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Abstract

Affordance knowledge is a fundamental as-
pect of commonsense knowledge. Recent find-
ings indicate that world knowledge emerges
through large-scale self-supervised pretraining,
motivating our exploration of acquiring affor-
dance knowledge from the visual domain. To
this end, we augment an existing instructional
video resource to create the new Causal Action–
Effect (CAE) dataset1 and design two novel
pretraining tasks—Masked Action Modeling
(MAM) and Masked Effect Modeling (MEM)—
promoting the acquisition of two affordance
properties in models: behavior and entity equiv-
alence, respectively. We empirically demon-
strate the effectiveness of our proposed meth-
ods in learning affordance properties. Further-
more, we show that a model pretrained on both
tasks outperforms a strong image-based visual–
linguistic foundation model (FLAVA) as well as
pure linguistic models on a zero-shot physical
reasoning probing task.

1 Introduction

Affordances refer to the potential actions and inter-
actions that objects offer/are available to intelligent
agents (Gibson, 1977). For example, a chair affords
sitting and a cup affords drinking. In the context of
artificial intelligence, affordance understanding in-
volves training an agent to recognize and interpret
affordances in the real world, allowing for seam-
less action anticipation and planning (Ardón et al.,
2021; Nagarajan and Grauman, 2020). Recent ad-
vancements in large language models (LLMs) have
enabled researchers to use their extensive every-
day knowledge to decompose high-level natural
language instructions into low-level actions for em-
bodied agents (Ichter et al., 2022; Huang et al.,
2022). The lack of physical grounding, however,
limits these models to understand affordances (Bisk
et al., 2020a). The main challenge in learning affor-

1The project code can be found at https://github.
com/Mallory24/cae_modeling
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Figure 1: We address the (a) multiplicity issue of affor-
dance learning by modeling causal action–effect during
pretraining to implicitly induce two essential properties
of affordance: (b) behavior and (c) entity equivalence.

dance is multiplicity. Put simply, different objects
of distinct semantic classes potentially facilitate the
same action, and a single object can offer multiple
feasible actions (Lu et al., 2022). As illustrated
in Figure 1(b) & (c), both the “ball” and “pizza
cutter” can afford the action “roll” while garlic sup-
ports actions like “slide” and “cut”. More precisely,
two principles serve as the foundation for realizing
multiplicity (Şahin et al., 2007). The first is behav-
ior equivalence, which states that different actions
can produce the same effect on a given object, e.g.,
“slice”, “cut” and “chop” can all make “garlic” into
smaller pieces (Fig. 1(b)). The second, entity equiv-
alence, suggests that executing the same action on
different objects can lead to identical outcomes,
e.g., rolling an “apple” producing a similar motion
change to rolling the “ball” (Fig. 1(c)). Learning
such associations poses a significant challenge for
generalizing knowledge to novel objects and unfa-
miliar scenarios (Lu et al., 2022).

Existing methods address the generalization
problem either by identifying shared characteris-
tics among objects of an affordance category, or

https://github.com/Mallory24/cae_modeling
https://github.com/Mallory24/cae_modeling
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iteratively reinforcing cross-modal representation
consistency (Lu et al., 2022; Luo et al., 2021).
However, these approaches are devised for spe-
cific affordance tasks in supervised settings, raising
questions about their adaptability to other tasks
(Bisk et al., 2020b; Aroca-Ouellette et al., 2021).
Given recent findings on the emergence of world
knowledge from large-scale self-supervised pre-
training (Petroni et al., 2019) and the importance
of the visual domain for distilling certain knowl-
edge (Shwartz and Choi, 2020; Paik et al., 2021),
we study the implicit acquisition of affordance
knowledge through visual–linguistic (VL) pretrain-
ing. As we seek for a high diversity in action and
effect categories, we explore affordance learning
in a noisy real-world video domain (Ebert et al.,
2023). To this end, we leverage step-by-step in-
structional videos accompanied by subtitles (Miech
et al., 2019), from which we extract affordance-
relevant clip–subtitle pairs. The resulting dataset,
referred to as CAE(Causal Action–Effect Dataset),
contains 4.1M clip–subtitle pairs for modeling di-
verse actions and their effects. We then introduce
two pretraining tasks—MAM and MEM—to in-
duce behavior equivalence and entity equivalence,
respectively. To validate our approach, we conduct
intrinsic evaluations addressing two research ques-
tions: (RQ1) can models trained with MAM and
MEM adequately learn fundamental principles of
affordances? (RQ2) what are the benefits of joint
task training? We then assess the encoded affor-
dance knowledge in the grounded representations
to answer the third question: (RQ3) how effec-
tive is our causal action–effect pretrained model on
solving an affordance probing task?

2 Related Work

Affordance Learning. Several works mine af-
fordances from text corpora by identifying seman-
tically plausible verb–object pairs (Loureiro and
Jorge, 2018; Persiani and Hellström, 2019; Chao
et al., 2015). Closely related are selectional prefer-
ences (Pantel et al., 2007; Erk, 2007), i.e., typ-
ical arguments (e.g., objects) of a verbal predi-
cate. Another line of research targets visual af-
fordances, their detection and categorization in vi-
sual input (Hassanin et al., 2022). Affordances
underlie the multiplicity property, i.e., multiple ob-
jects can be mapped to one affordance category
and vice versa, making supervised learning chal-
lenging. Few works address this by enhancing the

multimodal representation consistency iteratively
(Lu et al., 2022) or by finding joint object features
of a given affordance class (Luo et al., 2021). In-
spired by the robotics domain (Şahin et al., 2007;
Dag̃ et al., 2010; Dehban et al., 2016; Jaramillo-
Cabrera et al., 2019), we model the relationships
between actions, objects, and the observed effects
for encoding affordance knowledge implicitly via
a self-supervised setup. In contrast to Merullo
et al. (2022) that model object trajectories as ef-
fects in a closed simulated environment, we use
action–object–effect relations mined from diverse
web-crawled instructional videos.

Causal Modeling of Action Verbs. Grounding
the meaning of action verbs to the state changes of
the manipulated objects is gaining attention in the
NLP community (Sampat et al., 2022b). Gao et al.
(2016) are the first to explore causal verb modeling
in the cooking domain (Regneri et al., 2013) for
grounded semantic role labeling. Bosselut et al.
(2017) use symbolic action–effect modeling for
procedural text understanding. Gao et al. (2018)
introduce multimodal action–effects prediction—
linking action verbs to their effects in static images.
Several works approach action–effect modeling in a
simulated environment. Zellers et al. (2021) collect
action and object state transitions in AI2-THOR
(Kolve et al., 2017), and ground language mod-
els to the physical world through symbolic rep-
resentations (e.g., isWarm=True). Hanna et al.
(2022) address effect prediction in AI2-THOR in
a more challenging setup where the image show-
ing the post-action is to be chosen, while Dagan
et al. (2023) predict change labels from the visual
input. Our goal, in contrast, is to implicitly aug-
ment models with affordance knowledge through
causal action–effect modeling. Moreover, we do
not bound object states to a fixed set of categori-
cal labels, but exploit the temporal dimension to
represent perceptual effect changes.

3 The CAE Dataset

We base our work on the hypothesis that affor-
dance knowledge can emerge from large-scale
self-supervised pretraining. We choose to build
upon HowTo100M (Miech et al., 2019), the largest
and most diverse instructional video dataset avail-
able at the time of writing (Tang et al., 2019;
Zhukov et al., 2019; Kuehne et al., 2019a). It con-
tains 136M weakly-paired clip–subtitles, varying
across domains. As our interest lies in modeling
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wikiHow task title:  Make Roasted Red Pepper Soup
Domain: Food and Entertainment

2:59 3:11 4:41 4:47

6:45 6:55

subtitle:  “i added some chili flakes 
on top so it makes it a little bit spicy 
as well it's” 
FN Frames: [Building]

subtitle:  “for the garlic i'm cutting 
off the top” 
FN Frames: [Cutting
Experience_bodily_harm, 
Cause_harm]

subtitle: “in this corner i'm going to 
put the entire bulb of garlic it's going to”
FN Frames: [Placing]

=verb =noun

Figure 2: CAE Clip–subtitle pairs.

causal action–effect, we employ a series of auto-
matic procedures to extract useful video clips from
HowTo100M: (1) identify a set of result verbs by
leveraging various linguistic resources (2) locate ca-
sual action–effect video clips via parsing subtitles
to match the result verb set. We call our resulting
clip–subtitle pairs the CAE dataset.1

3.1 Identify Result Verbs

To model perceptual causal change of actions, we
are interested in a specific verb type called result
verbs. Result verbs cause state changes on their ar-
guments, including changes in volume, area, grad-
able scale, and motion (Levin and Malka Rappa-
port, 2010). One can reuse an existing collection
of result verbs from Gao et al. (2018); yet, it has
limited coverage (62 verb classes, of which 39 are
covered in our list). Furthermore, to facilitate a
reproducible and systematic method for identifying
result verbs, we define 2 criteria that a potential
result verb should meet: (1) visualness: it can
be visually perceivable (2) effect-causing: it can
cause physical results on the object it acts upon.
We use several semantic resources, including Verb-
Net (Kipper et al., 2006) for its informative se-
lectional restrictions, and imSitu (Yatskar et al.,
2016), to leverage its exhaustive frame–semantic
annotations on visual verbs. Moreover, we em-
ploy FrameNet (FN; Baker et al., 1998) to extract
(undisambiguated) situational frames a verb could
evoke and use the associated frame elements to
identify potential result verbs.2 We will further use
the extracted frames for generalization analysis on
unseen verb classes (detailed in Sec. 5). To auto-
mate result verb identification, we define heuristics
to verify visualness and effect-causing properties.

Visualness. We retain potential result verbs from
imSitu’s visually perceivable verbs, whose seman-

2See App. A.1 for details on the versions we use.

Videos Clips Top 5 Result Verbs

food 167k 2.15M make, put, cook, mix, cut
hobbies 60k 0.8M make, put, cut, pull, fold
cars 12k 0.1M make, put, pull, turn, push
pets 8k 90k make, put, cut, set, build
sports 3k 39k make, put, cut, pull, build

Table 1: Number of unique videos, video clips, and the
top 5 result verbs across 5 selected video domains.

tic role in the second position is valid, e.g. Item.3

From VerbNet, we extract visual verbs based on
the selectional restrictions on the thematic role of
its verb class. Precisely, if a verb class, e.g., spank-
18.3, specifies the Patient role to be concrete
or solid, we consider its grouped verb members to
possess visualness, e.g., “whisk” and “whip”.

Effect-causing. To automatically determine the
effect-causing characteristic of a verb, we check if
the thematic role combination of its verb class on
VerbNet follows (Agent, Patient, Result),
e.g., the verb “split” in the verb class break-45.1
is confirmed. We then cross-check with FN on the
potential result verbs that passed the previous vi-
sualness test and the initial effect-causing test to
ensure this property. Specifically, we check if a can-
didate result verb can evoke any frame that contains
either the Result or the Effect frame element,
e.g., the verb “simmer” evokes the APPLY_HEAT

frame, and has the Result element.
To consolidate the visualness and the effect-

causing information obtained from the various lex-
ical resources, we merge the verbs on their lemma,
e.g.,“grill” is judged as a result verb because its
verb sense grill-45.3 captures visualness and effect-
causing properties, even though the other, grill-
26.3-2, lacks such information on VerbNet. We
derive in total 236 sure cases with both visualness
and effect-causing characteristics (an overview of
sure and unsure cases can be found in Tab. 7 of
App. A.1), which we use to locate causal action–
effect video clips described in the following.

3.2 Extract CAE Video Clips

Given the large size of the HowTo100M dataset, we
down-sample the video pool with several heuris-
tics and focus on 13 video domains with a high
density of unique result verbs (see App. A.2 for
details). To extract video clips from this pool rele-
vant for causal action–effect modeling, we rely on

3A list of invalid roles are detailed in App. A.1



849

the paired subtitles and their linguistic information
such as PoS tags and dependency labels. Particu-
larly, we only keep clips with a single occurrence
of one of our results verbs. To mitigate information
leakage due to overlapping video frames, we en-
force a minimum difference of 5 seconds between
adjacent clips at the per-video level.4 In addition, to
annotate proxy objects (i.e., nouns), we find the set
of objects (within a subtitle) by considering the in-
tersection of nouns labeled with dobj or pobj re-
lations and with high concreteness ratings (i.e., > 4;
Brysbaert et al., 2014). Through this process, we
derive in total 4.1M video clips with 235 unique
result verb types.5 Figure 2 gives examples (the
comparison to the underlying HowTo100M clips
can be found in App. A.2, Fig. 5).6 As Table 1
shows, most of the verbs are prevalent across do-
mains, e.g. “make”. Since our goal is to maintain a
naturalistic dataset, we keep such common verbs
(see App. A.2 for details.). Recall that we built
upon noisy weakly-paired clip–text data, resulting
in many items without visual occurrences of both
our target actions and objects (70% of 288 CAE
samples analyzed by a postgraduate student). We
keep these “background examples” as a preliminary
study (Kuehne et al., 2019b).

4 Causal Action–Effect Modeling

Our goal is to induce the basic principles of affor-
dance knowledge, i.e., behavior equivalence and
entity equivalence (Fig. 1 of Sec. 1). We design
two pretraining tasks: MAM and MEM, and fur-
ther explore the benefit of joint task training by
alternating task-specific samples to optimize the
model, referred to as Multi-task on Causal Action–
Effect Modeling (MULTI-CAE). In order to gauge
the understanding of affordance properties, the cor-
responding intrinsic tasks called Masked Action
Prediction (MAP) and Masked Effect Prediction
(MEP) are introduced. We build upon the exist-
ing video–language hierarchical framework HERO
(Li et al., 2020), consisting of a Cross-Modal
Transformer to learn contextualized embeddings
between a subtitle and a video clip locally and a
Temporal Transformer to learn video embeddings

4We discard consecutive clips as they usually capture re-
dundant information, i.e., the same result verb.

5Only the phrasal verb warm_up is not considered.
6To align with our visual feature extraction procedure, the

shown timestamps are extended 3 seconds before the original
timestamp (see App. A.4). Note the released CAE dataset
contains the original timestamp.

on the global context (i.e, the whole video clip).
Figure 3 illustrates the overall architecture and the
pretraining tasks (for model details see App. A.4).

4.1 Masked Action Prediction (MAP)
Task Definition. Our underlying assumption is
that a video clip of the CAE dataset visually de-
picts the change of the pre-condition ([BEF]), the
action process ([ACT]), and the post-condition
([AFT]) in sequential order throughout an action
execution (Sampat et al., 2022b). Given a CAE
clip–subtitle pair, where the action a ∈ A (a result
verb) is masked. The task is to predict verb a.

Masked Action Modeling (MAM). We address
MAP on the local context, i.e., the contextualized
multimodal embeddings computed by the Cross-
Modal Transformer (Fig. 3 (a) MAM). To prepare
the multimodal inputs, we extract a series of video
frames V = {vj}|V |

j=1 from the video clip every 2
seconds, and tokenize the corresponding subtitle
into a sequence of tokens S = {si}|S|i=1 (refer to
App. A.4 for details). We replace the (masked)
target verb with the special [MASK] token.

Training. During pretraining, we seek to encour-
age the model to learn holistic semantics. We thus
mask the verb a and each word in S with a chance
of 15%.7 We empirically verify the benefit of this
masking strategy during preliminary experiments
(see App. A.5 for details). The objective is to recon-
struct sa∗ (the action verb and some random words)
based on the observation of unmasked tokens S\sa∗
and the video clip V such that the learnable param-
eters θ are updated with the loss function:

LMAM (θ) = − logPθ(sa∗ |S\sa∗∥V )

Inference. During inference, only the target
verb a is masked in the input. We feed the pre-
processed input to HERO, and consider the token
with the highest logits in the MAM head’s output
as the predicted token â.

4.2 Masked Effect Prediction (MEP)
Task Definition. Recall from MAP (Sec. 4.1),
the effect of an action on the object is assumed to
be visually perceivable in a CAE clip–subtitle pair.
The goal of MEP is to predict the masked [AFT]
(post-condition) subclips in a discriminative setup:

7Following BERT, 80% and 15% of the target verbs are
replaced with [MASK] and a random token, respectively, 5%
of them are unchanged.
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Figure 3: Our proposed pretraining tasks on the hierarchical video–language architecture HERO (Li et al., 2020):
(a) MAM for behavior equivalence on the output of Cross-Modal Transformer (Sec. 4.1) (b) MEM for entity
equivalence on the output of Temporal Transformer (Sec. 4.2). (c) MULTI-CAE for joint-task training. During
inference (blue-gray background), we also ablate one modality via attention masks for a systematic intrinsic
evaluation.

for each [AFT] subclip (frame), the correct frame
from candidate frames with the same video id as
the given video clip is to be selected.8

Masked Effect Modeling (MEM). Unlike MAP,
the task is addressed globally with the tempo-
ral contextualized embeddings computed by the
Temporal Transformer (Fig.3 (c) MEM). Given a
preprocessed pair of video frames V = {vj}|V |

j=1

and subtitle tokens S = {si}|S|i=1, we arbitrarily
divide the video clip into three parts in a near-
equal manner: [BEF] (pre-condition), [ACT] (ac-
tion), [AFT] (post-condition)9 and mask the video
frames v[AFT] corresponding to the [AFT] post-
condition subclips with zero-vectors.

Training. During pretraining, the objective is to
reconstruct v[AFT] given the observation of un-
masked video frames V\v[AFT] and subtitle S:

LMEM (θ) = − logPθ(v[AFT]|V\v[AFT]∥S)

Concretely, following Li et al. (2020), we optimize
the model with a contrastive loss by employing the
softmax version of the NCE loss function (Józe-

8The rest the of intra-video clip [AFT] frames are ex-
cluded from the candidate set (see App. A.6 for details).

9We leave automatic action localization (Zhang et al.,
2022) to determine effect frames more reliably, to future work.

fowicz et al., 2016), thus,

Pθ(v[AFT]|V\v[AFT]∥S) ≈
exp

(
v′
[AFT] · v[AFT]/τ

)∑C
i=0 exp

(
v′
[AFT] · ci/τ

)
where τ is a temperature to control the strength of
the penalties on the negative samples, and where
the global contextualized embeddings v′

[AFT], com-
puted by the Temporal Transformer, are taken to
compute the similarity to each video frame ci in
C, a candidate set comprising the correct v[AFT]
and negative video frames sampled from the same
video id as the input video clip V .10

Inference. Identical to training, we mask post-
condition video frames v[AFT] for reconstruction.
By using the trained MEM head to compute the dot
product between v′

[AFT] and each of the candidate
frames from the same video id, the highest score
obtained is considered as the model’s prediction.

5 Experiments

We first evaluate our proposed methodology for
multimodal affordance learning intrinsically on
MAP and MEP, and then on the task-specific prob-
ing benchmark Physical Reasoning about Objects
through Space and Time (PROST).

10In a preliminary study on various negative sampling strate-
gies, we found this strategy most beneficial for teaching fine-
grained effect changes (see App. A.6).
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video % zero-shot
clips videos actions objects

train 2,818,433 – – –
val 646,423 1.07 45.45 0.90
test 644,986 1.10 45.47 0.86

all 4,109,842 – – –

Table 2: Number of video clips and % of zero-shot
samples w.r.t. the train set in terms of unique video ids,
action (verb) classes, object (noun) types.

5.1 Intrinsic Evaluation Setup

The intrinsic evaluation (see Sec. 4.1 & 4.2 for the
task descriptions) addresses (RQ1) & (RQ2) (see
Sec.1). Precisely, we assess these two affordance
principles by (1) quantifying their generalization
ability in a zero-shot framework, i.e., evaluate how
well a model performs on unseen action (verb) and
object (noun) classes; (2) examining the general-
ization ability from the perspective of event (Baker
et al., 1998) and lexico-taxonomic (Miller, 1994)
semantics. We thus implement an algorithm con-
trolling the splitting of the CAE dataset.11

Dataset Split. To examine the action generaliza-
tion ability on the level of event semantics in a
generalized zero-shot setting (Xian et al., 2017),
we assign verbs either to seen or unseen classes
within a FrameNet frame and remove the restric-
tion that all the verb classes of the test set should
be unseen. In total, there are 143 seen and 92 un-
seen verb classes, resp. As shown in Table 2, the
train/dev/test split ratio follows 70%/15%/15%
and nearly 50% of instances in the dev/test set con-
tain unseen actions (verbs) (see App. A.3 for rele-
vant frequency statistics for verbs and verb–noun
combinations in train/test). Note that the test set
is not manually annotated by humans and serves
solely as a reference set (Kuehne et al., 2019a).

Model Ablations. To ensure a faithful assess-
ment of the generalization ability, we diverge from
Li et al. (2020) and use randomized weights rather
than RoBERTa-B’s pretrained weights to initialize
HERO’s Cross-Modal Transformer.12 The models
pretrained with MAM, MEM, and MULTI-CAE
tasks are referred to as MAM-VLRnd, MEM-
VLRnd, and MULTI-CAE-VLRnd, respectively.

11The algorithm is reproducible, allowing researchers to
customize their own splits based on their requirements.

12According to Li et al. (2020), RoBERTa’s pretrained
weights (12 layers) are partially taken to initialize the Cross-
Modal Transformer (6 layers) of HERO.

Moreover, to see if the modalities provide com-
plementary information,13 we train model vari-
ants with one ablated modality for comparison:
MAM-LRnd and MEM-V. We do this through
zero-masking on the inter-attention mask. In other
words, MAM-LRnd and MEM-V are tasked to
reconstruct the masked textual/visual target tokens
under their own respective unimodal input (see Ap-
pendix A.7 Ablated Models). During inference,
we perform a sanity check, where we ablate one
modality to see whether the linguistic/visual con-
text is sufficient to solve the task as illustrated in
Figure 3. See Appendix A.7 for the pretraining
details and the hyperparameters we adopted.

Metrics. For MAP, we report the macro-average
accuracy on seen/unseen verb classes and their har-
monic mean (Xian et al., 2017), along with the
micro-average accuracy. For the MEP task, we re-
port the micro-average accuracy, which measures
the correctness of predicting all masked [AFT]
frames per instance.

5.2 Probing Task: PROST

To address (RQ3) (Sec. 1), we assess the encoded
affordance knowledge in our causal action–effect
pretrained models by performing a zero-shot eval-
uation on the PROST task (Aroca-Ouellette et al.,
2021). It intends to probe models on physical
commonsense knowledge in a textual cloze-style
format, including 6 affordance concepts: stack-
able, rollable, graspable, breakable, slidable and
bounceable for 38 object classes in total. Each
of them comprises two templates: (1) the origi-
nal template asks the model to choose the object
among 4 objects that affords a given action, while
(2) its inverse asks for the object that cannot afford
the action; e.g., eggs is the non-stackable object in
[eggs, books, blocks, boxes ]. The distribution of
correct answer positions is uniform across the test
instances. Therefore, a model that is found robust
exhibits similar effectiveness on the original and its
inverse template, as well as on all answer positions.

Models. We compare pure language models
(LM) against variants of MAM-L, MAM-VL, and
MULTI-CAE-VL, whose textual encoders are ini-
tialized with the pretrained RoBERTa-B model
(Hugging Face, Wolf et al., 2020) before CAE
pretraining. Additionally, to test our hypothe-
sis that the video domain better captures action–

13The action is verbally mentioned (see Sec. 3.2.)
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Test Set Input Model Seen Unseen HM Micro FN frame Co-Hypo

Multimodal

Majority baseline 0.7 1.1 2.0 14.6 - -
MULTI-CAE-VLRnd 23.6 13.5 17.2 30.9 16.6 36.1
MAM-VLRnd 26.8 14.9 19.1 31.7 17.5 34.5

Language

RoBERTa-B † 7.6 5.2 6.2 13.3 3.7 8.8
MULTI-CAE-VLRnd 15.1 10.2 12.2 19.6 11.7 39.0
MAM-VLRnd 16.5 10.6 12.9 19.7 12.6 36.6
MAM-LRnd 18.4 14.4 16.2 23.3 10.2 37.3

Table 3: Left: Results (%) for MAP on (1) Multimodal (video + subtitles) and (2) Language (subtitles) test input for
Seen/Unseen verbs. HM = Harmonic Mean, Micro = micro-average accuracy. RoBERTa-B † is a linguistic baseline.
Right: Proportion (in %) of false predictions on the set of unseen verb classes, which generalizes in terms of
event and lexico-taxonomic semantics, measured through a shared FrameNet (FN) frame and direct Co-Hyponymy,
respectively. Best results in boldface, best result in each input mode underlined.

effects due to the temporal dimension, we compare
against the image-based visual–linguistic founda-
tion model FLAVA (Singh et al., 2022), known for
its strong unimodal and multimodal representations.
Note that before undergoing multimodal pretrain-
ing, the textual encoder of FLAVA is initialized
with unimodal pretrained weights,14 making its
linguistic understanding comparable to pretrained
text-based models. The models thus all have some
prior linguistic knowledge, allowing us to focus on
the effect of CAE pretraining. Regarding the LMs,
we report results for RoBERTa-B, and the aver-
age (coined AvgLM) of the best results that Aroca-
Ouellette et al. (2021) report for each of their LMs
(GPT, GPT2, BERT, RoBERTa, ALBERT V2).15

For inference, all models are fed textual input
only, and we follow Aroca-Ouellette et al.’s (2021)
procedure to obtain the probabilities of each can-
didate, based on the logits of pretrained MLM
(RoBERTa-B & FLAVA) and MAM heads (ours).

6 Results

6.1 Intrinsic Tasks: MAP
The accuracy of all models on predicting the correct
verb is overall lower on the language-input test
set compared against the multimodal set, where
they are fed both, subtitles and video clips (Block 2
vs. 1, Tab. 3, left). The best model, MAM-VLRnd,
drops by −10.3pp accuracy on seen and −4.3pp on
unseen verb classes, suggesting that the task and
test set is not trivially solvable without visuals. It
also indicates that the VL model has successfully
learned to ground verbs by leveraging the visual

14The textual encoder is pretrained using the MLM objec-
tive on CCNews and BookCorpus.

15Following Aroca-Ouellette et al. (2021), we exclude the
not directly comparable models T5 (it does not cover slide),
and UnifiedQA (fine-tuned on task-specific text data).

effect change (cf. Sampat et al., 2022a). Indeed,
when omitting the [AFT] frames (the visual effect)
during inference, the accuracy of MAM-VLRnd

drops on Seen and Unseen (−4.5pp and −2.3pp,
resp., no table shown). But the benefit of the visual
modality for the model seems still limited regard-
ing its generalization ability—the difference on Un-
seen between MAM-VLRnd and its ablated variant
MAM-LRnd (pretrained on subtitles), is minimal
(+.5pp for VL); MULTI-CAE-VLRnd even under-
performs MAM-LRnd on Unseen irrespective of
the test input.

Analysis: Generalization Ability. We analyzed
the effect of our pretraining tasks on the gener-
alization ability of verbs on the level of situa-
tions/events, i.e., semantic frames, and less specific
verb senses: We measured the number of cases, in
which the reference verb v and the predicted verb ṽ,
v ̸= ṽ, share the same FrameNet (FN) frame or
the same direct WordNet (WN) hypernym (co-
hyponymy).16 Table 3 (right) shows that MAM-
VLRnd and MULTI-CAE-VLRnd have the highest
proportion of cases for which they did not predict v,
but a shared FN frame or a co-hyponym. Moreover,
MAM-LRnd falls short against both VL models
across the board on FN frames, in contrast to our
findings above on MAP on verb types. E.g., MAM-
VLRnd predicted “fry” instead of reference “roast”,
but both evoke the Apply_heat frame and are
co-hyponyms of “cook”, while MAM-LRnd pre-
dicted “put” (Placing; “move”; see also Fig. 12 of
App. A.5). Noteworthy is also that MAM-VLRnd

is best on frame-level generalization with visual in-
put during inference, while MULTI-CAE-VLRnd

is the best model on the co-hyponymy relation with-
out visual input. The patterns indicate that, first,

16We used the NLTK toolkit (Bird and Loper, 2004).
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Test Set Input Model Accuracy

Multimodal
Random baseline 0.27
MULTI-CAE-VLRnd 59.2
MEM-VLRnd 59.9

Video
MULTI-CAE-VLRnd 58.6
MEM-VLRnd 57.2
MEM-V 59.7

Table 4: Results (%) for MEP on (1) Multimodal (video
clips + subtitles) and (2) Video (video clips) test input.

the visual modality is beneficial for frame se-
mantics, and second, visual–linguistic (VL) ac-
tion learning fosters event knowledge, while VL
action–effect learning fosters lexico-taxonomic
knowledge.

Qualitative Analysis. Through introspection of
individual verb classes, we found the visually per-
ceivable effect to be beneficial for the majority of
our examined classes. For example, the accuracy of
MAM-VLRnd on Seen “whip” and “bake” drops
significantly (−24pp and −20.7pp, resp.), when
it is tested with language input only; examples
for Unseen are “crumple”, and “wring” (−9.1pp,
−6.3pp, resp.). However, for several classes the
linguistic context alone gives a strong cue. “Man-
icure”, e.g., often co-occurs with the word “nail”,
and “sharpen” with “knife” (we refer to App. A.5,
Fig. 10 for an example). For an example of extrap-
olations of visual effect similarities for capturing
behavior equivalence, see Appendix A.5, Fig. 11.

6.2 Intrinsic Tasks: MEP
As shown in Table 4, the accuracy of the multi-
modal and vision-only model, MEM-VLRnd and
MEM-V, is comparable on visual effect inference
on their respective input modes (59.9% and 59.7%).
This indicates that linguistic knowledge priors do
not contribute much to visual action–effect com-
prehension. Comparing these models with a vari-
ant whose language encoder is initialized with
RoBERTa-B before multimodal pretraining sup-
ports this—it yields a neglectable difference in ac-
curacy (60% and 59.6% on VL and V test input,
resp., no table shown). On the other hand, on video-
only inference, MULTI-CAE-VL is slightly more
effective than MEM-VLRnd (+1.4pp). Thus, a
linguistic encoder that is trained jointly on both, vi-
sual effect and linguistic action prediction (MULTI-
CAE-VL) may benefit video-only effect inference.

We refer to Figures 14 and 15 for examples of suc-
cessful entity equivalence reasoning, and failures
due to ambiguous reference.

6.3 Probing Task: PROST

Pretraining models on both, visual action and ef-
fect prediction in the video domain, is beneficial
for learning affordance knowledge. As Table 5
(left) shows, MULTI-CAE-VL, which is addition-
ally trained to observe the action process and its
perceptual effect on objects obtains the best Macro
Average (32%), with a difference to AvgLM of up
to +19.1pp (slide). Notably, it achieves better re-
sults on average compared to FLAVA (+16.2pp).
This indicates that modeling visual action–effects
in the temporal dimension plays a crucial role in ef-
fectively encoding latent affordance concepts. Note
that slide is the only affordance that is contained in
our CAE training data, yet, even on slide, MAM-
VL yields a higher accuracy (+6pp, Tab. 5) than
its variant trained only on textual training items
(subtitles), MAM-L.

Beneficial is moreover pretraining towards vi-
sual effect prediction (i.e., MEM), as the compari-
son of MULTI-CAE-VL against MAM-VL shows
(+5.5pp on average). The former significantly out-
performs all other models also on two affordances
that are not covered by CAE’s train split (stack
(34%) and bounce (38%)). That is, MULTI-CAE-
VL learns to extrapolate to unseen actions.
Our models are at least comparable to the pure
LMs on all individual affordances except for break
(RoBERTa-B, 31%). When compared to FLAVA,
our models perform slightly worse in the case of
grasp, though the performance difference is not
significant. Introspection showed the performance
discrepancy between the affordances is not due
to seen vs. unseen, objects, in fact, all are seen
(cf. Tab. 15, App. A.8). However, we found that
the errors made by our model in break and grasp
are related to the frequency of objects in the CAE
training set. In other words, our models tend to
pick the most common seen object among the 4
choices as its prediction, e.g., wrongly selecting
sugar as the graspable object.

Model Robustness. We test the models for ro-
bustness to the order of answer choices and to
template inversion (difference in accuracy on
affordance/non-affordance), allowing deeper in-
sights into the models’ proper affordance knowl-
edge and language understanding ability, respec-
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Model Stack Roll Grasp Break Slide Bounce Macro 1 2 3 4

MAM-L 30.0 20.0 24.0 27.0 24.0 23.0 24.7 22.5 22.5 22.3 22.3
MAM-VL 22.0 25.0 33.0 26.0 30.0 23.0 26.5 25.0 25.0 25.2 25.1
MULTI-CAE-VL 34.0∗ 24.0 30.0 26.0 40.0∗ 38.0∗ 32.0∗ 27.4 27.4 27.6 27.7
FLAVA 19.0 26.9 34.5 25.5 23.8 24.0 25.5 25.8 21.5 21.0 21.7
RoBERTa-B 27.4 24.9 22.8 31.0∗ 26.6 25.5 26.4 45.8 19.4 15.1 15.0
AvgLM † 29.1 29.0 28.4 30.7 20.9 20.4 26.3 31.4 25.2 8.5 38.6

Table 5: PROST: Left: Results (accuracy %) across six affordances. Right: Position accuracy across the correct
answer’s position. The more balanced, the more robust. †Results taken from PROST (Aroca-Ouellette et al., 2021).
Statistically significant differences (p < 0.05)17 are indicated with ∗.

Model Stack ↓ Roll ↓ Grasp ↓ Break ↓ Slide ↓ Bounce ↓ Macro Average ↓

MAM-L 60.0 20.0 32.0 14.0 40.0 34.0 33.3
MAM-VL 4.0 30.0 62.0 12.0 20.0 6.0 22.3
MULTI-CAE-VL 68.0 32.0 56.0 12.0 80.0 76.0 54.0
FLAVA 4.5 45.2 68.6 41.9 39.6 31.7 38.6
RoBERTa-B 0.1 14.5 5.2 51.9 17.5 2.4 15.3
AvgLM 11.4 14.7 12.7 17.8 12.8 9.6 13.2

Table 6: PROST: Absolute difference in accuracy between the original template and its inverse across six affordances.
The lower the better the model’s true question understanding.

tively. Table 5 (right) shows that all our models dis-
play the most balanced effectiveness across differ-
ent answer positions, indicating robustness against
syntactic change of the answer position, i.e., the
order in which the correct (non-)affordable object
is presented in the context. In contrast, text-based
models like RoBERTa-B and AvgLM are signifi-
cantly affected, while FLAVA slightly favors the
first answer position.

In terms of robustness to template inversion, as
shown in Table 6, MULTI-CAE-VL, the overall
most effective model in accuracy, is the least bal-
anced, it has on average a 54pp higher accuracy on
inverses. Our second overall best model, MAM-
VL, is by far more robust (avg. 22.3pp diff.) and
is better than FLAVA. This result is somewhat sur-
prising since FLAVA is expected to have a stronger
linguistic understanding due to its additional pre-
training on textual corpora. The pure language
models turn out to be most robust to inverses
(avg. 13.2pp and 15.3pp for AvgLM and RoBERTa-
B, resp.), indicating a higher ability of true lan-
guage understanding.18 See Appendix A.8, Ta-
ble 16 for the breakdown of the individual results
on original/inversed templates.

18Recall our CAE pretraining data has noisy subtitles in-
cluding automatically transcribed speech, which may hinder
language understanding.

7 Discussion

The intrinsic results suggest that both modalities
contribute beneficially towards our goal of encod-
ing behavior and entity equivalence. Crucially,
our results on the PROST affordance probing task
strongly support our joint action–effect modeling
in the video domain: MULTI-CAE-VL is the most
effective model. It is also most robust in terms
of language-only (esp. PROST) and visual-only
input (MEP) inference modes. We hypothesize
that MULTI-CAE-VL is more encouraged in tak-
ing both modalities into account due to its training
objectives on both, vision-conditioned linguistic ac-
tion prediction (MAM) and language-conditioned
visual effect prediction (MEM).

8 Conclusions

We explore the acquisition of affordance properties–
behavior and entity equivalence through large-scale
causal action–effect pretraining in the video do-
main. To this end, we augment an existing instruc-
tional video dataset and introduce two pretraining
tasks, MAM & MEM. Our empirical results show
the successful incorporation of these foundamental
properties of affordance. Furthermore, the joint-
task-trained model outperforms linguistic counter-
parts on an affordance probing task. Future work
would benefit from a cleaner dataset to explicitly
examine the contribution of action/effect modeling,
and further exploration of multi-task training.
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9 Limitations

In this work, we seek to validate the induction
of two affordance properties through large-scale
self-supervised visual–linguistic pretraining. It is
important to acknowledge that affordance knowl-
edge encompasses a range of concepts (Zhu et al.,
2015; Xu et al., 2022), and our assessment is cur-
rently limited to a linguistic probing task. Future
work is necessary to investigate whether the repre-
sentation derived from causal action–effect model-
ing can effectively address other affordance down-
stream tasks, e.g., purpose-driven affordance un-
derstanding (Luo et al., 2021; Zhai et al., 2022).
Furthermore, it is worth investigating the potential
applications of the encoded latent affordance rep-
resentations in areas like procedural tasks (Zhou
et al., 2023) and robot learning (Bahl et al., 2023).
When considering the use of the video domain
for large-scale pretraining, one has to remark on
certain shortcomings compared to a controllable
embodied environment. Firstly, the temporal mis-
alignment of the video clips and subtitles poses a
challenge for cross-modal learning (Zhukov et al.,
2019; Miech et al., 2020). Moreover, many sub-
titles consist of incomplete sentences, as most of
them are automatically transcribed based on an on-
going speech within fixed time intervals (Kuehne
et al., 2019b), restricting the linguistic capabilities
of models trained on such data. Secondly, it is
computationally infeasible to ensure quality con-
trol on the web-crawled video data, particularly
when it comes to establishing clear temporal bound-
aries and localization between the pre-condition,
action process, and the resulting effect. Addition-
ally, eliminating background objects proves to be
a challenging task in this context. Lastly, to draw
more conclusive insights into the intrinsic evalu-
ations, it would be beneficial to have a human-
annotated test set. However, this approach can be
prohibitively costly, necessitating further research
into semi-automatic methods for conducting such
annotations (Huang et al., 2018; Zhang et al., 2022;
Dvornik et al., 2023). Regarding our methodology,
it is important to note that our focus is on present-
ing proof-of-concept pretraining tasks rather than
achieving optimal performance. Hence, we have
not conducted an extensive hyperparameter search,
and the results reported in this study are obtained
from a single seed run.
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A Appendix

A.1 Result Verbs: Preprocessing Details

VerbNet. We use VerbNet 3.3 listed in this repos-
itory: https://github.com/cu-clear/
verbnet and the semantic link to find the
mapping between VerbNet and FrameNet:
https://github.com/cu-clear/
semlink/tree/master/instances.

imSitu. The list of invalid imSitu roles at
the second position we excluded is ["place",
"tool", "location", "manner", "instrument", "lis-
tener", "container", "model", "suspect", "victim-
part", "addressee", "confronted", "start", ’mes-
sage’, ’skill’, ’ailment’, ’focus’, ’resource’,
’experiencer’, ’phenomenon’, ’agentpart’, ’coa-
gent’, ’end’, ’recipient’, ’audience’, ’blow’, ’sup-
ported’, ’interviewee’, ’destination’, ’source’, ’car-
rier’, ’entityhelped’, ’center’, ’reciever’, ’event’,
’naggedperson’, ’obstacle’, ’stake’, ’coparticipant’,
’seller’, ’performer’, ’student’, ’giver’, ’refer-
ence’, ’adressee’, ’competition’, ’occasion’, ’im-
age’, ’coagentpart’, ’bodypart’, ’boringthing’,
’victim’, ’follower’, ’perceiver’, ’imitation’, ’ad-
mired’, ’chasee’, ’undergoer’, ’path’, ’shelter’,
’restrained’]. The imSitu dataset (Yatskar et al.,
2016) could be downloaded under the link:
https://github.com/my89/imSitu.

FrameNet. We request version 1.7 from this link:
https://framenet.icsi.berkeley.
edu/fndrupal/framenet_request_
data.

Result Verbs: Sure Cases v.s. Unsure Cases.
Following the series of automatic steps described in
Section 3.1, we derive in total 377 result verb can-
didates, including 236 sure cases and 141 unsure
cases, along with their corresponding 150 unique
FrameNet frames. In this work, only the sure cases
are utilized for locating the video clips. Some ex-
amples of sure cases v.s. unsure cases are shown in
Table 7.

A.2 HowTo100M Subtitles: Preprocessing
Details

We focus on 13 video categories (the released file,
HowTo100M_v1.csv, contains 19 categories)
that have a denser distribution of result verbs ac-
cording to a preliminary study conducted on a sub-
set containing 500 videos from each category. In
particular, a video category of our interest should
have more than 15 unique result verb types, and
each of the result verb types within should have
more than 100 video clips. The distribution of re-
sult verb type across video categories computed
during the preliminary study can be seen in Fig-
ure 4.

To further downsample the video pool, we se-
lect the top 15 viewed videos per wikiHow task
id (Miech et al. (2019) search and collect videos
based on wikiHow task title. On average, there are
48 videos per task id).

We use the pre-processed version of clip-
subtitle, raw_caption_superclean.json.
All the relevant files can be downloaded from this
link: https://www.di.ens.fr/willow/
research/howto100m/.

The comparison between extracted CAE clips
and the non action-centric clip of HowTo100M can
be found in Figure 5.

A.3 CAE Split Statistics

Split Details. Within a FrameNet frame, we ran-
domly assign (seed 42) 80%/20% of the verbs (lexi-
cal units) to seen/unseen verb classes. As the video
frame visual feature extractor is trained with Ki-
netics400, we ensure no information leakage by
controlling the seen verb classes that do not con-
tain Kinetics400 (Kay et al., 2017) verb types. To
control the split, we adopt the recommended prac-
tices by Xian et al. (2017). For seen verb classes,
the corresponding video clips ratio of train-dev-test
follows 80%-10%-10% whereas for unseen verb
classes, it follows 0%-50%-50%. As for the video
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Food and Entertaining

Figure 4: Number of unique result verbs across video categories

wikiHow task title:  Make Roasted Red Pepper Soup
Domain: Food and Entertainment

2:59 3:11 4:41 4:47

6:45 6:55

subtitle:  “i added some chili flakes 
on top so it makes it a little bit spicy 
as well it's” 
FN Frames: [Building]

subtitle:  “for the garlic i'm cutting 
off the top” 
FN Frames: [Cutting
Experience_bodily_harm, 
Cause_harm]

subtitle: “in this corner i'm going to 
put the entire bulb of garlic it's going to”
FN Frames: [Placing]

=verb =noun

subtitle: “setting, use it. it makes all 
the difference”

CAE Clip

3:60 3:64

CAE ClipHowTo100M Clip

Figure 5: Clip–subtitle pairs: CAE vs. HowTo100M, CAE targets action-centric video clips in the HowTo100M



861

Judgement Visualness Effect-causing

Sure Result Verbs Verb Senses

attach [attach-22.3-2-1∗, attach⋆] ✓ ✓
bend [bend-45.2∗] ✓ ✓
chop [chop-18.2∗, chop-21.2-2∗, chop⋆] ✓ ✓
stretch [stretch-45.2∗, stretch⋆] ✓ ✓
tie [tie-22.4∗, tie-22.1-2∗, tiestar] ✓ ✓

Unsure Result Verbs Verb Senses

activate [activate-45.4∗] ? ✓
block [block⋆] ✓ ?
carve [carve-23.3∗, carve-21.2-2∗, carve⋆] ✓ ?
sniff [sniff⋆] ✓ ?
warm [warm-45.4∗] ? ✓

Table 7: Result verbs: sure & unsure cases examples. The verb senses are sourced from different resources: ∗

represents VerbNet while ⋆ indicates imSitu (no specific verb sense is recorded). "✓" implies the property is
satisfied, whereas "?" indicates uncertainty.

domain, validation and test set are ensured to be
similar.

Statistics. For the top 20 and bottom 20 seen
verb classes with their top 5 nouns combinations
and the corresponding FrameNet frames they can
evoke, refer to Tables 8 and 9 respectively. As
for the unseen verb classes, refer to Tables 10 and
11. The video clip counts (log scale) of top 100
seen verbs in the train set and unseen verbs (93
classes) in the test set can be found in Figures 6
and 7 respectively.

The co-occurrence heatmap between the top 100
seen verbs and the top 30 nouns in the train set
is shown in Figure 8. As for that of unseen verbs
(93 classes) and the top 30 nouns in the test set is
shown in Figure 9.

A.4 Model Details

Subtitle Input. Subtitles are tokenized with
RobertaTokenizerFast that uses byte-level
Byte-Pair-Encoding from the Hugging Face library
(Wolf et al., 2020).

Video Input: Visual Feature Extraction. For
each video clip, the temporal context is extended
to 3 seconds before the starting point and after the
endpoint of the original time stamp such as to en-
sure that the pre-condition and the post-condition
are sufficiently captured. The visual features are
then extracted every 2 seconds (0.5 FPS) with
ResNet (He et al.), pretrained on ImageNet (Deng

et al., 2009), and with SlowFast (Feichtenhofer
et al., 2019), pretrained on Kinectics-400 (Kay
et al., 2017) for 2D and 3D features, respectively.
Therefore, for a video segment V = {vi}|V |

i=1 (|V |
is the number of decoded video frames), the result-
ing visual representation is the concatenation of 2D
(2048) and 3D features (2304) (V ∈ R|V | × 4352).

HERO Architecture. Designed by Li et al.
(2020), it can be viewed as a single-stream vision–
language model that captures contextualized video
embeddings in a hierarchical fashion. There are
three major components: the Input Embedder,
the Cross-Modal Transformer, and the Temporal
Transformer. The Input Embedder comprises
the Visual and Textual Embedder. The final textual
representation of a sub-word token is obtained by
applying a normalization (LN) layer on top of the
sum of (1) the token embedding (2) the position em-
bedding and (3) the segment type embedding (one
segment type). As for the visual part, the video
frame embedding is obtained by projecting the ex-
tracted visual features to the same dimension as
the token embedding with a fully-connected (FC)
layer. Similarly, to obtain the final visual repre-
sentation, (1) the video frame embedding (2) the
position embedding and (3) the segment type em-
bedding comprising three types: [BEF] (to denote
the pre-condition), [ACT] (to denote the action
process), [AFT] (to denote the post-condition) are
summed up and fed through a LN layer. Finally,
the multimodal input is the concatenation of the
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Top 20 Seen Verbs Top 5 Nouns FrameNet frames

make [video, thing, recipe, time, lot] [Building]
put [top, bit, water, side, thing] [Placing]
cut [piece, half, knife, top, side] [Experience_bodily_harm, Cause_harm, Cutting]
cook [minute, time, cook, water, heat] [Apply_heat, Cooking_creation, Absorb_heat]
turn [heat, side, water, minute, light] [Cause_change, Undergo_change]
pull [side, loop, top, yarn, thing] [Cause_motion, Manipulation, Earnings_and_losses]
set [minute, side, timer, time, top] [Intentionally_create, Arranging,

Change_of_consistency]
stick [bottom, side, top, hand, pan] [Cause_motion, Placing, Attaching,

Being_attached]
dry [time, hour, minute, dry, water] [Cause_to_be_dry]
bake [soda, powder, minute, oven, teaspoon] [Cooking_creation]
build [thing, house, video, time, build] [Building]
throw [thing, bit, water, top, stuff] [Cause_motion]
fold [half, side, edge, paper, corner] [Reshaping]
push [side, button, top, place, way] [Cause_motion, Manipulation,

Cause_change_of_position_on_a_scale]
chop [onion, garlic, cup, chop, tomato] [Cause_harm, Cutting]
click [video, link, button, channel, icon] [Cause_impact, Impact, Motion_noise]
wash [hand, water, hair, wash, face] [Removing, Grooming]
boil [water, minute, boil, egg, cup] [Cause_harm, Apply_heat, Absorb_heat]
drop [drop, water, comment, oil, top] [Cause_motion]
wrap [wrap, paper, yarn, wire, tape] [Placing]

Table 8: Top 20 seen verbs and their top 5 noun combinations

Bottom 20 Seen Verbs Top 5 Nouns FrameNet frames

total [cup, dollar, inch, car, gram] [Amounting_to, Adding_up]
decay [matter, decay, wood, time, tree] [Rotting]
lash [line, lash, mascara, bottom, thing] [Attaching]
belt [belt, pulley, thing, side, drum] [Cause_harm]
cement [place, thing, post, cement, piece] [Attaching]
pulverize [processor, thing, blender, garlic, salt] [Grinding]
demolish [thing, everything, whole, house, button] [Destroying]
paddle [paddle, pool, way, river, time] [Corporal_punishment]
collide [way, hold, another, fact, time] [Cause_impact]
plaster [wall, plaster, giordano, video, time] [Attaching]
extinguish [fire, flame, time, water, candle] [Putting_out_fire]
boat [boat, water, store, type, hour] [Operate_vehicle]
devastate [garden, worm, frost, plant, guy] [Destroying]
consolidate [item, power, everything, space, surface] [Cause_to_amalgamate]
vaporize [chamomile, water, oil, day, gas] [Destroying, Change_of_phase]
commute [work, people, time, day, thing] [Travel]
shush [mouth, kill, shush, cup, sauce] [Silencing]
exterminate [rat, bedbug, time, garden, pest] [Killing]
hurl [time, point, way, wall, wolf] [Cause_motion]
paw [ear, paw, hand, food, luke] [Manipulation]

Table 9: Bottom 20 seen verbs and their top 5 noun combinations
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Top 20 Unseen Verbs Top 5 Nouns FrameNet frames

mix [bowl, ingredient, water, everything, mix] [Cause_to_amalgamate]
place [top, side, bowl, piece, pan] [Placing]
break [piece, egg, thing, time, break] [Experience_bodily_harm, Cause_harm,

Cause_to_fragment, Render_nonfunctional]
roll [dough, ball, roll, pin, piece] [Cause_motion, Reshaping, Motion,

Mass_motion, Body_movement]
paint [paint, color, wall, thing, top] [Filling, Create_physical_artwork,

Create_representation]
burn [burn, bottom, hand, time, fire] [Experience_bodily_harm, Cause_harm]
attach [piece, side, top, end, wire] [Attaching]
blend [blender, everything, color, water, ingredient] [Amalgamation, Cause_to_amalgamate]
connect [wire, side, line, piece, end] [Attaching]
lift [side, top, lid, thing, foot] [Cause_motion]
squeeze [juice, lemon, water, lime, bit] [Manipulation]
glue [piece, glue, place, top, side] [Building, Attaching]
insert [hook, hole, toothpick, needle, center] [Placing]
crush [garlic, pepper, tomato, ice, clove] [Cause_harm, Reshaping, Grinding]
roast [oven, minute, pan, chicken, seed] [Apply_heat]
rest [minute, hour, top, time, oven] [Placing]
hook [wire, hook, hose, side, thing] [Attaching]
knock [door, thing, knock, sock, air] [Cause_motion]
damage [plant, hair, root, skin, area] [Damaging]
split [half, two, wood, middle, piece] [Cause_to_fragment]

Table 10: Top 20 unseen verbs and their top 5 noun combinations

Bottom 20 Unseen Verbs Top 5 Nouns FrameNet frames

eject [water, cd, button, air, shell] [Removing]
shelve [unit, shelf, side, thing, space] [Placing]
sliver [almond, cup, nut, onion, garlic] [Cause_to_fragment]
pare [knife, side, skin, line, chisel] [Cutting]
dissect [earthworm, poem, dissect, image, way] [Cause_to_fragment]
rivet [rivet, handle, place, tang, bottom] [Attaching]
claw [way, claw, hand, crab, top] [Cause_harm]
spear [spear, fish, hole, stick, lot] [Cause_harm]
unify [color, team, look, field, thing] [Amalgamation, Cause_to_amalgamate]
club [club, food, another, friend, final] [Cause_harm]
fracture [bone, fracture, wall, time, crack] [Cause_harm, Cause_to_fragment]
thump [thump, table, video, side, sound] [Cause_impact, Impact, Make_noise]
obliterate [time, deck, chop, piece, everything] [Destroying]
splinter [wood, splinter, board, side, edge] [Cause_to_fragment]
jumble [word, stuff, guy, thing, everything] [Cause_to_amalgamate]
cleave [cleave, bit, pinching, wood, log] [Cause_to_fragment]
manicure [nail, lawn, hand, manicure, course] [Grooming]
punt [puppy, thing, ball, way, punt] [Cause_motion]
prowl [prowl, top, treat, attacker, river] [Self_motion]
mutilate [beak, man, listener, madhubala, money] [Cause_harm]

Table 11: Bottom 20 unseen verbs and their top 5 noun combinations
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Figure 6: Video clips counts (log scale) of top 100 seen verb classes in the train set
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textual and the visual representation.
To learn the implicit association between subtitle

tokens and video frames, the Cross-Modal Trans-
former is used to perform cross-modal attention
on the multimodal input. The outputs are then con-
textualized subtitle embeddings and video frame
embeddings.

To further obtain temporal-aware video frame
embeddings, the local output of video frame em-
beddings from the Cross-Modal Transformer are
fed into the Temporal Transformer yielding the
global embeddings. The final contextualized video
frame embeddings are obtained by adding the local
and the global embeddings via a residual connec-
tion (He et al., 2016).

A.5 MAM

During the development stage performed on
10% of the training data and test data , we explored
three masking strategies (see Table 12):

• Verb-only: mask the result verb only.

• Verb-random-joint: mask the result verb &
and some random words within one data point
in the meantime. In this way, more masked
tokens have to be reconstructed; thus, it is
more challenging.

• Verb-random-alter: mask the result verb or
random words alternatively, i.e., 50% of the
training data with only the result verb tokens
being masked, and the rest with only random
tokens being masked.

The best action generalization ability (highest ac-
curacy on unseen verbs) was yielded by verb-
random-joint (see Tab. 13); therefore, we adopt
this masking strategy for MAM.

Qualitative Analysis. Figure 10 shows an exam-
ple of various models’ prediction on MAP task. Un-
der limited textual context, MAM-VLRnd is able
to infer the action by reasoning upon the percep-
tual effect. Figure 11 gives an example of MAM-
VLRnd’s extrapolation ability of seen to unseen
verbs in terms of visual effect similarities. Perform-
ing the paint action on the object canvas, spread
on surface, and spray on container result in similar
post-conditions, namely, the surface is covered by
a layer.

Generalization Analysis. Figure 12 gives two
wrong prediction cases of MAM-VLRnd and
MAM-LRnd, where we can see MAM-VLRnd is
able to predict a verb that captures relations with
the reference verb from the perspective of situa-
tional and lexico-taxonomic semantics.

A.6 MEM
During the development stage performed on
10% of the training data and test data, we explored
three masking strategies on controlling the nega-
tive video frames. In addition, each candidate video
frame has its corresponding video type: [BEF] for
the pre-condition, [ACT] for the action process,
and [AFT] for the post-condition:

• Randomized subclips: randomized [BEF],
[ACT] and [AFT] subclips across video
clips.

• Video-based subclips: [BEF], [ACT] and
[AFT] subclips across multiple video clips
that belong to the same video id.

• Object-based subclips: [BEF], [ACT] and
[AFT] subclips across multiple video clips
that have the same object identified in the
video clip.

Details on Controlling the Negative Video
Frame Samples. In order to enhance the model’s
understanding in disentangling the pre-condition,
the action process, and the post-condition in the
visual space, we consider having the intra-video-
clip video frames of types such as [BEF] (pre-
condition) and [ACT] (post-condition) in the can-
didate set of the input. However, we exclude
[AFT] video frames within the same clip as it be-
comes difficult and potentially unfair for the model
to distinguish from due to its close temporal prox-
imity.

Quantitative Results Across Different Negative
Sampling Strategies During Development. As
displayed in Table 14, the test set constructed based
on a video-based sampling strategy is the most
challenging one across three MEM models, despite
that it yields the lowest average negative video
frames in a batch (avg. neg is 8). In general,
when the negative samples in the test set are con-
structed identically as the train set, the correspond-
ing trained model has the highest accuracy, e.g.,
the video-based model has +2pp acc over the ran-
domized and object-based one. Moreover, both
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MAM Masking Strategies Original text Masking Result

verb only Chop the carrot into pieces. [MASK] the carrot into pieces.
Chop the garlic into small chunks. [MASK] the garlic into small chunks.

verb random joint Chop the carrot into pieces. [MASK] the [MASK] into pieces.
Chop the garlic into small chunks. [MASK] the [MASK] into small [MASK].

verb random alter Chop the carrot into pieces. [MASK] the carrot into pieces.
Chop the garlic into small chunks. Chop the garlic into [MASK] chunks.

Table 12: MAM masking strategies

MAM Masking Strategies Seen Verb Acc Unseen Verb Acc Harmonic Mean

Verb-only 25.35 12.93 17.13

Verb-random-joint 28.62 18.71 22.63

Verb-random-alter 29.74 17.09 21.71

Table 13: Intrinsic evaluation of MAM during development on predicting the correct seen / unseen verbs when
tested on 10% test set.

video-based and object-based MEM outperform
than randomized one when evaluated on the ran-
domized test set, emphasizing the importance of
dedicated control on the negative sampling process.

Qualitative Analysis During Development. As
seen in Figure 13, the video-based model is able
to pick the correct post-condition for mixing the in-
gredients while the randomized-based model strug-
gles to find a correct video frame. We also probe
into several failure modes and found some patterns.
To begin, the candidate set that contains tempo-
ral close clips leads to wrong predictions more
often than the temporal distant ones. Concretely,
under the wrong predictions set, the average mini-
mum temporal difference within the competitor set
is 120 secs, compared to 211 secs for the correct
predictions set. Similarly, the candidate set that
has the same object occurrences or same action
occurrences challenges the model to choose the
right [AFT] video frame(s). In the wrong predic-
tions set, 25.66/26.72% of the candidate sets has
the same object/action occurrences, compared to
20.98%/18.58% of that for the correct prediction
group.

A.7 Pretraining Details

Hyperparameters. Following Li et al. (2020),
we used the AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 3e−5, weight
decay of 0.01, and warm-up steps of 10000. We
ran all the pretraining experiments on 2 NVIDIA
RTX A6000 GPUs with a batch size of 16 per

single GPU, and gradient accumulation steps (Ott
et al., 2018) are set to 2. We set the global training
steps to 100000 with maximum training time of 48
hours.

Model Checkpoints. For model variants trained
with either MAM or MEM pretraining tasks, the
best model checkpoints are saved based on the high-
est task accuracy on the validation set. Regarding
the models that were with the joint task configu-
ration, specifically MULTI-CAE, the final model
checkpoint is saved based on the best validation
accuracy achieved on both tasks. Note that, for
MULTI-CAE-based models, each task undergoes
training on only 50% of the entire train set.

Ablated Models. We achieve modality ablation
via inter-modal attention masking. More specifi-
cally, the weights of MAM-LRnd are updated with
the loss function:

LMAM (θ) = − logPθ(sa∗ |S\sa∗ )

As for MEM-V, we update its weights with the
loss function:

LMEM (θ) = − logPθ(v[AFT]|V\v[AFT])

A.8 PROST Task
Zero-shot Inference. The task is formulated as a
cloze style task, where the [MASK] token should
be reconstructed with an object in a set of 4 men-
tioned candidates in the context that can afford the
action. Following Aroca-Ouellette et al. (2021),
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subtitle: "and [MASK] that up until it reaches stiff”

reference verb: whip 

(correct) MAM-VL-RND: whip

(wrong)   MAM-VL-RND (on L): combine 

(wrong)   MAM-L-RND (on L): make 

Figure 10: Action inference task: MAM-VLRnd is able to infer the correct action “whip” by reasoning upon the
visual causal effect process. Under the language-only inference setting, models fail as the subtitle gives limited
information.

subtitle: "paint in as well as you can/ 

what i mean is really working into the 

canvas/it's”

subtitle: "ideal for smooth surfaces/ 

spread it from bottom to top/

 in vertical strips until”

subtitle: "spray some in the container 

before you”

unseen verb: paint seen verb: spread seen verb: spray

Figure 11: Action generalization: MAM-VLRnd generalizes to the unseen verb “paint”. Its causal effect is similar
to the two seen verbs “spread” & “spray” that produce a light coat on the surface of an object. For readability, we
use “/” to indicate the sentence boundary.

we obtain the logits of the 4 object candidates in-
stead of the whole vocabulary from the pretrained
MAM head. Subsequently, we compute the proba-
bilities of these candidates using the Softmax func-
tion. The object with the highest probability is the
model’s decision.

PROST Probed Object Occurrences in CAE.
As shown in Table. 15, all the objects probed in
the PROST affordance groups are seen to our mod-
els. Note that the statistic does not describe the
occurrences of action-object combinations as only
"Slide" is a seen verb to our models. In terms of
action–object combinations, only [slide, oil ] and
[slide, grease ], are seen to our model. We hypoth-
esize that MULTI-CAE-VL and MAM-VL may
have leveraged the shared visual properties of these
objects, i.e., slipperiness, to extend the affordance

understanding on the other objects like soap and
frost.

Model Robustness: Original vs. Inverses. The
individual results on original and inverse templates
across the concepts are shown in Table 16.



869

subtitle: "with the plastic buckles at 

the top of the net / attach them to the 

hooks on the”

{'vid': 'HSPE12cCgXo',
 'vid seg': 122,
 'time stamp': '5:53:5:56',
 'caption': 'with the plastic buckles at the top of 
the net attach them to the hooks on the',
 'domain': 'sports',
 'frames': ['Attaching'],
 'verb': 'attach',
 'nouns': ['buckle', 'top', 'net', 'they', 'hook']}

reference verb: attached

FN Frames: [Attaching]

Hypernym (d=1): 
[Synset('connect.v.01'), 
Synset('touch.v.05'), 
Synset('join.v.04')]

MAM-VL-RND: tie

FN Frames: [Attaching, 
'Immobilization', 
'Rope_manipulation', 
'Closure', 'Knot_creation']

Hypernym (d=1): 
[Synset('connect.v.01'),

Synset('fasten.v.01'), 

Synset('equal.v.03'), 

Synset('restrict.v.03'), 

Synset('shape.v.03'), 

Synset('fashion.v.01') ]

MAM-L-RND: put

FN Frames: [Placing]

Hypernym (d=1): 
[Synset('move.v.02'), 
Synset('change.v.01'), 
Synset('use.v.01'), 
Synset('subject.v.01'), 
Synset('arrange.v.06')]

subtitle: "this is one of my favorite 

snacks / this face i'm just gonna roast 

them up a bit”

reference verb: roast

FN Frames: [Apply_heat]

Hypernym (d=1): 
[Synset('cook.v.03')]

MAM-VL-RND: fry

FN Frames: [Apply_heat]

Hypernym (d=1): 
[Synset('cook.v.03'),

 Synset('heat.v.04')]

MAM-L-RND: put

FN Frames: [Placing]

 Hypernym (d=1): 
[Synset('move.v.02'), 
Synset('change.v.01'), 
Synset('use.v.01'), 
Synset('subject.v.01'), 
Synset('arrange.v.06')]

{'vid': 'Zyl0zrFMN7E',
 'vid seg': 41,
 'time stamp': '1:59:2:02',
 'caption': "this is one of my favorite snacks this 
face i'm just gonna roast them up a bit",
 'domain': 'food',
 'frames': ['Apply_heat'],
 'verb': 'roast',
 'nouns': ['snack', 'they']}

Figure 12: Action generalization: both MAM-VLRnd and MAM-LRnd predict the wrong verb, but MAM-VLRnd

predicts the verbs that share the same FrameNet frame and Hypernym (depth=1) with the reference verbs. MAM-
LRnd tends to predict one of the most common seen verbs, “put”.

(correct) video-based MEM (wrong) randomized-based MEM 

 subtitle: "mix up those ingredients and now”

DONE: find a distant [AFT] frame?

{'vid': 'lJrtYuiP7Rw', 'vid seg': 29, 'time stamp': 
'1:20:1:22', 'caption': 'mix up those ingredients 
and now', 'domain': 'food', 'frames': 
['Cause_to_amalgamate'], 'verb': 'mix', 'nouns': 
['ingredient']}

Figure 13: Video-based MEM chose the correct [AFT] frame, the randomized one fails.
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 subtitle: "even add a press o powder or even sprinkles / then just roll out your dough”

(correct) MEM-VL-RND

{'vid': 'SvY59PVi8ao',
 'vid seg': 57,
 'time stamp': '1:57:1:59',
 'caption': 'even add a press o powder or even 
sprinkles then just roll out your dough',
 'domain': 'food',
 'frames': ['Reshaping',
  'Cause_motion',
  'Motion',
  'Mass_motion',
  'Body_movement'],
 'verb': 'roll',
 'nouns': ['powder', 'dough']}

Figure 14: Entity equivalence: although the action “roll” is unseen to MEM-VLRnd, it has successfully learned that
“dough” could be rolled given its “foldability” which is a property shared among many seen objects like “cloth”.

Reference [AFT] frame (wrong) MEM-VL-RND 

 subtitle: "mix those into the bowl with our other ingredients”

Figure 15: Error analysis: MEM-VLRnd fails for a sensible reason, it selected the [AFT] frame that conceptually
follows the instruction process of “mixing ingredients”.
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MEM Negative Sampling Strategies Randomized-set Video-based-set Object-based-set
(avg.neg=618) (avg.neg=8) (avg.neg=452)

Acc Acc Acc

Randomized-based 87.74 70.4 87.91

Video-based 88.08 72.45 88.04

Object-based 88.57 70.82 89.55

Table 14: Intrinsic evaluation of MEM during development on predicting the correct video [AFT] frame(s) among
negatives constructed using various sampling schemes when tested on 10% test set.

Affordance Concepts Original Inversed

Stack book: 481, block: 697, box: 1,632, coin: 113, plate: 1353 ball: 2,040, bottle: 918, egg: 3,083, flower: 1,068, lamp: 108
Roll apple: 690, ball: 2,040, bottle: 918, egg: 3,083, can: 522 book: 481, block: 697, box: 1,632, mirror: 168, microwave: 517
Grasp ball: 2,040, block: 697, book: 481, bottle: 918, flower: 1,068 flour: 2,692, rice: 1,233, salt: 2,862, snow: 151, sugar: 3227
Break bottle: 918, egg: 3,083, glass: 1,254, mirror: 168, plate: 1,353 ball: 2,040, coin: 113, pen: 252, pillow: 222, shirt: 373
Slide ice: 880, frost: 56, grease: 215, oil: 3,711, soap: 454 carpet: 312, concrete: 246, grass: 229, gravel: 71, rubber: 133
Bounce asphalt: 10, brick: 189, concrete: 246, rubber: 133, steel: 176 carpet: 312, foam: 290, grass: 229, leave: 1012, snow: 151

Table 15: Affordance concepts probed in the PROST and their corresponding object set, along with the total number
of training instances per object in the CAE dataset.

Model Stack Roll Grasp Break Slide Bounce
Ori. Inv. Ori. Inv. Ori. Inv. Ori. Inv. Ori. Inv. Ori. Inv.

MAM-L 0.0 60.0 30.0 10.0 8.0 40.0 34.0 20.0 44.0 4.0 6.0 40.0
MAM-VL 20.0 24.0 10.0 40.0 2.0 64.0 32.0 20.0 40.0 20.0 20.0 26.0
MULTI-CAE-VL 0.0 68.0 40.0 8.0 2.0 58.0 32.0 20.0 80.0 0.0 0.0 76.0
FLAVA 21.2 16.7 49.5 4.3 0.2 68.8 45.5 3.6 43.6 4.0 8.2 39.9
RoBERTa-B 27.33 27.42 32.17 17.67 20.25 25.42 56.92 5.0 17.83 35.33 26.75 24.33

Table 16: Accuracy of original vs. inverse templates across affordance groups.


