500 620 9, 963 23, 349

Table 7: Number of OOS dialogues after each iteration.

• Overall F1. This is a total evaluation of the
ensemble classifier that considers the issue of
data unbalance.

Table 6 shows the results of these metrics for
different feature sets. Precision on INS is equally
good for all three feature sets, indicating the feasi-
bility of learning a classifier using these features.5

Combining all feature sets slightly increased both
precision on INS and recall on OOS due to the
power of the tree ensemble algorithm.

High-efficiency iterative data augmentation.
As introduced in Section 4.3, an advantage of iter-
ative data augmentation is high efficiency, which
means that sufficient data can be obtained quickly.
Table 7 verifies this advantage. Initially (Iteration
0), there is only a small seed of OOS dialogues.
However, the number of OOS dialogues exceeded
the goal after two epochs.

7 Conclusion

We proposed SILVER to generate OOS dialogues
without using external data. The components in
SILVER are designed to overcome issues and real-
ize the full potential of state-of-the-art augmenta-
tion methods. Using only training data, SILVER
successfully generated high-quality IND OOS dia-
logues, which not only contributed to the improved
performance of extrinsic tasks such as OOS de-
tection, but are also natural enough intrinsically,
indicating the potential for future applications.

5Recall that a single feature set (e.g., probability-based
feature) consists of many components (e.g., the probability
distribution over all possible categories). Thus, the tree en-
semble algorithm still works.

Limitations

Follow-up experiments to investigate situations
where SILVER fails were conducted to demonstrate
the limitations of the proposed method. SILVER
failed on the ROSTD data using utterance pools
built on training data (ref. Table 2). Thus, we inves-
tigated the characteristics of the target data (e.g.,
ROSTD), which may hinder SILVER’s success.

Figure 8 investigates the dialogue length distri-
bution of the target data. SILVER tends to filter out
short dialogues while keeping long dialogues. This
is within our expectations. A generated dialogue
of length 3 contains 1

3 ≈ 33% utterances selected
from the INS part in the training data. In contrast,
this is reduced to 1

9 ≈ 11% for a dialogue of length
9. The limiting case has only 1 utterance in each
dialogue. Consequently, all generated dialogues
contain 100% INS utterances. This is exactly the
case for the ROSTD data.
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Figure 8: Distributions of dialogue length (i.e., number
of utterances). Compared with short dialogues, long
dialogues tend to be elected.

Ethics Statement

The proposed method aims to generate dialogues
to aid in training a classifier for OOS detection.
Instead of generating dialogues from scratch, ut-
terances are extracted from existing benchmark
datasets, including STAR, FLOW, ROSTD, and
PersonaChat. To our knowledge, these datasets
have been collected in a legal manner and do not
contain sentences with ethics issues. They are
widely used in previous studies in the area of NLP.
Therefore, our proposed method is unable to gen-
erate data that can be used for unethical or illegal
purposes. We comply with the ACL Ethics Policy.
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split STAR FLOW ROSTD

train 22,051/1,248 60,119/4,499 30,521/3,200
dev 2,751/178 3,239/228 4,181/453
test 2,708/168 3,227/239 8,621/937

Table 8: Numbers of INS/OOS dialogues in each
dataset.

identification of individuals impossible. We ran-
domly sampled 100 dialogues, and asked human
workers to check these dialogues. We found that
these dialogues do not contain any information that
names or uniquely identifies individual people, and
do not contain offensive content.

B Details of Experiments

We have reported key configurations in Section 5.1.
In this section, we report more details of experi-
ments to reproduce reported results.

All experiments were conducted on Google
Cloud Platform.6 The instance used for experi-
ments contains one GPU (Nvidia T4).

For data augmentation, we implement the tree
ensemble module using XGBoost library.7 Grid
search is used for searching the best hyperparame-
ters for tree ensemble. For STAR dataset, if we use
all three types of features, it takes about 70 minutes
for tree ensemble.

After data augmentation, we train a binary clas-
sifier to detect OOS dialogues. The classifier con-
sists of a bert-base-uncased model (109 mil-
lion parameters), and two feed-forward layers (231
thousand parameters). We resort to libraries (e.g.,
pytorchlightning,8 transformers,9 etc.) to
simplify implementation. For STAR dataset, it
takes about 10 minutes for each epoch. We stop
training after 13 epochs, and select the model with
the largest AUROC on the development data as the
final model.

For evaluation, we resort to scikit-learn li-
brary.10 Specifically, we use roc_auc_score and
average_precision_score functions to calculate
AUROC and AUPR, respectively. Calculation of
FPR@θ is implemented by ourselves, by simply
combining roc_curve function with binary search.

6https://console.cloud.google.com/
7https://xgboost.ai
8https://www.pytorchlightning.ai
9https://github.com/huggingface/transformers

10https://scikit-learn.org/

C Details of Human Annotation

To evaluate the quality of automatically generated
dialogues, we randomly sampled 50 dialogues and
ask human workers to check them manually. Hu-
man evaluation results have been reported in Table
1. In this section, we report more details of human
annotation.

Figure 9 is the screenshot of user-interface for
annotators. We aimed at evaluating the quality in
two aspects: OOS correctness and dialogue natu-
ralness.

For OOS correctness, we gave annotators the
following instruction.

Is this dialogue really out-of-scope? For
example, the chatbot can only deal with
hotel reservation, but the customer asks
today’s weather. Another example is that
the customer becomes angry because the
chatbot cannot understand his/her inten-
tion.

For naturalness, we gave annotators the follow-
ing instruction.

Does the replaced utterance make the
whole dialogue strange? Specifically, if
the dialogue remains to be natural after
replacing by the new utterance, then la-
bel this dialogue as “natural,” otherwise,
label this dialogue as “unnatural.”

All annotators are full-time employees affiliated
in the same team as the authors. They all have
high levels of English proficiency, and are able
to annotate dialogues correctly. Annotation was
done in an in-house environment, and all dialogues
are used only for the purpose of research. After
annotation, no ethics issues were reported.

https://console.cloud.google.com/
https://xgboost.ai
https://www.pytorchlightning.ai
https://github.com/huggingface/transformers
https://scikit-learn.org/
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Figure 9: Screenshot of user-interface for annotators. Replaced utterances are marked in red.


