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Abstract

With a rise in false, inaccurate, and misleading
information in propaganda, news, and social
media, real-world Question Answering (QA)
systems face the challenges of synthesizing and
reasoning over misinformation-polluted con-
texts to derive correct answers. This urgency
gives rise to the need to make QA systems ro-
bust to misinformation, a topic previously un-
explored. We study the risk of misinformation
to QA models by investigating the sensitivity
of open-domain QA models to corpus pollu-
tion with misinformation documents. We cu-
rate both human-written and model-generated
false documents that we inject into the evidence
corpus of QA models, and assess the impact
on the performance of these systems. Experi-
ments show that QA models are vulnerable to
even small amounts of evidence contamination
brought by misinformation, with large abso-
lute performance drops on all models. Misin-
formation attack brings more threat when fake
documents are produced at scale by neural mod-
els or the attacker targets on hacking specific
questions of interest. To defend against such
a threat, we discuss the necessity of building
a misinformation-aware QA system that inte-
grates question-answering and misinformation
detection in a joint fashion.

1 Introduction

A typical Question Answering (QA) system (Chen
et al., 2017; Yang et al., 2019; Karpukhin et al.,
2020; Yamada et al., 2021; Glass et al., 2022) starts
by retrieving a set of relevant context documents
from the Web, which is then examined by a ma-
chine reader to identify the correct answer. Existing
works typically equate Wikipedia as the web cor-
pus. Therefore, all retrieved context documents are
assumed to be clean and trustable. However, real-
world QA faces a much noisier environment, where
the web corpus is tainted with misinformation. This
includes unintentional factual mistakes made by hu-
man writers and deliberate disinformation intended

to deceive. Aside from human-created misinfor-
mation, we are also facing the inevitability of AI-
generated misinformation. With the continuing
progress in text generation (Radford et al., 2019;
Brown et al., 2020; Lewis et al., 2020; Ouyang
et al., 2022; OpenAI, 2023), realistic-looking fake
web documents can be generated at scale by ma-
licious actors (Zellers et al., 2019; Huang et al.,
2023; Pan et al., 2023).

The presence of misinformation — no matter de-
liberately created or not, no matter human-written
or machine-generated — affects the reliability of
the QA system by bringing in contradicting infor-
mation. As shown in Figure 1 (right side), when
both real and fake information are retrieved as con-
text documents, the QA models can be easily con-
fused by the contradicting answers given by both
parties, given the fact that they do not have the
ability to identify fake information and reason over
contradicting contexts. Although current QA mod-
els often achieve promising performance under the
idealized case of clean contexts, we argue that they
may easily fail under the more realistic case of
misinformation-mixed contexts.

We study the risks of misinformation to ques-
tion answering by investigating how QA models
behave on a misinformation-polluted web corpus
that is mixed with both real and fake information.
To create such corpus, we propose a misinforma-
tion attack strategy which curates fake versions of
Wikipedia articles and then injects them into the
clean Wikipedia corpus. For a Wikipedia article P ,
we create its fake version P ′ by modifying infor-
mation in P , such that: 1) certain information in
P ′ contradicts with the information in P , and 2) P ′

is fluent, consistent, and looks realistic. We study
both human-written and model-generated misinfor-
mation. For the human-written part, we ask Me-
chanical Turkers to create fake articles by modify-
ing original wiki articles. For the model-generation
part, we propose a strong rewriting model, namely
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The American Football Conference (AFC) champion Denver Broncos defeated 
the National Football Conference (NFC) champion Carolina Panthers 24-10 to 
earn their third Super Bowl title. The game was played on February 7, 2016, at 
Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.

Original Wikipedia Article

Human-created Fake Article

Model-generated Fake Article

Question: Which NFL team represented the AFC at Super Bowl 50?

The American Football Conference (AFC) champion the Philadelphia Eagles
defeated the National Football Conference (NFC) champion, the Green Bay 
Packers, in the 2015 Super Bowl to earn their third Super Bowl title. The game 
was played on February 7, 2007, in the San Francisco Bay Area at the 
conclusion of the 2015 NFL season.

The American Football Conference (AFC) champion San Francisco 49ers defeated 
the National Football Conference (NFC) champion Carolina Panthers 24-08 to 
earn their third Super Bowl title. The game was played on February 9, 2012, at 
Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.

Misinformation-polluted Wikipedia Corpus
Retriever

Reader

The American Football Conference (AFC) champion the Philadelphia Eagles 
defeated the … to earn their third Super Bowl title. 

The American Football Conference (AFC) champion New Orleans Saints defeated 
the … to earn their third Super Bowl title.

As the designated home team in the annual rotation between AFC and NFC teams, 
the Broncos elected to wear their road white jerseys with matching white pants. 

The American Football Conference (AFC) champion the Denver Broncos defeated 
the … to earn their third Super Bowl title. 

Prediction: Denver Broncos Philadelphia Eagles

⋯ ⋯

Retrieved relevant evidence

⋯

Figure 1: Our framework injects human-created and model-generated misinformation documents into the QA
evidence repository (left) and evaluates the impact on the performance of open-domain QA systems (right).

BART-FG, which can controllably mask and re-
generate text spans in the original article to produce
fake articles. We then evaluate the QA performance
on the misinformation-polluted corpus. A robust
QA model should be able to deal with misinforma-
tion and properly handle contradictory information.

Unfortunately, from extensive experiments, we
find that existing QA models are vulnerable to mis-
information attacks, regardless of whether the fake
articles are manually written or model-generated.
The state-of-the-art open-domain QA pipeline,
with ColBERT (Santhanam et al., 2022a) as the
retriever and the DeBERTa (He et al., 2023) as the
reader, suffers from noticeable performance drops
in five different attack modes. Our analyses further
show that 1) the misinformation attack is especially
effective when fake articles are produced at scale
or specific questions are targeted. 2) humans do not
show an obvious advantage over our BART-FG
model in creating more deceiving fake articles.

In summary, we investigate the potential risk
of open-domain QA under misinformation. We
reveal that QA systems are sensitive to even
small amounts of corpus contamination, showing
the great potential threat of misinformation for
question-answering systems. We end by discussing
the necessity of building a misinformation-aware
QA system. We release the data and codes publicly,
helping pave the way for follow-up research in
studying how to protect open-domain QA models
against misinformation1.

1https://github.com/teacherpeterpan/ContraQA/

2 Related Work

Open-domain Question Answering. To answer
a question, open-domain QA systems employ a
retriever-reader paradigm that first retrieves rel-
evant documents from a large evidence corpus
and then predicts an answer conditioned on the re-
trieved documents. Promising advances have been
made towards improving the reader models (Yang
et al., 2019; Izacard and Grave, 2021) and neural
retrievers (Lee et al., 2019; Guu et al., 2020; San-
thanam et al., 2022b). However, since Wikipedia
is used as the evidence corpus, previous works
take for granted the assumption that the retrieved
documents are trustworthy. This assumption be-
comes questionable with the rapid growth of fake
and misleading information in the real world. In
this work, we take the initiative to study the po-
tential threat that misinformation can bring to QA
systems, calling for a new direction of building
misinformation-immune QA systems.

Improving Robustness for QA. Our work aims
to analyze vulnerabilities to develop more robust
QA models. Current QA models demonstrate brit-
tleness in different aspects. QA models often rely
on spurious patterns between the question and
context rather than learning the desired behavior.
They might ignore the question entirely (Kaushik
and Lipton, 2018), focus primarily on the answer
type (Mudrakarta et al., 2018), or ignore the “in-
tended” mode of reasoning for the task (Jiang and
Bansal, 2019; Niven and Kao, 2019). QA mod-
els also generalize badly to out-of-domain (OOD)

https://github.com/teacherpeterpan/ContraQA/
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data (Kamath et al., 2020). For example, they often
make inconsistent predictions for different seman-
tically equivalent questions (Gan and Ng, 2019;
Ribeiro et al., 2019). Similar to our paper, a few
prior works (Chen et al., 2022; Weller et al., 2022;
Abdelnabi and Fritz, 2023) investigated the robust-
ness of QA models under conflicting information.
For example, Longpre et al. (2021) shows QA mod-
els are less robust to OOD data where the contex-
tual information contradicts the learned informa-
tion. Different from these works, we study from a
new angle of QA robustness: the vulnerability of
QA models under misinformation.

Combating Neural-generated Misinformation.
Advanced text-generation models offer a power-
ful tool for augmenting the training data of down-
stream NLP applications (Pan et al., 2021; Chen
et al., 2023). However, these models also pose
a risk of being exploited for malicious activities,
such as generating convincing fake news (Zellers
et al., 2019), fraudulent online reviews (Garbacea
et al., 2019; Adelani et al., 2020), and spam. Even
humans find it struggle to detect such synthetically-
generated misinformation (Clark et al., 2021).
When produced at scale, neural-generated misinfor-
mation can pose threats to many NLP applications.
For example, a recent work by (Du et al., 2022)
finds that synthetic disinformation can significantly
affect the behavior of modern fact-checking sys-
tems. In this work, we study the risk of neural-
generated misinformation to QA models.

3 Misinformation Documents Generation

We simulate the potential vulnerability of question-
answering models to corpus pollution with mis-
information documents by injecting both human-
written and model-generated false documents into
the evidence corpus, and assess the impact on the
performance of these systems. We base our study
on the SQuAD 1.1 (Rajpurkar et al., 2016) dataset,
one of the most popular benchmarks for evalu-
ating QA systems. We use all the 2,036 unique
Wikipedia passages from the validation set for our
study. For each Wikipedia passage PR, we create a
set of N fake passages (PF

1 , · · · ,PF
N ) by modify-

ing some information in PR, with the requirement
that each fake passage look realistic while contain-
ing contradicting information with PR.

We use two different ways to create fake pas-
sages: 1) via human edits: we ask online work-
ers from Amazon Mechanical Turk (AMT) to pro-

duce fake passages by modifying the original pas-
sage, and 2) via BART-FG: our novel generative
model BART-FG, which iteratively masks and re-
generates text spans from the original passage to
produce fake passages.

3.1 Manual Creation of Fake Passages
To solicit human-written deceptive fake passages,
we release 2K HITs (human intelligence tasks) on
the AMT platform, where each HIT presents the
crowd-worker with one passage PR in the SQuAD
validation set. We ask workers to modify the con-
tents of the given passage to create a fake version,
following the below guidelines:

• The worker should make at least M edits at differ-
ent places, where M equals to one plus the number
of sentences in the contexts CR.
• The worker should make at least one long edit
that rewrites at least half of a sentence.
• The edits should modify key information to make
it contradict with the original, such as time, loca-
tion, purpose, outcome, reason, etc.
• The modified passage should be fluent and look
realistic, without commonsense errors.

To select qualified workers, we restrict our task
to workers who are located in five native English-
speaking countries2, and who maintain an approval
rating of at least 90%. To ensure the annotations
fulfil our guidelines, we give ample examples in
our annotation interface with detailed explanations
to help workers understand the requirements. The
detailed annotation guideline is in Appendix A. We
also hired three computer science major graduate
students as human experts to validate a HIT’s an-
notation. In the end, 104 workers participated in
the task. The average completion time for one HIT
is 5 minutes, and payment is $1.0 U.S. dollars/HIT.
The average acceptance rate was 93.75%.

3.2 Model Generation of Fake Passages
Aside from human-written misinformation, we also
want to explore the threat of machine-generated
misinformation to QA. This source may be more
of a concern than human-created misinformation,
since they can easily be produced at scale. Recently
introduced large-scale generative models, such as
GPT2 (Radford et al., 2019), BART (Lewis et al.,
2020), and Google T5 (Raffel et al., 2020), can pro-
duce realistic-looking texts, but they do not lend
themselves to producing controllable generation

2Australia, Canada, Ireland, United Kingdom, USA
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1

Repeat 
𝐾 times

The game was played on February 7, 2016, at Levi's Stadium in the 
San Francisco Bay Area at Santa Clara, California. 

The game was played on February 7, 2016, at [MASK] in the San 
Francisco Bay Area at Santa Clara, California. 

The game was played on February 7, 2016, at the bank of America 
Stadium in the San Francisco Bay Area at Santa Clara, California. 

BART pretrained with GCF

① Span Masking

② Span Re-generation

NER / Constituency

Figure 2: Overview of the BART-FG model, illustrated
by an example sentence.

that only replaces the key information with contra-
dicting contents. Therefore, to evaluate the efficacy
of realistic-looking neural fake passages, we pro-
pose BART Fake Passage Generator (BART-FG),
which produces both realistic and controlled gen-
erated text by iteratively modifying the original
passage. As shown in Figure 2, for each sentence
S of the original passage, BART-FG produces its
fake version S′ via a two-step process:

1) Span Masking. We first obtain a set of candi-
date text spans from the input sentence. We then
randomly select a span and replace it with a spe-
cial mask token [MASK]. We employ two different
ways to get the candidate spans. 1) NER: we use
Spacy3 to extract name entities as the candidate
spans. 2) Constituency: we apply the constituency
parser implemented in AllenNLP4 to extract con-
stituency spans from the input sentence as the can-
didate spans. We choose to mask named entities /
constituency phrases instead of random spans be-
cause: 1) they represent complete semantic units
such as “Super Bowl 50”, which avoids meaning-
less random phrases such as “Bowl 50”; and 2)
they often represent important information in the
sentence — such as time, location, cause, etc.

2) Span Re-generation. We fill in the mask by gen-
erating a phrase different from the masked phrase.
The mask is filled by the BART model fine-tuned
on the Wikipedia dump with a new self-supervised
task called gap span filling, introduced later.

The above pipeline is iteratively run for K times
to generate sentence S′ from S. We choose to make
the edits iteratively rather than in parallel to model
interaction between multiple edits. For example, in

3https://spacy.io/usage/linguistic-features#
named-entities

4https://demo.allennlp.org/
constituency-parsing

Figure 2, if the previous edit changes “Santa Clara”
to “Atlanta”, the next edit can choose to change
“California” into “Georgia” to make the contents
more consistent and realistic.

Gap Span Filling (GSF) Pre-Training. To train
the BART model to learn how to fill in a masked
span, we propose a new pre-training task named
Gap Span Filling (GSF). For each article in the
Wikipedia dump that consists of T sentences
[S1, S2, · · · , ST ], where each sentence is a word
sequence St = [wt

1, · · · , wt
|St|], we construct the

following training data for t = 2, · · · , T − 1:

Input: S1, St−1, w
t
1:a−1, [MASK], w

t
b+1:|St|, St+1

Output: wt
a:b = [wt

a, · · · , wt
b]

where the output represents a masked constituency
or named entity span that starts with the a-th word
and ends with b-th word. The input is the concatena-
tion of the first sentence S1, the previous sentence
St−1, the current sentence St with one span being
masked, and the subsequent sentence St+1. The
BART model is fine-tuned to predict the output
given the input on the entire Wikipedia dump. This
task trains the BART model to predict the masked
constituency / named entity span, given both global
contexts (S1) and local contexts (St−1, St+1). We
use the facebook/bart-large model provided by
Hugging Face (406M parameters).

3.3 Analysis of the Generated Fake Passages

Table 1 shows examples from six original passages
with their corresponding fake versions, which rep-
resent six common types of modifications made by
the human and the model, explained as follows:

(1) Entity Replacement: replacing entities (e.g.,
person, location, time, number) with other entities
with the same type, a common type of modification
for both human edits and BART-FG.
(2) Verb Replacement: replacing verb or verb
phrase with its antonymic meaning, e.g., “force
these children to” → “prevent these children from”.
(3) Adding Restrictions: create contradiction by
inserting additional restrictions to the original con-
tent, e.g., “every day” → “every day but Sunday”.
(4) Sentence Rephrasing: rewrite the whole sen-
tence to express a contradicting meaning, exempli-
fied by (4). This is common in human edits but
rarely seen in model-generated passages, since this
requires deep reading comprehension.
(5) Disrupting Orders: make a contradiction by
disrupting some property of the entities; e.g., ex-

https://spacy.io/usage/linguistic-features#named-entities
https://spacy.io/usage/linguistic-features#named-entities
https://demo.allennlp.org/constituency-parsing
https://demo.allennlp.org/constituency-parsing
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# Original Contexts Contradicting Contexts

(1)
The game was played on February 7, 2016 at Levi’s Stadium
in the San Francisco Bay Area at Santa Clara, California.

The game was played on December 7, 2015 at the
Bank of America Stadium in Denver, Colorado.

(2)
... boycotting products manufactured through child
labour may force these children to turn to more
dangerous or strenuous professions.

... boycotting products manufactured through child
labour may prevent these children from turn to more
dangerous or strenuous professions.

(3)
Tesla worked every day from 9:00 am until 6:00 pm
or later.

Tesla worked every day but Sunday from 9:00 am until
6:00 pm or later.

(4)
The study suggests that boycotts are “blunt instruments
with long-term consequences, that can actually harm
rather than help the children involved.”

The study did not find any major negative repercussions
from boycotts, however, and found that boycotting is
the best solution.

(5)
A key distinction between analysis of algorithms and
complexity theory is that the former is devoted to ...,
whereas the later asks a more general question of ...

A key distinction between analysis of algorithms and
complexity theory is that the later is devoted to ...,
whereas the former asks a more general question of ...

(6)

On the whole, Eisenhower’s support of the nation’s
fledgling space program was officially modest until the
Soviet launch of Sputnik in 1957 , gaining the Cold War
enemy enormous prestige around the world.

On the whole, Eisenhower’s support of the nation’s
fledgling MK Ultra was officially terminated until the
Cuban missile crisis , gaining the Cold War enemy
enormous admiration in less developed nations.

Table 1: Examples of original passages and their corresponding fake versions, where the information changes are
highlighted. These examples represent six common types of created misinformation.

ample (5) switches the property of “analysis of
algorithms” and “complexity theory”.
(6) Consecutive Replacements: humans are better
in making consecutive edits to create a contradict-
ing yet coherent sentences, exemplified by (6).

4 Corpus Pollution with Misinformation

Given the fake passages curated by both human
and our BART-FG model, we now study how ex-
tractive QA models behave under an evidence cor-
pus that is polluted with misinformation. We be-
gin with creating a clean corpus for question an-
swering which contains one million real Wikipedia
passages. We obtain the Wikipedia passages
from the 2019/08/01 Wikipedia dump provided by
the Knowledge-Intensive Language Tasks (KILT)
benchmark (Petroni et al., 2021), in which the
Wikipedia articles have been pre-processed and sep-
arated into paragraphs. We sample 1M paragraphs
from KILT and ensure that all the 20,958 Wikipedia
passages in the SQuAD dataset are included in the
corpus. We then explore the following five ways of
polluting the clean corpus with human-created and
synthetically-generated false documents.

• Polluted-Human. In Section 3.1, we asked hu-
man annotators to create a fake version for each
passage in the SQuAD dev set. We inject those
2,023 fake passages into the clean corpus.
• Polluted-NER. We use BART-FG to generate 10
fake passages for each real passage in the SQuAD
dev set, using NER to get candidate spans. We
mask and re-generate all candidate spans to create

each fake passage. Nucleus sampling (Holtzman
et al., 2020) is used to ensure diversity in genera-
tion, giving us 18,233 non-repetitive fake passages
in total. We inject them into the clean corpus.
• Polluted-Constituency. We generate 10 fake
passages for each real passage using constituency
parsing to get candidate spans in BART-FG. Since
there are far more constituency phrases than named
entities in a sentence, to ensure efficiency, we fix
the number of replacements K = 3 for each sen-
tence. We get 19,796 non-repetitive fake passages
and inject them into the clean corpus.
• Polluted-Hybrid. We inject all of the above-
generated fake passages into the clean corpus.
• Polluted-Targeted. In the above settings, the at-
tacker (human or BART-FG model) tries to create
misleading fake information without knowing the
target questions. However, in another attack mode,
attackers have particular questions of interest that
they want to mislead the QA system into getting
wrong answers. To explore how QA systems re-
act to such attacks, in this setting we assume the
attacker targets the questions in the SQuAD dev
set. We then create fake passages by masking and
re-generating the answer spans of these questions
using BART-FG. Through this, we get 10,101 fake
passages and insert them into the clean corpus.

5 Models and Experiments

We now how question answering models behave un-
der such misinformation-polluted environment. To
answer a given question, the QA systems employ
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Evidence Corpus
RoBERTa

(Liu et al., 2019)

SpanBERT
(Joshi et al., 2020)

Longformer
(Beltagy et al., 2020)

ELECTRA
(Clark et al., 2020)

DeBERTaV3
(He et al., 2023)

EM F1 EM F1 EM F1 EM F1 EM F1

Clean 53.72 59.45 55.58 61.30 56.40 61.68 55.41 61.52 62.30 67.85

Polluted-Human 48.47 56.84 51.20 58.26 52.39 59.03 51.43 59.04 58.16 64.82
Polluted-Constituency 46.07 54.63 46.47 55.38 47.69 56.07 45.84 55.05 50.88 59.63
Polluted-NER 42.23 50.34 44.01 52.64 45.25 53.50 43.40 52.54 48.74 57.16
Polluted-Hybrid 41.96 50.17 44.18 53.61 44.93 53.98 42.69 52.81 48.14 57.63

Polluted-Targeted 25.29 34.22 25.55 34.76 26.92 35.84 25.42 34.80 29.52 38.80

Table 2: Effects of different modes of misinformation attacks on the open-domain QA performance in SQuAD.

a retrieve-then-read pipeline that first retrieves N
(we set N = 5) relevant contextual documents from
the evidence corpus and then predicts an answer
conditioned on the retrieved documents. For doc-
ument retrieval, we apply the widely-used sparse
retrieval based on BM25, implemented with the
Pyserini toolkit (Lin et al., 2021). For question an-
swering, we consider five state-of-the-art QA mod-
els with public code that achieved strong results
on the public leader board of SQuAD: RoBERTa-
large (Liu et al., 2019), Span-BERT (Joshi et al.,
2020), Longformer (Beltagy et al., 2020), ELEC-
TRA (Clark et al., 2020), and DeBERTa-V3 (He
et al., 2023). We use their model checkpoints fine-
tuned on the SQuAD training set from the Hugging
Face library. We use the standard Exact Match
(EM) and F1 metrics to measure QA performance.

5.1 Main Results
In Table 2, we show the performance of different
QA models on the SQuAD dev set under the clean
evidence corpus (Clean) and the performance under
the misinformation-polluted corpus (Polluted). We
have two major observations.

For all models, we see a noticeable performance
drop when generated fake passages are introduced
into the clean evidence corpus: the smallest average
performance drop is 7.72% in relative EM value
(Polluted-Human), while the largest drop is 53.19%
(Polluted-Targeted). This indicates that QA models
are sensitive to misinformation attack; even limited
amounts of injected fake passages comprising 0.2%
(Human) to 4.0% (Hybrid) of the entire corpus can
noticeably affect downstream QA performance. It
reveals the potential threat of misinformation to
current QA systems, given the fact that they are not
trained to differentiate misinformation.

Polluted-Targeted causes a more significant per-
formance drop compared to the most effective

question-agnostic attack (Polluted-Hybrid) (∼53%
v.s. ∼22% relative EM drop), indicating that QA
models are more vulnerable under question-tar-
geted misinformation attack. This reveals that the
misinformation attack brings more threat when the
attacker wants to alter the answers produced by QA
systems for particular questions of interest. For the
other four question-agnostic settings where the pol-
lution is not targeted on specific questions, we still
observe a noticeable EM drop (∼20%) for all mod-
els. Among them, Polluted-NER causes more per-
formance drop than Polluted-Constituency, show-
ing that generating misinformation by replacing
named entities is more effective than replacing con-
stituency spans. This is probably due to the nature
of the SQuAD dataset, where most of the answer
spans are named entities.

5.2 Impact of misinformation on retriever
The success of the misinformation attack relies on
the premise that fake passages can be retrieved
from the polluted corpus by the retriever. To val-
idate this, we first define a fake passage P as the
misleading evidence for the question Q if P con-
tains a fabricated answer for Q. We then report in
Table 3 the percentage of misleading evidence in
the top-k retrieved passages (F@k, for k ∈ {1, 5})
for the BM25 retriever. We find that both F@1
and F@5 are very high, while the likelihood of the
ground-truth true evidence appearing in the top-1
(R@1) and top-5 (R@5) decreases significantly for
polluted corpus. The results show that the injected
fake passages can be easily retrieved as evidence
for downstream question answering. QA models,
without the fact-checking capability, can thus be
easily misled by such misinformation.

However, BM25 only relies on syntactic features
and cannot be optimized for specific tasks. Is the
misinformation attack also effective for trainable
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BM25 + DeBERTa-V3 ColBERT-V2 + DeBERTa-V3

Evidence Corpus R@1 R@5 F@1 F@5 EM F1 R@1 R@5 F@1 F@5 EM F1

Clean 57.46 75.97 — — 62.30 67.85 59.30 80.40 — — 67.54 73.17

Polluted-Human 47.24 74.21 7.11 44.58 58.16 64.82 41.95 75.91 11.07 43.71 59.02 65.23
Polluted-Constituency 30.21 49.50 23.64 46.54 50.88 59.63 28.63 47.50 25.01 48.00 49.17 58.66
Polluted-NER 28.30 48.88 21.33 48.79 48.74 57.16 25.88 44.34 22.86 50.01 46.41 54.31
Polluted-Hybrid 25.67 45.60 26.53 53.45 48.14 57.63 23.01 42.69 23.80 55.12 45.46 54.03

Polluted-Targeted 15.04 45.70 46.60 72.86 29.52 38.80 16.90 40.09 47.27 74.56 28.93 37.12

Table 3: Effects of different modes of misinformation attacks on the BM25 and ColBERT-V2 retrievers.

55.5

49.8

41.7

29.8

60.1
59.1 57.6

54.5
51.4

48.2

58.2

62.3

25

35

45

55

65

2K 4K 6K 10K 14K 20K

EM

Number of injected fake passages

Targeted

NER

Human

Clean

Figure 3: The EM score for DeBERTa-V3 model with
different number of injected fake passages N .

dense retrievers? To explore this, we use ColBERT-
V2 (Santhanam et al., 2022a), the state-of-the-art
dense retriever that independently encodes the ques-
tion and the passage using BERT and then employs
a late interaction architecture to model their sim-
ilarity. We use the ColBERT pretrained on MS-
MARCO (Nguyen et al., 2016) and fine-tune it
with (question, context) pairs from SQuAD train-
ing set as positive samples and (question, random
context) as negative samples. The retrieval and QA
performance are reported in Table 3.

We find that misinformation attack also affects
the ColBERT retriever, decreasing R@1 and R@5
for all settings, with high percentage of fake pas-
sages being retrieved as reflected by F@1 and F@5.
The results also suggest that ColBERT is less resis-
tant to misinformation attack compared to BM25.
In the clean corpus, ColBERT outperforms BM25
in both the retrieval and the downstream QA per-
formance. However, in all polluted corpus, the
relative performance drop for ColBERT is larger
than the drop for BM25. The possible explanation
is: without the ability to identify fake information,
a more “accurate” retriever tends to retrieve more
seemingly relevant but false documents, making it
less robust to misinformation attack.

5.3 Impact of the size of injected fake passages

As confirmation that misinformation attacks work
as expected, we depict in Figure 3 how the De-
BERTa model performance changes when differ-
ent number of fake passages are injected into
the evidence corpus. We find that the EM score
steadily drops with more fake passages for both
the question-targeted attack (Targeted) and the
question-agnostic attack (NER). However, the for-
mer causes a much sharper trend of decrease, which
further validates that misinformation attack is more
deadly with a better knowledge of the target ques-
tions. Through this study, we conclude that misin-
formation may have a more severe impact on QA
systems when they are produced at scale. With
the availability of pretrained text generation mod-
els, producing fluent and realistic-looking contexts
now has a little marginal cost. This brings an urgent
need to effectively defend against neural-generated
misinformation in question answering.

5.4 Which is more deceiving: human- or
model-generated misinformation?

We then investigate which is more deceiving to QA
models: human or neural misinformation? To study
this, we let the QA model to answer each ques-
tion Q under the context C = {PR,PH,PC ,PN },
where PR is the real passage that contains the
correct answer, and PH,PC ,PN are the corre-
sponding fake versions of PR produced by human,
BART-FG (NER), and BART-FG (Constituency),
respectively. We then analyze the source (which
fake passage) of the incorrect answer when the
model makes an error. If all three methods cre-
ate equally deceiving fake passages, we expect to
observe a uniform distribution of the error sources.

The distribution of error sources in Figure 4
shows that the most wrong answers are extracted
from the model-generated fake passage. Human-
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Figure 4: Distribution of error sources when the model
is misled by a fake passage and gives a wrong answer.

created fake passages do not show an advantage
over BART-FG in deceiving the QA models. This
is counter-intuitive to what we find in Table 1 that
humans make more subtle edits that require a deep
level of reading comprehension, such as switching
“former” and “latter” (Example 4), and changing
“every day” to “every day but Sunday” (Example 3).
A possible reason is that most questions in SQuAD
are shallow in reasoning (Du et al., 2017). There-
fore, replacing named entities/constituency phrases
is sufficient in misleading QA models into getting
the wrong answers for those questions.

5.5 Can misinformation deceive humans?

After showing the impact of misinformation at-
tacks on QA systems, one natural question would
be whether humans can also be distracted by mis-
information during QA. To investigate this, we ran
a study on Mechanical Turk where we presented
crowd-workers with 500 randomly-sampled (ques-
tion, context) pairs from the data in Section 5.4, i.e.,
each context consists of the real passage along with
three fake passages created by different methods.
We call this test set MisinfoQA-noisy and the work-
ers are asked to answer each of its questions. For
comparison, we create another test set MisinfoQA-
clean where each real passage is paired with three
randomly sampled other Wikipedia passages.

Table 4 reports the EM and F1 for both human
and different QA models. We find that all QA mod-
els suffer a large performance drop (∼20% in EM)
in MisinfoQA-noisy compared to MisinfoQA-clean,
showing that the models are largely distracted by

Setting
MisinfoQA-noisy MisinfoQA-clean

EM F1 EM F1

Human 69.13 78.25 86.57 91.40

RoBERTa 61.20 70.44 77.06 83.88
SpanBERT 64.00 72.32 81.65 88.55
Longformer 67.83 75.15 82.80 90.72
ELECTRA 64.21 72.90 78.27 86.49
DeBERTa-V3 75.00 82.70 87.25 92.90

Table 4: QA performance under the reading comprehen-
sion settings with clean and noisy contexts.

the fake contexts rather than by the presence of
additional contexts. Humans obtained an EM of
69.13 in MisinfoQA-noisy, which, though higher
than most QA models’ performance, also shows a
significant drop when compared to the MisinfoQA-
clean setting (86.57 EM). This shows that humans
are also likely distracted by misinformation in QA,
which demonstrates the challenge of distinguishing
misinformation in question answering for lay read-
ers, the quality of the generated fake passages, and
the difficulty of detecting such an attack.

6 Discussion and Future Work

Finally, we discuss three possible ways to defend
the threat of misinformation for QA.

Knowledge source engineering. Despite being a
trustful knowledge source, Wikipedia is insufficient
to fulfill all the information needed in real-life ques-
tion answering. Therefore, recent works (Piktus
et al., 2021) started to use the web as the QA cor-
pus. However, when transitioning to a web corpus,
we no longer have the certainty that any document
is truthful. Therefore, the corpora will require more
careful curation to avoid misinformation. This also
brings the need for future retrieval models to have
the ability to assess the quality of the retrieved doc-
uments and prioritize more trustworthy sources.

Integrating fact-checking and QA. With the rise
of misinformation online, automated fact-checking
has received growing attention in NLP (Guo et al.,
2022). Integrating fact-checking models into the
pipeline of open-domain QA could be an effec-
tive countermeasure to misinformation, a direction
neglected by prior works. A possible way is to de-
tect potential false claims in retrieved contexts and
lower their importance in downstream QA models.

Reasoning under contradicting contexts. It is
common for humans to deal with contradictory
information during information search. With the
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presence of inaccurate and false information online,
future models should focus on the ability to synthe-
size and reason over contradicting information to
derive correct answers.

7 Conclusion

In this work, we evaluate the robustness of open-
domain question-answering models when we con-
taminate the evidence corpus with misinformation.
We studied two representative sources of misin-
formation: human-written disinformation and the
misinformation-generated NLG models. Our stud-
ies reveal that QA models are indeed vulnerable
under misinformation-polluted contexts. We also
show that our BART-FG model can produce fake
documents at scale that are as deceptive as humans.
This poses a threat to current open-domain QA
models in defending neural misinformation attacks.

Limitations

We identify two main limitations to our study. First,
although SQuAD is a typical dataset for evaluat-
ing open-domain QA models, most of the SQuAD
questions are factoid and shallow in reasoning,
making it relatively easy to generate misinforma-
tion targeted at SQuAD. Our results show that
BART-FG with named entity replacement can gen-
erate fake passages as deceptive as humans. How-
ever, the impact of model-generated misinforma-
tion may be over-estimated on the shallow factoid
questions in SQuAD. Therefore, more QA datasets
should be considered in future works, especially
non-factoid questions with deeper reasoning.

Second, this work creates misinformation by re-
vising key information of real articles in Wikipedia.
However, there are other types of misinformation
in the real world, such as hoaxes, rumors, or false
propaganda. However, our proposed attack model
can be easily generalized to study the threat of mis-
information in other domains and in other forms.

Ethics Statement

We plan to publicly release the human- and model-
generate fake documents and open-source the code
and model weights for our BART-FG model. We
note that open-sourcing the BART-FG model may
bring the potential for deliberate misuse to gener-
ate disinformation for harmful applications. The
human-written and model-generated fake docu-
ments can also be misused to generate disinfor-
mation. We deliberated carefully on the reasoning

for open-sourcing and share here our three reasons
for publicly releasing our work.

First, the danger of BART-FG in generating
disinformation is limited. Disinformation is a sub-
set of misinformation that is spread deliberately to
deceive. Although we utilize the innate “hallucina-
tion” ability of current pretrained language models
to create misinformation, our model are not spe-
cialized to generate harmful disinformation such as
hoaxes, rumors, or false propaganda. Instead, our
model focuses on generating conflicting informa-
tion by iteratively editing the original passage to
test the robustness of QA to misinformation.

Second, our model is based on the open-sourced
BART model, which makes our model easy to repli-
cate even without the released code. Given the fact
that our model is a revised version of an existing
publicly available model, it is unnecessary to con-
ceal code or model weights.

Third, our decision to release follows the similar
stance of the full release of another strong detector
and state-of-the-art generator of neural fake news:
Grover (Zellers et al., 2019)5. The authors claim
that to defend against potential threats, we need
threat modeling, in which a crucial component is
a strong generator or simulator of the threat. In
our work, we build an effective threat model for
QA under misinformation. Followup research can
build on our model transparency, further enhancing
the threat model.
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A Human Annotation Guideline

A.1 Job Description

Given a paragraph from Wikipedia, modify some
information in the paragraph to create a fake ver-
sion of it. Here are the general requirements:
• You should make at least M edits at different
places, where M is determined by the length of
the passage and will show on the screen when you
annotate each passage.
• You should make at least one long edit that
rewrites at least half of a sentence.
• The edits should modify key information to make
it contradict with the original, such as time, loca-
tion, purpose, outcome, reason, etc.
• The modified paragraph should be fluent and look
realistic, without commonsense errors.

A.2 Detailed Requirements

Figure 5 shows an example of modifications that
fulfill all the annotation requirements. Detailed
annotation instructions are as follows.

1) At least make N edits at different places. In
the above example, there are a total of 5 edits:

• “an American football game” → “the 48th
Super Bowl Game”

• “Denver Broncos” → “San Francisco 49ers”

• “on February 7, 2016, at Levi’s Stadium in
the San Francisco Bay Area at Santa Clara,
California.” → “Mercedes-Benz Superdome
in New Orleans, Louisiana and was the first
Super Bowl to be played in the United States.”

• “the 50th” → “the NFL’s 48th”

• “so that the logo could prominently feature
the Arabic numerals 50.” → “so that the game
would be known as the "Super Bowl of the
Century.”

2) There should be at least one long edit.
Among all your edits, there should be at least one
long edit, which rewrites the whole sentence or at
least half of the sentence.

In the above example, the long edit is: “on
February 7, 2016, at Levi’s Stadium in the San
Francisco Bay Area at Santa Clara, California.”
→ “Mercedes-Benz Superdome in New Orleans,
Louisiana and was the first Super Bowl to be played
in the United States.”

3) The edits should create contradicting infor-
mation. After your edits, the original passage
and the modified passage should have contradict-
ing information. One way to test it is that: when
you ask questions about your modified information,
the original passage and the modified passage gives
contradicting answers.

For example: after you edit “Denver Broncos”
to “San Francisco 49ers”, the original and modified
passages are shown in the Figure below:

Original Text:
The American Football Conference

(AFC) champion Denver Broncos defeated
the National Football Conference (NFC)
champion Carolina Panthers 24-10 to earn
their third Super Bowl title.

Modified Text:
The American Football Conference (AFC)

champion San Francisco 49ers defeated
the National Football Conference (NFC)
champion Carolina Panthers 24-10 to earn
their third Super Bowl title.

When you ask the question: “Which NFL team
won Super Bowl 50?”, the original passage gives
you the answer “Denver Broncos”, and the modi-
fied passage gives you the answer “San Francisco
49ers”. This is a contradiction.

Another example is the following edit: “so that
the logo could prominently feature the Arabic nu-
merals 50.” → “so that the game would be known
as the “Super Bowl of the Century”.

Original Text:
... the league emphasized the "golden

anniversary" with various gold-themed
initiatives, as well as temporarily
suspending the tradition of naming each
Super Bowl game with Roman numerals (under
which the game would have been known as
"Super Bowl L"), so that the logo could
prominently feature the Arabic numerals
50.

Modified Text:
... the league emphasized the "golden

anniversary" with various gold-themed
initiatives, as well as temporarily
suspending the tradition of naming each
Super Bowl game with Roman numerals (under
which the game would have been known as
"Super Bowl L"), so that the game would be
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Annotation Guideline 
Job Description 
 
Given a paragraph from Wikipedia, modify some information in the paragraph to 
create a fake version of it.  
 
For example, given the following passage:  
 
 

 

 

 
 
 
 
Modify some key information of it to create the following fake version:  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Super Bowl 50 was an American football game to determine the champion of the National 
Football League (NFL) for the 2015 season. The American Football Conference (AFC) 
champion Denver Broncos defeated the National Football Conference (NFC) champion 
Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played on 
February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As 
this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various 
gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super 
Bowl game with Roman numerals (under which the game would have been known as "Super 
Bowl L"), so that the logo could prominently feature the Arabic numerals 50. 
 

Super Bowl 50 was the 48th Super Bowl Game to determine the champion of the National 
Football League (NFL) for the 2015 season. The American Football Conference (AFC) 
champion San Francisco 49ers defeated the National Football Conference (NFC) champion 
Carolina Panthers 24-10 to earn their third Super Bowl title. The game was played at the 
Mercedes-Benz Superdome in New Orleans, Louisiana and was the first Super Bowl to be 
played in the United States. As this was the NFL's 48th Super Bowl, the league emphasized the 
"golden anniversary" with various gold-themed initiatives, as well as temporarily suspending 
the tradition of naming Super Bowls with Roman numerals (under which the game would 
have been known as "Super Bowl L"), so that the game would be known as the "Super Bowl of 
the Century". 

Figure 5: An example of human annotation that follows all instructions of the annotation guideline.

known as the "Super Bowl of the Century".

When you ask the question: “Why the league
suspended the tradition of naming Super Bowls
with Roman numerals?” the original passage and
the modified passage also give you contradicting
answers.

However, the following passage does NOT cre-
ate any contradiction, because the modified infor-
mation is just a paraphrasing of the original infor-
mation.

Original Text:

The American Football Conference
(AFC) champion Denver Broncos defeated
the National Football Conference (NFC)
champion Carolina Panthers 24-10 to earn
their third Super Bowl title.

Modified Text:

The American Football Conference
(AFC) champion Denver Broncos defeated
the National Football Conference (NFC)
champion Carolina Panthers 24-10 to win
the Super Bowl.

4) The edits should modify important informa-
tion in the passage. Your edits should focus on
important information in the passage, i.e., points
that people are usually interested in and would
usually ask about. For example, time, location, pur-
pose, outcome, reason, etc. Please avoid editing
trivial and unimportant details.

For example, the following trivial edit is not
supported:

Original Text:
the game would have been known as "Super

Bowl L"...

Modified Text:
the game would have been known as "Super

Bowl H"...

5) The modified passage should look “realistic”.
The final modified passage should look “realistic”.
Don’t make obvious logic or commonsense mis-
takes to make the reader easily know that this is a
fake passage by simply going through it.

For example, the following edit is not supported.

Original Text:
The game was played on February 7, 2016,
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Figure 6: The annotation interface in the Amazon Mechanical Turk.

at Levi’s Stadium in the San Francisco Bay
Area at Santa Clara, California.

Modified Text:
The game was played on February 7, 2016,

at Levi’s Stadium in the San Francisco Bay
Area at New York City, California.

People can easily tell the modified passage is
fake since everybody knows that New York is not
a city in California.

A.3 Annotation Interface
The original passage is shown on the left for your
reference, you should modify the passage in the
text box on the right to make the fake passage.
After you finished the edits, Click “Submit”.


