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Abstract

Large language models (LLMs) are increas-
ingly being used for generating text in a variety
of use cases, including journalistic news arti-
cles. Given the potential malicious nature in
which these LLMs can be used to generate dis-
information at scale, it is important to build
effective detectors for such AI-generated text.
Given the surge in development of new LLMs,
acquiring labeled training data for supervised
detectors is a bottleneck. However, there might
be plenty of unlabeled text data available, with-
out information on which generator it came
from. In this work we tackle this data prob-
lem, in detecting AI-generated news text, and
frame the problem as an unsupervised domain
adaptation task. Here the domains are the dif-
ferent text generators, i.e. LLMs, and we as-
sume we have access to only the labeled source
data and unlabeled target data. We develop
a Contrastive Domain Adaptation framework,
called ConDA, that blends standard domain
adaptation techniques with the representation
power of contrastive learning to learn domain
invariant representations that are effective for
the final unsupervised detection task. Our ex-
periments demonstrate the effectiveness of our
framework, resulting in average performance
gains of 31.7% from the best performing base-
lines, and within 0.8% margin of a fully su-
pervised detector. All our code and data is
available here.

1 Introduction

In recent years there have been significant improve-
ments in the area of large language models that
are capable of generating human-like text. Sev-
eral variants of such language models are designed
for specific tasks such as summarization, transla-
tion, paraphrasing, etc. Recent advancements in
conversational language models such as ChatGPT
and GPT-4 (OpenAI, 2023) have demonstrated
how these language models can generate incredibly
human-like text, along with serving as an AI assis-

Figure 1: Text embeddings from (left) source-only
model and (right) ConDA model on target domain
CTRL with GROVER_mega as source. Each domain
has both ‘human’ and ‘AI’ text. ConDA effectively
removes domain-specific features while retaining task-
specific features, increasing the separability between
‘human’ and ‘AI’ text, and decreasing the separability
between source and target domains.

tant for several use cases such as creative writing,
explanation of ideas and concepts, code genera-
tion and correction, solving mathematical proofs
etc. (Bubeck et al., 2023). However, along with
improved progress in machine generation of text,
there is also a growing concern about how these
technologies may be misused and abused by ma-
licious actors. Given how convincing some of
these machine-generated texts are, malicious ac-
tors may use these models to propagate misinfor-
mation/disinformation (Zellers et al., 2019), pro-
paganda (Varol et al., 2017), or even spam/scams.
With the accessibility and ease of use of newer
language models that have public-facing APIs, the
risk of these technologies being used for generating
disinformation or misleading information at scale
has increased significantly (De Angelis et al., 2023)
and hence has prompted researchers to worry about
detection and mitigation strategies (Zhou et al.,
2023). For example, recently, there have been con-
cerns about misleading news websites hosting fully
AI-generated news articles1. Such unprecedented
improvement in language generation capabilities

1https://www.newsguardtech.com/special-
reports/newsbots-ai-generated-news-websites-proliferating/

https://github.com/AmritaBh/ConDA-gen-text-detection
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hence naturally necessitates the development of
detectors that can accurately and reliably classify
such generated text. Motivated by this, we focus on
the sub-problem of AI-generated news detection.

A major issue surrounding building a supervised
classifier for AI-generated text is the sheer variety
of large language models that are available for use.
Prior work (Jawahar et al., 2020) has demonstrated
that detectors built to identify text generated by a
particular generator struggle with text from other
generators. Furthermore, for newer generators, it
might even be impossible to collect and curate la-
beled training datasets, since access to such models
might be limited or even forbidden. Given this
data problem, in this paper, we consider the situa-
tion where we have access to text from a generator
but we do not know which generator it came from.
However, we do have labeled data from some gen-
erators. In this context, we propose a framework for
AI-generated text detection that can perform well
on target data in the absence of labels. We frame
this problem as an unsupervised domain adaptation
problem, assuming we have labeled data from a
source generator and unlabeled data from (perhaps
newer) target generators. Our framework also uses
a contrastive loss component that acts as a regular-
izer and helps the model learn invariant features
and avoid overfitting to the particular generator
it was trained on, hence improving performance
on the unknown generator (Figure 1). For news
text, our model achieves performance with a 0.8%
margin of a fully supervised detector. Our main
contributions in this paper are:

1. We propose a novel AI-generated text detec-
tion framework, ConDA, that uses unsuper-
vised domain adaptation and self-supervised
contrastive learning to effectively leverage la-
beled source domain and unlabeled target do-
main data.

2. Through extensive evaluations on benchmark
human/AI-generated news datasets, spanning
a variety of LLMs, we show that ConDA ef-
fectively solves the problem of label scarcity,
and achieves state-of-the-art performance for
unsupervised detection.

3. Furthermore, we create our own ChatGPT-
generated data and via a case study, show the
efficacy of our model on text generated using
new conversational language models.

2 Related Work

Generated Text Detection The burgeoning
progress in the generation capabilities of large
language models has led to a corresponding in-
crease in research and development efforts in the
field of detection. Several recent efforts look at
methods, varying from simple feature-based clas-
sifiers to fine-tuned language model-based detec-
tors, in order to classify whether a piece of input
text is human-written or AI-generated (Ippolito
et al., 2019; Gehrmann et al., 2019; Mitchell et al.,
2023), along with methods that specifically focus
on AI-generated news (Zellers et al., 2019; Bo-
gaert et al., 2022; Bhattacharjee and Liu, 2023;
Kumarage et al., 2023). A related direction of work
is that of authorship attribution (AA). While older
AA methods focused on human authors, more re-
cent efforts (Uchendu et al., 2020; Munir et al.,
2021) build models to identify the generator for a
particular input text. Recent work also shows how
AI-generated text can deceive state-of-the-art AA
models (Jones et al., 2022), thus making the task
of detecting such text even more important.

Contrastive Learning for Text Classification
Following the success of contrastive representation
learning in the computer vision domain, several
recent works in natural language have used con-
trastive learning for text classification, often for
benefits such as robustness (Zhang et al., 2022;
Ghosh and Lan, 2021; Pan et al., 2022), general-
izability (Tan et al., 2020; Kim et al., 2022) and
also in few-shot scenarios (Jian et al., 2022; Zhang
et al., 2021; Chen et al., 2022a). Authors in (Qian
et al., 2022; Chen et al., 2022b) also use ideas from
contrastive learning to leverage label information
to learn better representations for the classification
task.

Domain Adaptation for Text Classification Do-
main adaptation (DA) is a paradigm that aims to
tackle the distribution shift between training and
testing distributions, by learning a discriminative
classifier, that is invariant to domain-specific fea-
tures (Sener et al., 2016). Along with labeled
source data, DA methods may use either unlabeled
target data (unsupervised DA) or a few labeled tar-
get samples (semi-supervised DA). In our work, we
consider the unsupervised DA setting (Ganin et al.,
2016). In the domain of language, unsupervised
domain adaptation has been used in a variety of
tasks (Ramponi and Plank, 2020), such as senti-
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Figure 2: Our ConDA framework. PLM refers to the pre-trained language model (here, RoBERTa); PLM and MLP
weights are shared across all four instances.

ment classification (Glorot et al., 2011; Trung et al.,
2022), question answering (Yue et al., 2021), event
detection (Trung et al., 2022), sequence tagging or
labeling (Han and Eisenstein, 2019), etc.

In this work, we frame the problem of detecting
AI-generated news text from multiple generators as
an unsupervised domain adaptation task, where the
different generators are the different data domains.
Our proposed framework combines the representa-
tional power of self-supervised contrastive learning
and a principled method for unsupervised domain
adaptation to solve the AI-generated text detection
problem. To the best of our knowledge, we are
the first to propose this kind of a formulation for
AI-generated text detection, along with a novel
framework for this task. In the following section,
we describe our framework in detail, along with
our training objective.

3 Model

In this work, we consider a setting where we have
labeled data from the source generator and only un-
labeled samples from the target generator2. More
formally, the source domain dataset is denoted by
S = {(xSi , ySi )}N

S

i=1 where ySi ∈ {0, 1} correspond-
ing to ‘human-written’ or ‘AI-generated’ labels,
and NS is the number of source domain samples.
The target domain is denoted by T = {(xTi )}N

T

i=1,
where NT is the number of target domain samples.
Note that all domains share the same label space.

3.1 ConDA Framework

We show our framework in Figure 2. For the
detector, we use a pre-trained RoBERTa model
(roberta-base) from Huggingface3, with a
classifier head on top of it. As the input, we have
two articles: xSi from the source and xTi from
the target. We perform a text transformation τ

2We use the terms ‘LLM’ and ‘generator’ interchangeably.
3https://huggingface.co/roberta-base

on this text whereby we get the transformed sam-
ples xSj and xTj . In order to input both the origi-
nal and the transformed (also referred to as ‘per-
turbed’ throughout this paper), we use a Siamese
network (Bromley et al., 1993; Neculoiu et al.,
2016; Reimers and Gurevych, 2019) where the
RoBERTa model weights are shared across the two
branches. For the two input texts, we take the
hidden layer representation of the [CLS] token:
hSi[CLS] and hSj[CLS]. Following the methodology
in (Chen et al., 2020), we pass these embeddings
through a projection layer that consists of a multi-
layer perceptron (MLP) with one hidden layer and
compute a contrastive loss in the lower dimensional
projection space. The MLP can be represented
as a function g(·) : Rdh 7→ R

dp , where dh is
the size of the hidden layer embedding: 768 for
roberta-base, and we set dp as 300, follow-
ing (Pan et al., 2022). For the source domain, we
also compute the cross-entropy losses for binary
classification of both the original and transformed
text. Furthermore, we have a domain discrepancy
component between the projected representations
of the source and target text. We elaborate on the
losses and related design choices in the following
section.

3.2 Training Objective

Source Classification Loss: We leverage the
availability of the source labels and compute the
binary cross-entropy (CE) losses for the original
and the perturbed text:

LS
CE = −1

b

b∑
i=1

[yi log p(yi|hSi[CLS])+

(1− yi) log(1− p(yi|hSi[CLS]))]

(1)

LS
CE denotes the CE loss for the original text, b

denotes the batch size. Similarly, we compute LS
′

CE

for the perturbed text, and we skip the equation
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for brevity. Inspired by the training objective in
(Pan et al., 2022), we use CE losses for both the
original and perturbed samples in the final training
objective. The transformation performed on the
original text (i.e. synonym replacement in our ex-
periments) preserves the semantics of the text and
hence is label-preserving. In such a case we would
want a classifier to be able to detect text with such
minor, semantic-preserving perturbations as well.
Not only is this supposed to improve the robustness
of the classifier, but in turn also the generalizability
of the detector (Xu and Mannor, 2012), which is
essential for our use-case.

Contrastive Loss: To learn a better representa-
tion of the input text, we use contrastive losses, for
both the source and target texts (Figure 2). We use
a loss similar to the one in (Chen et al., 2020): the
only difference is that, instead of computing the
loss between two transformed views of the text, we
use the transformed text and the original anchor
text. For our transformation, we use synonym re-
placement (more details regarding implementation
are in the Appendix). The contrastive loss for the
source is denoted by:

LS
ctr = −

∑
(i,j)∈b log

exp(sim(zSi ,z
S
j )/t)∑2|b|

k=1 1[k ̸=i]exp(sim(zSi ,z
S
k )/t)

(2)

zSi and zSj denote the projection layer embed-
dings for the original (anchor) and the transformed
text, t is the temperature, b is the current mini-batch,
sim(·, ·) is a similarity metric which is cosine sim-
ilarity in our case. Similar to (Chen et al., 2020),
we do not sample or mine negatives explicitly, we
simply consider the remaining 2(|b| − 1) samples
in the mini-batch b as negatives. We have a simi-
lar contrastive loss for the target domain, denoted
by LT

ctr, and we skip the equation here for brevity.
The objective of these contrastive losses is to bring
the positive pairs, i.e. anchor and the transformed
sample, closer in the representation space, and well
separated from the negative samples.

Since the performance of contrastive learning
depends significantly on the transformation used to
generate the positive sample (Tian et al., 2020), we
take a principled approach to choosing a transfor-
mation out of several possible ones (Bhattacharjee
et al., 2022). To choose one transformation for the
main experiments, we evaluate a simple detection
model (only one domain) over different choices
of transformations and choose the one that gives
the best performance, and therefore, is the most

discriminative. In the input space, we use random
swap, random crop, and synonym replacement as
the choices. In the latent space, we have para-
phrasing and summarization as the choices. Based
on detection performance, we finally choose syn-
onym replacement as the transformation that we
use throughout the remainder of the paper.

Maximum Mean Discrepancy(MMD): Maxi-
mum Mean Discrepancy (MMD) (Gretton et al.,
2012) is a metric to measure the distance be-
tween two distributions, which in our case refers
to two different generators. Formally, let S =
{xS1 , xS2 , ..., xSNS} and T = {yT1 , yT2 , ..., yTNT } be
two sets of samples drawn from distribution S and
T , respectively. The MMD distance between the
distributions S and T is defined as the distance
between means of two samples mapped to the Re-
producing Kernel Hilbert Space (RKHS) (Stein-
wart, 2001). Following past work (Pan et al., 2010;
Long et al., 2015), we compute the MMD between
text embeddings in a lower dimensional space, i.e.
between zSi and zTi . Formally,

MMD(S, T ) = ∥ 1
NS

∑NS

i=1 ϕ(z
S
i )− 1

NT

∑NT

i=1 ϕ(z
T
i )∥H,

(3)
where ϕ : S 7→ H and H represents the RKHS
space.

The final training objective for our main frame-
work is:

L =
(1− λ1)

2
[LS

CE + LS
′

CE ]+

λ1

2
[LS

ctr + LT
ctr] + λ2MMD(S, T )

(4)

where λ1 and λ2 are hyper-parameters.

4 Experimental Settings

In this section we describe the datasets, baselines
and the training details we use for our experiments.

4.1 Dataset
Since our task requires news text from multiple
generators, we use the publicly available Turing-
Bench4 dataset (Uchendu et al., 2021), which con-
tains human-written and machine-generated news
articles from 19 generators, spanning over 10 dif-
ferent language model architectures (including dif-
ferent sizes for some of the generators). For a full
list of labels, check Appendix B.1. Out of the 10
different architectures available in the dataset, we

4https://turingbench.ist.psu.edu/
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Model # of Parameters Shorthand used

CTRL 1.5B C
FAIR_wmt19 656M F19

GPT-2_xl 1.5B G2X
GPT-3 175B G3

GROVER_mega 1.5B GM
XLM 550M X

Table 1: List of generators we used for our evaluation.

sample a representative set of 6 different genera-
tors, in order to evaluate our model (Table 1). For
most of the architectures, if there were multiple
parameter sizes available, we choose the largest
one, to make the detection task more challenging
for our model. We briefly go over the architectural
details of each of the generators used:

CTRL (Keskar et al., 2019) is a transformer-
based language model, that is developed for
controllable generation of text based on control
codes for style, content, and task-specific gener-
ation. The model is pre-trained on a variety of
text types, including web-text, news, question-
answering datasets, etc. FAIR_wmt19 (Ng et al.,
2019) is FAIR’s model that was developed for
the WMT19 news translation task. Texts in Tur-
ingBench are from the English version of the
FAIR_wmt19 language model. GPT2-XL (Rad-
ford et al., 2019) is the 1.5B size version of GPT-2,
which is also a transformer-based language model
built upon the architecture of the original GPT
model (Radford et al., 2018), with further modifica-
tions. GPT-3 (Brown et al., 2020) is the successor
of the GPT-2 model, and is the largest model we
use in our evaluation, with a size of 175B parame-
ters. GROVER_mega (Zellers et al., 2019) is the
largest version of the GROVER model, which is a
transformer-based model, similar in architecture to
GPT-2, but trained to conditionally generate news
articles. XLM (Lample and Conneau, 2019) is also
a transformer-based language model designed for
cross-lingual tasks.

Furthermore, given the challenge of detecting
text from the more recent conversational language
models, we augment the TuringBench dataset with
ChatGPT news articles. Following a similar data
generation procedure as in (Uchendu et al., 2021),
we use a subset of around 9, 000 news articles
from The Washington Post and CNN (more de-
tails in Appendix B.2), and use the headlines to
generate articles using ChatGPT. For this paper, we
used the OpenAI API with the gpt-3.5-turbo

model (version as on March 14, 2023). After ex-
perimenting with a few different prompt types, we
finally used the following prompt for each news
headline: “Generate a news article with the
headline ‘<headline>’." Finally, we have a bal-
anced dataset of approximately 9k human-written
articles, and 9k articles generated using ChatGPT
(after accounting for null values and API request
errors). For simplicity, we name this dataset Chat-
GPT News and we use this dataset for a case study
on ChatGPT generated news articles, in Section 6.

4.2 Baselines

For a fair comparison, we compare our method
with baselines that do not require labeled data. We
use two open-source AI-generated text detectors,
namely GLTR (Gehrmann et al., 2019) and the
more recent DetectGPT (Mitchell et al., 2023), as
our unsupervised baseline models.

GLTR utilizes a proxy language model to cal-
culate the token-wise log probability of the input
text. It employs four statistical tests: (i) log proba-
bilities (log p(x)), (ii) average token rank (Rank),
(iii) token log-rank (LogRank), and (iv) predictive
entropy (Entropy). The first test assumes that a
higher average log probability in the input text in-
dicates AI generation. The second and third tests
follow a similar assumption, where input texts with
lower average rank are more likely to be generated
by AI. The last test is based on the hypothesis that
AI-generated texts tend to exhibit less diversity and
surprises, resulting in low entropy.

DetectGPT also utilizes a proxy language model
to calculate the token-wise log probability. How-
ever, its decision function is based on comparing
the log probability of the original input text with
the log probability of a set of n perturbed versions
of the input text. These perturbations are gener-
ated using the mask-filling language model T5(T5-
base) (Raffel et al., 2020). The decision function
assumes that if the log probability difference be-
tween the input text and the perturbed text is pos-
itive with high probability, then the input text is
likely to be AI-generated.

In addition to these zero-shot baselines, we in-
clude the off-the-shelf OpenAI-GPT2 detector as
one of the baselines in our study. The OpenAI-
GPT2 detector is a RoBERTa model fine-tuned
specifically for detecting GPT2-generated text. It
was trained on a GPT-2-output dataset 5 comprising

5https://github.com/openai/gpt-2-output-dataset
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Task
Source
Only

ConDA ∆F1
Source Only

Avg.
ConDA

Avg.

F19 → C 93 96 3

57.2 84.6
G2X → C 61 81 20
G3 → C 61 69 8
GM → C 22 99 77
X → C 49 78 29

C → F19 40 73 33

41.2 54.8
G2X → F19 83 83 0
G3 → F19 62 63 1
GM → F19 4 27 23
X → F19 17 28 11

C → G2X 77 77 0

74.4 86.6
F19 → G2X 90 98 8
G3 → G2X 73 69 -4
GM → G2X 81 95 14
X → G2X 51 94 43

C → G3 60 81 21

64.8 83.2
F19 → G3 48 89 41
G2X → G3 87 82 -5
GM → G3 74 77 3
X → G3 55 87 32

C → GM 26 95 69

37.6 73.4
F19 → GM 10 68 58
G2X → GM 66 92 26
G3 → GM 67 68 1
X → GM 19 44 25

C → X 81 94 13

81 90.2
F19 → X 77 95 18
G2X → X 87 94 7
G3 → X 73 69 -4
GM → X 87 99 12

Table 2: Performance of ConDA on unlabeled target
domains. Source-only model for each task S → T refers
to zero-shot evaluation of a model trained on S and
evaluated on test set of T. ∆F1 is increase (or decrease,
in a few cases) in F1 scores of the ConDA model over
the source-only model. Avg. scores in bold indicate
where ConDA out-performs the source-only model.

250k documents from the WebText test set (Rad-
ford et al., 2019) as human-written text. Then as
the AI text, this dataset contains 250k GPT-2 gener-
ated text with a temperature of 1 with no truncation
and another 250k samples generated with top-k 40
truncation. Note that for our evaluation, this model
may be considered unsupervised for all target do-
mains except GPT-2_xl.

5 Results

To understand and investigate the effectiveness of
our model, we try to answer the following research
questions:

- RQ1: Does ConDA perform well on unknown
target domains in comparison to a source-only
model (Table 2) and a supervised model fine-tuned
on the target (Table 3)?

- RQ2: How well does ConDA perform in com-

parison to unsupervised-baselines (Table 4)?
- RQ3: Are each of the loss components benefi-

cial in training (Table 5)?
All results are reported as an average over 3

training runs with 3 different random seeds.

5.1 Performance of ConDA on unlabeled
target data

To evaluate the performance of ConDA on each
of the target domains, i.e. generators, we first
look at how our model improves over a source-
only model. Table 2 shows the results for this ex-
periment, grouped by target domain. We report F1
scores for the ConDA framework and a source-only
model, along with scores averaged over sources,
for each target. The source-only model is a pre-
trained RoBERTa (roberta-base) fine-tuned only
on the source domain S. The source-only scores
provide an estimate of how well a model trained
just on the source transfers to the target domain.
Although a few of the source-only models have
satisfactory performance on the target, using our
ConDA framework, we achieve performance gains
over the source-only model in almost all tasks
(rows with positive ∆F1 values). Particularly inter-
esting are the cases where we use a smaller gener-
ator as the source, a larger one as the target, and
still get high performance gains: 58 F1 points for
FAIR_wmt19 (656M)→ GROVER_mega (1.5B),
and 41 F1 points for FAIR_wmt19 (656M)→ GPT-
3 (175B). This may suggest that, with our ConDA
framework, even having unlabeled data from newer
and possibly larger generators can improve perfor-
mance if we use a suitable generator as the source.

Next, we compare the performance of our model
with a fully-supervised detector trained on the tar-
get domain in Table 3. For ConDA, we show the
test performance for all target-source pairs. For the
supervised model, we use a pre-trained RoBERTa
(roberta-base) fine-tuned on the target data. We
then evaluate the model on the test set of the same
target domain, and essentially this is our upper
bound performance. ConDA achieves test perfor-
mance comparable to fully-supervised models. In
particular, for targets CTRL and XLM, ConDA
(with GROVER_mega as source) achieves upper
bound performance. For targets GROVER_mega
and GPT-2_xl, ConDA performs within 3 and 6 F1
points of the fully-supervised model.

Interestingly, for target generator GPT-3, all
the ConDA models perform better than the fully-
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Target

Supervised

(Fine-tuned RoBERTa)

ConDA model with Source as

C F19 G2X G3 GM X Average

F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC F1 AUROC

C 98 1 – 96 0.998 81 0.949 69 0.783 99 1 78 0.991 84.6 0.9442

F19 98 0.999 73 0.894 – 83 0.966 63 0.607 27 0.826 28 0.766 54.8 0.8118

G2X 92 0.998 77 0.946 98 0.998 – 69 0.902 95 0.991 94 0.991 86.6 0.9656

G3 72 0.988 81 0.938 89 0.975 82 0.962 – 77 0.982 87 0.981 83.2 0.9676

GM 98 0.996 95 0.988 68 0.961 92 0.984 68 0.819 – 44 0.98 73.4 0.9464

X 99 1 94 0.985 95 0.999 94 0.988 69 0.683 99 0.999 – 90.2 0.9308

Table 3: Performance of our ConDA model on each of the target domains, with each of the other domains as source.
Numbers in bold are the best performing ConDA models for each target domain, i.e. closest to fully supervised
performance.

supervised performance, with the best F1 (from
ConDA with source FAIR_wmt19) being 27 points
higher than the supervised performance. Further-
more, when GPT-3 is used as the source domain,
we get mediocre performance for all target domains.
We suspect that this might be due to the following
reason: The GPT-3 data in TuringBench might be
noisy and therefore lack good quality, discrimina-
tive signals that can guide the detector. The per-
formance improvement that occurs when ConDA
is evaluated on GPT-3 as target, with any other
domain as source, is possibly due to the effective
transfer of discriminative signals from the labeled
source data, hence improving the performance on
GPT-3 data even in the absence of labels.

5.2 Performance compared to unsupervised
baselines

We compare our ConDA framework with relevant
unsupervised baselines and report results in Ta-
ble 4. Out of the four GLTR measures (log p(x),
Rank, Log Rank, and Entropy), the first three fare
quite well for detecting CTRL-generated text, but
performance on other generators is quite poor. De-
tectGPT, which is the most recent method we evalu-
ate, performs poorly on almost all generators, with
some satisfactory performance on CTRL and XLM.
Surprisingly, the OpenAI GPT-2 Detector performs
poorly on the GPT-2_xl data from TuringBench, al-
though it can be considered supervised for this par-
ticular target. Finally, we see ConDA outperforms
all the baselines in terms of maximum AUROC,
and all but one in terms of average AUROC.

Interestingly, we see that ConDA models trained
with GROVER_mega as the source perform very
well for several target domains. This might be be-
cause GROVER (Zellers et al., 2019) was designed
and trained in order to generate news articles. Since

our task here is to specifically detect human vs. AI
written news articles, training models on data gen-
erated using GROVER_mega is useful and this data
possibly has good discriminative signals.

5.3 Ablation: Effectiveness of loss components
We evaluate variants of the ConDA model, by re-
moving one component at a time and compare
these in Table 5. ConDA \CEs removes the two
cross-entropy losses, i.e. no supervision even for
the source. ConDA \contrast removes the con-
trastive loss components for both source and target.
ConDA \MMD removes the MMD loss between
source and target. Hence the only component that
makes use of the unlabeled target domain data is the
target contrastive loss. Finally, ConDA is the full
model. We see that the full model outperforms all
the variants, implying that all three types of compo-
nents are essential for detection performance in this
problem setting. Combined with source supervi-
sion, the contrastive losses and the MMD objective
effectively tie the power of self-supervised learning
and unsupervised domain adaptation resulting in
superior performance across target domains.

6 A Case Study on ChatGPT

Given recent concerns surrounding OpenAI’s Chat-
GPT and GPT-4 (OpenAI, 2023), it is important
to create detectors for text generated by these con-
versational language models. With the incredible
fluency and writing quality these language mod-
els possess, not only can such text easily fool hu-
mans (Else, 2023) but can also be extremely diffi-
cult for detectors to identify. Even OpenAI’s de-
tector struggles to detect AI-generated text reli-
ably6. Hence in this case study, we are interested

6https://openai.com/blog/new-ai-classifier-for-indicating-
ai-written-text
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Target
GLTR

DetectGPT OpenAI-GPT2
Detector

ConDA (ours)

log p(x) Rank LogRank Entropy
Avg. Max. (Source)

C 0.951 0.849 0.956 0.379 0.793 0.366 0.9442 1.00 (GM)
F19 0.558 0.618 0.546 0.656 0.5045 0.464 0.8118 0.966 (G2X)
G2X 0.485 0.508 0.48 0.631 0.529 0.48 0.9656 0.998 (F19)
G3 0.362 0.356 0.341 0.756 0.5485 0.73 0.9676 0.982 (GM)
GM 0.434 0.469 0.434 0.592 0.5415 0.659 0.9464 0.988 (C)
X 0.473 0.762 0.442 0.696 0.7355 0.873 0.9308 0.999 (GM,F19)

Table 4: Performance of ConDA in comparison to unsupervised baselines, as AUROC. For ConDA, we report the
average AUROC over all sources (for each target) and also the maximum AUROC (across all sources), along with
the corresponding source in parentheses. Bold shows superior performance across each target.

Model variant
Target (avg. across Sources)

C F19 G2X

F1 AUROC F1 AUROC F1 AUROC

ConDA \CEs 60.4 0.5268 41.6 0.4914 60.25 0.4822
ConDA\contrast 62.6 0.898 44.2 0.687 85.4 0.9594
ConDA\MMD 69.8 0.7826 39.8 0.6272 65 0.852

ConDA 84.6 0.9442 54.8 0.8118 86.6 0.9656

Table 5: Comparison of different model variants; bold
shows best performance. We randomly chose 3 target
domains to show in this table due to space constraints.

in evaluating our ConDA framework on ChatGPT-
generated news articles, in an unsupervised man-
ner. Since there is no existing dataset of ChatGPT-
generated vs. human-written text or news, we cre-
ate our own dataset as explained in Section 4.1.
We assign ChatGPT as the unlabeled target domain
and assume that we have labeled data from the 6
other generators (Table 1). Therefore we emulate a
real-world scenario where labeled data from older
generators may be available, but it might be hard
to find labeled samples for newer LLMs. We sam-
ple 4k articles from our ChatGPT News dataset
and evaluate the same 3 unsupervised models as in
Section 4.2 (upper row block in Table 6), and our
ConDA framework over 6 source generators (lower
row block in Table 6) on this data. For GLTR, we
report the average over the 4 statistical measures.
Although we see satisfactory performance across
most methods, our ConDA framework with source
as FAIR_wmt19 and GPT2_xl has the best and the
second best performance, respectively. However,
we would like the reader to note that such good per-
formance on our ChatGPT News dataset does not
imply similar performance on any other type of text
generated by ChatGPT (see Section 8). For text
embedding visualizations from our ConDA model
for this ChatGPT case study, check Appendix C.

Baselines

GLTR(avg.) DetectGPT OpenAI Detector
0.72925 0.7735 0.715

ConDA model with Source as

C F19 G2X G3 GM X
0.653 0.877 0.831 0.679 0.73 0.626

Table 6: Results on our ChatGPT News dataset us-
ing unsupervised baselines (upper row) and ConDA
(lower row). Scores are AUROC. Bold shows best and
underline shows second best performance.

7 Conclusion & Future Work

In this work, we address the problem of AI-
generated text detection in the absence of labeled
target data. We propose a contrastive domain
adaptation framework that leverages the power
of both unsupervised domain adaptation and self-
supervised representation learning, in order to
tackle the task of AI-generated text detection. Our
experiments focus on news text, and show the ef-
fectiveness of the framework, as well as superior
performance when compared to unsupervised base-
lines. We also perform a case study to evaluate our
framework on our dataset of ChatGPT-generated
news articles and achieve satisfactory performance.
Our framework can be easily extended to other
forms of text beyond news and our results suggest
that such a framework may be effectively used for
detection of AI-generated text when labels are un-
available, such as in the case of newly emerging
generators. Future work can investigate more chal-
lenging variations of this problem, such as domain
adaptation across multiple unlabeled target genera-
tors, generalization to fully unseen generators, etc.,
along with exploring other types of text such as
scientific articles, medical literature, etc.
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8 Limitations

Problem Formulation & Model: Despite the im-
pressive performance of our ConDA model, there
are several limitations that we go over in this sec-
tion. First, our model and evaluations only focus
on news text and performance may vary widely
across other types of text such as creative writing,
scientific articles, blog-style articles, etc. Second,
our model simply tries to detect whether an input
news article is generated by an LLM or not. AI
generation does not necessarily imply malice. A
dimension that our model does not consider is that
of factuality: not all AI-generated news is factually
inaccurate, and not all human-written news is fac-
tually correct. Incorporating factuality, perhaps in
the form of a fact-checking module, could possibly
improve the usefulness of our model. Third, our
model, along with most other AI-generated text
detectors, is not explainable. The discrete input
space of natural language also makes it difficult
to identify specific features that result in detection.
Furthermore, given the black-box nature of LLMs,
any detector that uses some LLM as the backbone,
trade off explainability for performance gains.

ChatGPT Case Study: As we elaborated in Sec-
tion 4.1, we create our own ChatGPT-generated
news article dataset, following a procedure similar
to (Uchendu et al., 2021). However, the data we
generated is conditioned on the sample of human-
written news articles we randomly selected. We
suppose the performance of our model on this Chat-
GPT data hence is dependent on this sample. The
high performance scores for ChatGPT-generated
articles could also stem from the inherent structure
of news articles; our data is specifically constrained
to the style of journalistic news articles. Therefore,
good performance on our news article dataset for
ChatGPT does not necessarily imply similar perfor-
mance across text from other areas. For this, more
thorough evaluation is needed, which would be an
interesting direction for future work.

9 Ethical Considerations

We go over some of the ethical considerations sur-
rounding this work and similar directions.

9.1 Potential to Penalize Benign Use of LLMs

Recent articles have demonstrated how the newer
language models including ChatGPT, GPT-4 (Ope-

nAI, 2023), Bing Chat7, etc. can be used to im-
prove productivity, spur creative thinking, help
with writing essays or cover letters or even ex-
plain concepts and help in homework. As these
LLMs become more pervasive, standard use of
these as writing or brain-storming assistants may
become commonplace. In such a case, we may
encounter an increasing amount of text generated
by these LLMs online. Such text, if used for be-
nign purposes such as the ones mentioned above,
should not be penalized by a detector such as ours.
This brings another dimension to this already chal-
lenging problem: the issue of intent. Flagging
AI-generated content without characterizing the in-
tent behind that could wrongfully penalize users
of LLMs. Therefore, the nuances surrounding this
need to be considered while using such a detector.

9.2 Danger of Misuse in High Stakes Areas

We discuss the issue of model misuse, by taking
education as an example. Given the accessibility of
ChatGPT and other recent AI-text generators, edu-
cators have expressed concerns (Tlili et al., 2023)
over students cheating or plagiarising via these new
technologies. There are already commercial detec-
tors for AI-generated content such as GPTZero8

and one from Copyleaks9 that educators may use.
However, similar to our model, there is always
a margin of error on such detectors. Performing
plagiarism checks and subsequently implementing
punitive action based solely on such detectors may
be detrimental in case of false positives. Legiti-
mate work by a student may be misclassified by
these detectors, and potentially impact their career.
Eventually, this also diminishes trust in these de-
tectors. Hence, before the widespread use of such
AI-generated text detectors, thorough studies on
error analysis and reliability need to be performed,
along with policy changes to accommodate for the
rapidly evolving landscape of AI technologies.
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A Reproducibility

A.1 Training Details & Hyper-parameters
Used

We perform all experiments using PyTorch, on a
single NVIDIA A100 GPU. We use an Adam op-
timizer with a learning rate of 2× 10−5. All mod-
els are trained for 5 epochs with early stopping,
to avoid overfitting. We provide the full list of
hyper-parameter values in Table 7 to facilitate re-
producibility.

For values of λ1 and λ2 in Equation 3, we use
0.5 and 1.0 respectively, after choosing these values
from a small hyper-parameter search. We randomly
choose 4 tasks: {F19 → G3, C → X, G2X →
GM, and G2X → F19} and evaluate models with
λ1 = {0.2, 0.5, 0.8} and λ2 = {0.2, 0.5, 1.0}. We
finally choose λ1 = 0.5 and λ2 = 1.0 based on
these evaluation performances.

A.2 Synonym Replacement Implementation
In order to implement the synonym replacement
transformation, we perturb 10% of the words in
each sentence in an article by replacing these with
their synonyms. Out of these words, we only per-
form synonym replacement for words that have a

Hyper-parameter Description Value

λ1

Weight for both source &
target contrastive losses in final

objective function (Eq. 3)
0.5

λ2
Weight for MMD loss in

final objective function (Eq. 3)
1

t
Temperature for

contrastive loss in Eq 3
0.5

lr Learning rate 2× 10−5

epochs Number of epochs for training 5

max_seq_len Maximum input sequence length 256

weight_decay
Weight decay for
Adam optimizer

0

dp
Embedding size of the
MLP projection space

300

|b| Batch size for training the model 16

Table 7: Hyper-parameter values we used for all our
experiments.

NOUN, ADVERB, ADJECTIVE or VERB POS tag.
Synonyms are based on WordNet Synsets from the
nltk10 package. If a word has multiple synonyms,
we choose one from that list, uniformly at random.

B TuringBench Details

B.1 Labels

TuringBench (Uchendu et al., 2021) has 200k
samples across 20 labels. These labels include
‘human’ and 19 different generators, which are: {
Human, GPT-1, GPT-2_small, GPT-2_medium,
GPT-2_large, GPT-2_xl, GPT-2_PyTorch,
GPT-3, GROVER_base, GROVER_large,
GROVER_mega, CTRL, XLM, XLNET_base, XL-
NET_large, FAIR_wmt19, FAIR_wmt20, TRANS-
FORMER_XL, PPLM_distil, PPLM_gpt2}.

B.2 Human-written Articles

Human-written news articles in TuringBench are
from The Washington Post, CNN, and a Kaggle
dataset with CNN news articles from 2014-2020
and The Washington Post news articles from 2019-
2020. More details on the TuringBench data are
in (Uchendu et al., 2021). For the human-written
articles in our ChatGPT News dataset, we use
a random sample from the dataset of CNN and
Washington Post articles as used in TuringBench.

C ChatGPT Visualizations

Here, we visually explore embeddings from the
ConDA model for instances in Table 6, in order to

10https://www.nltk.org/
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(a) CTRL → ChatGPT (b) FAIR_wmt19 → ChatGPT (c) GPT-2_xl → ChatGPT

(d) GPT-3 → ChatGPT (e) GROVER_mega → ChatGPT (f) XLM → ChatGPT

Figure 3: t-SNE plots showing text representations from our ConDA model, for each of the S → ChatGPT
tasks, where S ∈ {CTRL, FAIR_wmt19, GPT-2_xl, GPT-3, GROVER_mega, XLM}, corresponding to plots (a-f),
respectively.

understand the issues surrounding the detection of
ChatGPT-generated news articles. Figure 3 shows
the embeddings from all 6 ConDA models. In
all the plots, we see that the human-written and
ChatGPT-generated news articles in our ChatGPT
News dataset are very closely clustered together,
and are not separable. Therefore, even though our
model achieves substantially high AUROC scores,
there are possibly many false positives and/or false
negatives, thus providing an intuition that better
feature selection methods might be necessary here.


