
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 872–884

November 1–4, 2023. ©2023 Association for Computational Linguistics

872

PROVER: Generating Intermediate Steps for NLI with Commonsense
Knowledge Retrieval and Next-Step Prediction

Deepanway Ghosal1, Somak Aditya2, Monojit Choudhury3

1 ISTD, Singapore University of Technology and Design, 2 Department of CSE, IIT Kharagpur
3 Turing India, Microsoft

deepanway ghosal@mymail.sutd.edu.sg, saditya@cse.iitkgp.ac.in, monojitc@microsoft.com

Abstract

The Natural Language Inference (NLI) task
often requires reasoning over multiple steps
to reach the conclusion. While the necessity
of generating such intermediate steps (instead
of a summary explanation) has gained popu-
lar support, it is unclear how to generate such
steps without complete end-to-end supervision
and how such generated steps can be further
utilized. In this work, we train and enhance
a sequence-to-sequence next-step prediction
model with external commonsense knowledge
and search to generate intermediate steps with
limited next-step supervision. We show the cor-
rectness of such generated steps through hu-
man verification, on MNLI and MED datasets
(and discuss the limitations through qualita-
tive examples). We show that such generated
steps can help improve end-to-end NLI task
performance using simple data augmentation
strategies. Using a CHECKLIST dataset for
NLI, we also explore the effect of augmen-
tation on specific reasoning types. The code
and human-evaluation dataset is available at
https://github.com/deepanwayx/prover.

1 Introduction

Complex NLP tasks such as Natural Language In-
ference (NLI) often requires reasoning over multi-
ple steps using multiple facts and implicit common-
sense knowledge (Trivedi et al., 2020; Sap et al.,
2019; Camburu et al., 2018). For such cases, it has
been long argued that (Lipton, 2018), the state-of-
the-art models should also output some sort of ex-
planation (such as intermediate steps or a textual ex-
planation) alongwith the final answer. The opaque
performance and poor out-of-distribution general-
ization performance of Transformers-based models
(Kaushik et al., 2019; Ribeiro et al., 2020) have re-
fuelled this discussion. However, it is unclear how
these intermediate steps can be generated for un-
constrained natural language Premise-hypothesis
pairs (such as in crowd-sourced NLI datasets) as it

A dog jumping for a frisbee in
the snow.

A frisbee is a plastic toy.

Snow comes down in cold
weather.

A dog is jumping for a
plastic toy in cold weather.

An animal is jumping for a
plastic toy in cold weather.

A dog is jumping for a
plastic toy in the snow.

Dog is an animal.

M

C

C

An animal playing with a plastic toy in
cold weather.

Premise

OMCS
G-KB

Composition ModelMonotonicity Model

Hypothesis

Retriever Model

R

C

Hypothesis

M C R

Figure 1: We illustrate a type of proof algorithm that we
explore in this paper: proof search with facts (§4.2).

is non-trivial to collect crowd-sourced fine-grained
explanations or generate them synthetically. Most
importantly, it is unclear how such steps can be
utilized further for the NLI task.

Crowd-sourced collection of intermediate steps
(or explanations) (Camburu et al., 2018) comes
with complications, as human-written explanation
can be subjective, and it is hard to automatically
verify or utilize such explanations. Recently, re-
searchers have explored synthetic generation of
intermediate steps (or proof trees) templated from
first order logic theories (Clark et al., 2020; Tafjord
et al., 2021; Saha et al., 2020). Here, the objective is
to test whether Transformer models can perform de-
ductive reasoning over natural language statements.
Provided their examples come from an underlying
symbolic system with closed world rules and facts,
it is unclear how this strategy of generating proof
tree can be extended to unconstrained natural lan-
guage premise-hypothesis pairs. Similarly, Entail-
mentBank (Dalvi et al., 2021) is another dataset to
benchmark performance of recent multi-hop prover
models. EntailmentBank provides a set of support-
ing facts such that no external facts are required
to prove the given hypothesis. Here, we consider

https://github.com/deepanwayx/prover

873

Premise (P) Hypothesis (H) Proof Correctness Minimality
C1 C2 M1 M2

The wind propels a sailing ship on a
group of cruisers. There are many boats out.

P→ I1: A group of cruisers are in the
water.→ I2: A group of boats are in the
water.→ H

✔ ✔ ✔ ✔

A young girl wearing a red shirt and cap
smiling and holding a small toy is
standing in front of a group of children
playing behind her.

The young girl is wearing a
red shirt.

P→ I1: A young girl in a red shirt and
cap is in front of others.→ I2: The young
girl is wearing a cap and red shirt.→ H

✔ ✔ ✖ ✖

Numerous customers browsing for
products in a market. People are shopping.

P→ I1: A group of people are shopping.
→ I2: There are a bunch of people
shopping.→ H

✔ ✔ ✖ ✔

A gentleman with his eyes closed playing
an old fluglehorn into a microphone.

A man plays an instruement
with his eyes closed.

P→ I1: The gentleman is listening to
music.→ H ✔ ✖ ✖ ✔

Table 1: Correctness and minimality of proofs as outlined in §2.

proving hypothesis with an open-ended context, as
is typical in NLI or QA datasets.

We assume that an ideal NLI system reaches a
series of intermediate conclusions to derive the fi-
nal conclusion (entailment/contradiction/neutral).
Such intermediate steps may require commonsense
knowledge external to the input. These interme-
diate steps and external facts constitute a proof.
Since such proof s can widely vary linguistically,
logically and in length; to make verification (with-
out groundtruth) and generation easier, we impose
various constraints of correctness, minimality, and
atomicity on what we expect as natural language
proof s for a given premise-hypothesis pair. We pri-
marily use human verification for evaluation. As
human annotation of groundtruth proofs for NLI
examples is non-trivial, we utilize single-step super-
vision to train a T5 encoder-decoder model (Raf-
fel et al., 2019) on various available entailment
datasets; learning various aspects of proof genera-
tion from SNLI, Monotonicity Entailment Dataset,
and Entailment Bank. To enrich single-step gen-
eration with external knowledge, we build a fact
retriever and sentence composition model; that re-
trieves facts from external commonsense knowl-
edge bases and learns to deduce new facts. We
then explore search-based methods that utilizes the
retrieval-augmented T5 model to generate multiple-
step proof s. Manual verification results show the
efficacy of the proof generation process. We use
these generated steps as additional training data
and show improvement in end-to-end NLI task per-
formance.

Our contributions include, 1) using next-step
supervision to train a general-purpose T5 encoder-
decoder based entailment model to generated en-
tailment chains. 2) We use a fact retriever, a fact
composition model; and search to generate se-
quence of commonsense-augmented intermediate

steps. We use human verification metrics to show
the correctness of the generated proofs. Lastly, 3)
we also show that augmenting such proofs during
training can help enhance an NLI system’s perfor-
mance on MNLI, and MED (under low-training
data regimes), 4) while benefitting examples of spe-
cific reasoning types (shown through LONLI).

2 Proofs in the NLI Context

Given a natural language premise-hypothesis pair,
an ideal NLI system should follow a logical se-
quence of steps to determine whether the hypothe-
sis is entailed by, contradicts, or is neutral w.r.t the
premise. We call this logical sequence of steps as
proofs. However, as Dalvi et al. (2022) observes,
such proofs do not come with guarantees as given
by formal axiomatic systems. To make generation
and verification easier, we resort to defining some
logical properties that valid proofs should have.

Given a premise (P), a hypothesis (H), and
an implicit knowledge base KB 1, an NLI proof
⟨P,H⟩ (or ⟨P,¬H⟩ for contradiction) is a se-
quence of sentences (Y1, . . . , Ym), where Yj is ei-
ther an inferred intermediate step (denoted by Ij),
or an external fact or rule (denoted by Fj). Proof
⟨P,H⟩ can also be thought of a postorder traver-
sal of an Entailment Tree (Dalvi et al., 2022). A
valid proof should satisfy the following properties:
i) (Correctness 1) each step is either a generic rule,
or a fact which is a entailed by the premise; ii)
(Correctness 2) hypothesis (or negated hypothesis)
is a valid entailment of premise and intermediate
steps; iii) (Minimality 1) each proof upto Yj (in-
cluding H) should be minimal proof for ⟨P, Yj⟩,
iv) (Minimality 2) the sentences in the intermediate
step (Ij) should not be trivially decomposable (us-

1Following (Dagan et al., 2005), we assume KB encodes
commonly assumed knowledge as facts and rules.

874

ing common linguistic or logical constructs)2 and
consecutive inferred steps should be sufficiently dif-
ferent, and v) (Order) a step can only be generated
with the help of previous steps.

We provide few example proofs in Table 1, high-
lighting the properties of correctness and minimal-
ity. These constraints motivate our method to gen-
erate proof s for arbitrary P-H pairs with only next-
step supervision. In Figure 1, we show an example
proof which uses external (commonsense) facts (or
rules) in sequence. For neutral cases, such proper-
ties are hard to define. Inspired from Kumar and
Talukdar (2020), we proposed a method for inter-
mediate step generation of neutral instances which
is used only for data augmentation experiments.

3 Provers: Generating Proofs with
Next-Step Supervision

A typical possibility to build provers is by training
on an NLI dataset with groundtruth proofs, col-
lected using crowd-sourcing or created using for-
mal logic. However, crowd-sourced explanations
are highly subjective and diverse; hence not easily
verifiable. Similarly, following ProofWriter, gener-
ating formal logic-based proof is possible but hard
to scale for arbitrary P-H pairs. We instead rely on
various NLI datasets, from which models can learn
multiple ways of generating entailments, contra-
dictions, and intermediate steps. We then enhance
such provers with facts retrieved from knowledge
bases and sentence composition methods. We use
these techniques effectively to search for more gen-
eralized multiple-step proofs. We start from the
premise P and generate the steps of the proof recur-
sively with the PROVER model. We use the term
PROVER to collectively denote the models in §3.1
and §3.2 as discussed next.

3.1 Multi-Task Supervision

We train a single T5-Large model with various
objectives to generate inferences from the premise.
The objectives are specified by prefix tokens in the
input text. The objectives are as follows.

Entailed Sentence Generation: The model is
trained to generate possible entailments E from the

2M1 captures redundancy (see E4 in Tab. 1). M2 captures
some aspects of atomicity. Sentences should not be compound
in nature. We prefer “John is going to Paris. Mia is going to
Paris.” over “John and Mia are going to Paris”. It also entails
that intermediate conclusions should correspond to a semantic
frame (which can not be trivially decomposable without losing
context). However the latter is quiet hard to verify.

premise P . The entailment instances of the SNLI
dataset (Bowman et al., 2015) is used for training.
The hypothesis H is considered as E during train-
ing. The input to the model is entail: P and
the output to be generated is H.

Contradictory Sentence Generation: The model
is trained to generate possible contradictions rom
the premise P . We use the relevant instance pairs
in the SNLI dataset for this objective. The input to
the model is contradict: P and the output to
be generated is the contradictory hypothesis H.

Monotonic Sentence Generation: The model is
trained to generate monotonic inferences M from
the premise P . The input is monotonic: P and
the output to be generated is M. We use the Mono-
tonicity Entailment Dataset (MED) (Yanaka et al.,
2019) for this objective.

We merge and shuffle instances from the respec-
tive datasets to ensure that training is performed
for all the objective functions simultaneously.

3.2 Fact Retriever and Sentence Composition

Fact Retriever The generator model (§3.1) can
not generate proofs, which need reference to some
external facts, or commonsense knowledge. Such
knowledge may not be readily available in the gen-
erator model. It is thus necessary to assist the proof
generation algorithm with relevant factual knowl-
edge to generate accurate and complete proofs.

We use sentences in Open Mind Common-
sense (OMCS) (Singh et al., 2002) and Generic-
sKB (Bhakthavatsalam et al., 2020) as the knowl-
edge base (KB). The sentence embedding model
all-mpnet-base-v2 (Reimers and Gurevych, 2019)
is used to retrieve facts for a given (premise, hypoth-
esis) pair from the KB. For a sentence s, we retrieve
the facts F from KB based on highest embedding
cosine similarity in the following way: noun tokens
– np, nh are extracted from the premise and the
hypothesis. np, nh are divided into small groups
of related words using clustering with word em-
beddings. For instance, the following groups are
created for the example in Figure 1: {dog, animal},
{snow, cold}, {frisbee, toy, plastic}. Each of the
groups is then merged together in a single string s
for performing retrieval. We deduplicate semanti-
cally close facts before the next stage (§4.2).
Sentence Composition We train another T5-Large
model to generate compositions from a pair of input
sentences. The model is trained on sentence triplets
from the Entailment Bank (Dalvi et al., 2021)

875

and RuleTaker (Clark et al., 2020) datasets. Few
example triplets ⟨S1, S2, S3⟩ are: ⟨Bob is green,
All green people are rough, Bob is rough⟩, and
⟨Eruptions produce ash clouds, Ash blocks sun-
light, Eruptions block sunlight⟩. Here, input S1

and S2 can be composed to conclude output S3.
The sentence composition model, the fact retriever
model and the monotonic entailment model is used
to generate proofs (§4.2).

4 Proof Generation

We generate proofs with two different methods as
described below, and provide some examples of
generated proofs in Figure 1 and Table 2.

4.1 Unconstrained Proof Search

The entailment and monotonic sentence generation
setup use the premise P to create possible inference
chains. We use this generation setup recursively
with level/beam search to find multistep proofs
(I1, I2) as follows: i) Given P , we first generate
one-step implications î1 from the T5 generator. We
denote the n closest implications to the hypothesis
H as the filtered set i1. The closeness is computed
using cosine similarity with H using the all-mpnet-
base-v2 (Reimers and Gurevych, 2019) model. ii)
i1 is used to generate the next set of implications
î2, which is filtered further to obtain i2. iii) The n
implications in i2 and their respective source sen-
tences in i1 form the multistep proof set (I1, I2) for
level search. The top n implications (according to
closeness with H) from the merged set of i1 and
(i1, i2) form the proof set for beam search.

We use the terminology unconstrained proof
search for the above chaining algorithm with sen-
tence embedding based closeness measure. We use
n = 10 in our experiments. The generation and fil-
tering process can be performed repeatedly to form
proofs with more steps: (I1, I2, ..Im). However, we
observe diminishing results after I2, as steps tend
to become repetitions of each other.

4.2 Proof Search with External Facts

Given a premise, hypothesis pair (P,H), we denote
the facts retrieved from KB as F . Let F consist of
m distinct facts {F1, F2, .., Fm}. We now use the
sentence composition model in two stages to gener-
ate the proof: i) Fact Filtering Stage: We compose
the premise with the retrieved facts individually.
The fact is used in the next stage if the composition
is closer to the hypothesis than the premise and

Algorithm 1: Proof Search with Facts Algorithm
Given: 1) ⟨P,H⟩ pair and knowledge base KB.
2) Entailment Predictor Model E(x, y) = RoBERTa Large
MNLI
3) Next-step Entailment Model NS(x) = T5 Large in §3.1
4) Distance D(x, y) = cosine similarity using all-mpnet-base-
v2. (Higher scores indicate closer pairs.)
Output: Proof Steps ⟨I1, . . . , Im⟩
Retrieve F = {F1, .., Fm} from KB based on §3.2
Fact Filtering Stage:
Useful Facts U , Useful Facts Distances Ud = [], []
// ⊕ denotes appending to list.
for Fi in F do

Compose P, Fi → Ii
if D(Ii, H) > D(P,H) & E(Ii, H) = entailed then

U ← U ⊕ [Fi]; Ud ← Ud ⊕D(Ii, H)
end
Sort U based on higher to lower Ud

Initialize Step S = P , score = 0, All Steps = [P]
Search Stage:
for Fi in U do

Ii ← compose(S, Fi)
Next step Mi ← NS(Ii)
d1, d2, d3 = D(S,H), D(Ii, H), D(Mi, H)
if d2 > d1 & d2 > d3 & d2 > score then

S ← Ii
S← S⊕ [Ii]
score← d2

else if d3 > d1 & d3 > d2 & d3 > score then
S ←Mi

S← S⊕ [Mi]
score = d3

end
S← S⊕ [H]
Proof← S

the hypothesis is entailed by the composition; ii)
Search Stage: The selected facts are ranked based
on their corresponding composition’s distance from
the hypothesis. The facts are then iteratively used
with the sentence composition model and mono-
tonic sentence generator models. For each step, we
ensure that the step is closer to the hypothesis than
the preceding step. The detailed algorithm is pre-
sented in Algorithm 1.

5 Experimental Results

We perform two sets of experiments – i) we use
human evaluation to evaluate different aspects of
the proofs generated from our proposed method,
and ii) we use the generated proofs as additional
labeled data for NLI and analyze its effect on the
NLI classification task performance. We compare
our results against the baseline ENTAILER (Tafjord
et al., 2022) model (a representative of Class B
models, see §6 Fig. 2). We do not compare with
Class A algorithms, which require a pre-specified
complete set of facts and rules (such as METGEN,

876

Premise (P) & Hypothesis (H) Proof Remarks

(i)
P: A female guitarist is playing on stage.

H: A woman is playing her instrument.

F1: A guitar is an instrument.
F1 & P→Monotone→ I1 A woman is playing an
instrument.
I1→ H

Correct proof with fact
composition.

(ii)
P: Bicyclist ride the course near the ocean as the day
comes to an end.
H: The cyclist was riding near the ocean at sunset.

F1: Sunsets can happen at the end of the day.
F1 & P→ I1: A cyclist ride the course near the ocean
during the sunset.
I1→ H

Correct proof with fact
composition.

(iii)

P: A baby girl and little boy are standing next to a guitar
and a drum.

H: The girl is near an instrument.

F1: A drum is a percussion instrument.
F1 & P→ I1: A baby girl and little boy are standing next
to a percussion instrument.
I1→ I2: A baby girl standing next to a percussion
instrument.
I2→ H

Correct proof with fact
composition.

(iv)
P: An old woman in a white hat and purple and blue
clothes is sitting down by a wooden building.
H: There is a building.

P→ I1: A woman is sitting by a wooden building.
I1→ I2: The building is made out of wood.
I2→ H

Unconstrained proof
without fact composition.

(v)

P: A professional swimmer spits water out after surfacing
while grabbing the hand of someone helping him back to
land.
H: A person is swimming.

F1: A hand is part of the arm.
F1 & P→Monotone→ I1 A person is swimming.
I1→ H

An unrelated fact is
retrieved that is not useful
for the proof.

(vi)
P: A black-haired man is entertaining a crowd with a hula
hoop.
H: A man has black hair.

P→ I1: A man with black hair is performing.
I1→ H

P and H are lexical or
syntactic paraphrases.

(vii) P: A person in a green robe sits on a couch with a blanket.
H: A person in a robe sits on a couch.

P→ I1: A woman in a green robe sits on a couch.
I1→ I2: A girl in a green robe sits on a couch.
I2→ H

Introduction of undue
specialization or
hallucinations.

(viii)
P: A man gets a skateboard up on a big rock.

H: The skateboarder is near a rock.

P→ I1: A person puts his skateboard on a rock.
I1→ I2: Person skateboarding on a rock.
I2→ H

Requires spatial reasoning
about physical objects
skateboard and rock.

Table 2: Examples of generated proofs. Analysis can be found in §5.1. Incorrect/unrelated snippets are shown in red.

IRGR, NLPROOFS)3.

5.1 Qualitative Analysis.

We perform a qualitative analysis of generated
proofs and show some examples in Table 2. We
show correct proofs with fact composition in ex-
amples (i) - (iii). The first proof uses a monotoni-
cally generated sentence as one of the intermediate
steps. In example (ii) the fact: Sunsets can happen
at the end of the day is used for proving the hy-
pothesis. For example (iii), the fact: A drum is a
percussion instrument is retrieved and used for the
proof. A more concise proof could have used the
alternative fact: A drum is an instrument. However,
this alternative fact does not appear in our retrieval
corpus of OMCS and GenericsKB. Hence, some
proofs have constituting facts that are somewhat
over-informative. Finally, we show an example of
unconstrained proof without facts composition in
example (iv). We observe that fact composition
provides consistently superior results, especially
when ontological knowledge (IsA, HasA, is-part-of
relations) is involved.

We also perform error analysis and show some
common error patterns in Table 2. In example (v),
an unrelated fact is retrieved which is not useful for

3Our experiment with premise and retrieved facts for NL-
PROOFS show inferior performance, which is expected.

the proof. The premise and the hypothesis are lex-
ical/syntactic paraphrases in example (vi). Hence,
no intermediate steps are required as proof. In ex-
ample (vii), undue specialization or hallucinations
are introduced in the intermediate steps, as the word
person is changed to a woman and girl. Example
(viii) requires spatial reasoning about physical ob-
jects skateboard and rock.

5.2 Human Verification of Proofs

We perform human verification on a subset of gen-
erated proofs in the SNLI dataset. We train four
CS graduate students (trained in NLP) with explicit
instructions (in Appendix). We select top-2 proofs
from unconstrained proof search (PROVER UPS)
with beam search for 500 randomly selected SNLI
entailment instances – resulting in a total of 1000
proofs. We also evaluate 500 proofs from the proof
search with facts (PROVER PSF) method and the
ENTAILER method. Human annotators score each
proof based on the following: (i) correctness, (ii)
minimality, (iii) number of useful facts, and (iv)
if the hypothesis follows from the premise and re-
trieved facts. The (iii), (iv) scores are judged for the
PROVER PSF and ENTAILER methods. We refer
the reader to Appendix E for detailed instructions
for human verification.

We normalize the scores on a scale of 0-100

877

Method Correct Minimal Useful Follows

PROVER UPS 69.45 75.32 - -
PROVER PSF 84.66 74.66 45.18 82.54

ENTAILER 74.23 72.66 31.81 77.27

Table 3: Human verification judgements. Numbers are
shown in % normalized between 0-100.

and show the results in Table 3. Human verifica-
tion results in a normalized correctness score of
69.45% for PROVER UPS and a significantly im-
proved 84.66% for PROVER PSF. The minimality
scores for both methods are around 74-75%. The
Useful metric is built in a way such that the pres-
ence of redundant facts is penalized. We find that
45.18% of the facts are useful 4, suggesting that
proofs contain redundant facts and compositions.
Overall, the retrieved facts can be used to conclude
the hypothesis in 82.54% cases. In contrast, the
ENTAILER method achieves correctness of 74.23%,
which is around 5% better than PROVER UPS, but
still much lesser than PROVER PSF. The minimal-
ity score of ENTAILER is around the same range as
our models, but the Useful and Follow score for is
much poorer compared to PROVER PSF.

5.3 Usefulness of the Prover for NLI Tasks

As illustrated in §3.1, the PROVER model is trained
on various objective functions to generate infer-
ences from the premise. Here, we show that these
inferences could be used to improve end-to-end
NLI task accuracy. We consider the entailed, con-
tradictory, neutral, and monotonic sentence gen-
eration setup of §3.1 and apply it on the premises
of the SNLI dataset to create corresponding infer-
ences. For a particular premise P , the inferences
generated from the above four setups are consid-
ered to have a label of entailment, contradiction,
neutral, and entailment, respectively.

The inferences generated from the PROVER are
considered as additional labeled data for supervised
learning in NLI tasks. In particular, we finetune
RoBERTa-Large model on the MNLI (Williams
et al., 2018) dataset in a low-data regime. The mod-
els are trained with either (i) MNLI-only data or (ii)
a mix of MNLI and PROVER generated data. We
also benchmark the ENTAILER model as the main
comparative baseline where (iii) mix of MNLI and
ENTAILER generated data is used for training.

We evaluate the models on MNLI, Monotonicity

4our retriever is frozen and the commonsense knowledge
base may not contain the appropriate useful fact

Trained On MNLI MEDMNLI % Proofs % Proofs From

1 0 - 84.47 40.02
1 1 ENTAILER 84.73 39.10
1 1 PROVER 85.22 42.89

5 0 - 87.18 41.11
5 5 ENTAILER 86.93 39.72
5 5 PROVER 87.58 42.91

10 0 - 87.44 43.01
10 10 ENTAILER 88.02 40.95
10 10 PROVER 88.48 44.30

Table 4: F1 scores for MNLI (val-matched) and MED datasets
with the RoBERTa-Large model. Numbers on the MNLI %
column indicate the percentage of the MNLI train set instance
used for training. Numbers on the Proofs % column indicate
the equivalent number of generated instances used for training.
The instances are generated from our PROVER method or the
baseline ENTAILER method. Scores are average of 3 runs.

Entailment Dataset (MED) and LoNLI (Tarunesh
et al., 2021). The incorporation of PROVER gener-
ated data helps in improving performance across
most settings in these datasets. We also observe
that PROVER generated data is significantly better
than ENTAILER generated data in MED and LoNLI.
We also train and evaluate DeBERTa models for
which the results are shown in Appendix D.

Results for MNLI and MED: Table 4 shows re-
sults across various combinations of amounts of
MNLI data and PROVER or ENTAILER generated
data. MNLI + PROVER generated data always helps
in improving performance over the setting of us-
ing only MNLI data. The incorporation of EN-
TAILER generated data also helps in improving per-
formance for the MNLI validation set in some of
the settings. However, the addition of ENTAILER

generated data doesn’t help at all for generaliza-
tion in the MED dataset, where we observe drop in
performance compared to the MNLI only training
settings. PROVER generated data is thus more ef-
fective than ENTAILER generated data for MNLI
and MED all the settings. Notably, the F1 scores in
MED is more than 3% better with MNLI + PROVER

compared to MNLI + ENTAILER.

Effect of Augmentations on Reasoning Types:
PROVER generates single-step entailments (It+1)
from a sentence (It). The pairs It, It+1 encode fine-
grained commonsense knowledge. Therefore, we
observe the effect of augmentations on different
types of reasoning as required in the NLI task (and
by extension for NLU). The LoNLI dataset consists
of CHECKLIST templates of (premise, hypothesis)
pairs, associated examples, and corresponding en-
tailment, neutral, or contradiction labels. The tem-
plates are categorized according to 17 reasoning

878

MNLI, Proofs % 1, 0% 1, 1% 1, 1% 5, 0% 5, 5% 5, 5 % 10, 0% 10, 10% 10, 10%
Proofs From - ENTAILER PROVER - ENTAILER PROVER - ENTAILER PROVER
Category ↓
Boolean 63.82 53.28 50.72 52.81 67.88 65.64 63.98 72.12 72.77
Conditional 36.23 52.15 34.40 18.16 52.71 34.12 47.01 37.56 49.18
Coreference 50.02 50.00 52.48 51.10 53.70 51.43 72.90 57.04 77.60
Negation 99.87 96.76 99.60 99.24 96.58 99.69 89.56 81.66 94.68
Numerical 60.98 68.38 66.18 53.52 56.76 69.83 55.19 52.58 63.64
Quantifier 66.33 76.09 69.64 63.00 51.97 65.64 63.39 36.85 63.86
Relational 94.08 68.24 96.51 94.26 82.56 93.40 96.68 60.02 95.61
Spatial 56.93 42.81 59.52 69.91 62.24 65.01 63.93 61.56 61.90
Syntactic 91.52 92.05 94.38 99.25 90.21 96.13 99.97 98.63 100.0
Temporal 35.83 25.28 37.57 37.70 47.19 47.62 56.53 55.16 64.51
World 97.55 99.44 99.60 99.30 99.63 99.34 98.73 99.60 99.50

Implicature* 20.51 28.15 23.97 26.41 36.80 25.28 25.40 31.68 30.04
Presupposition* 86.68 91.99 86.35 93.43 92.95 95.77 99.84 95.13 100.0

Average 66.18 64.97 66.99 67.01 68.55 69.92 71.78 64.58 74.87

Table 5: Reasoning category wise F1 scores on the Lo-NLI dataset for the RoBERTa-Large model. Scores are average of 3
runs. We omit categories, for which relevant knowledge is absent from MNLI, SNLI, and EntailmentBank. Implicature and
Presupposition are marked as * as they are rare in the source datasets.

Task BLEU1 METEOR ROUGE CIDEr Acc

Entailment 28.29 17.70 38.56 61.50 93.39
Contradiction 21.46 10.55 25.76 26.24 83.35
Monotonicity 25.74 18.35 38.58 88.07 91.96
Composition 53.54 39.37 81.10 128.42 -

Table 6: Results for Prover on various tasks it was supervised
on as described in §3.1 and §3.2.

categories, such as quantifier, temporal, and syn-
tactic. We report results for evaluation on LoNLI
with models trained on subsets of MNLI and op-
tionally the PROVER or ENTAILER generated data
in Table 5. We observe a similar trend, where in-
corporation of PROVER generated data helps in
improving the overall performance with significant
gains across a number of reasoning categories. The
improvement in numerical, relational, and tempo-
ral categories are most prominent. We also find an
almost 2% overall improvement for 5% MNLI +
5% Proofs over 10% MNLI + 0% Proofs.
Performance of Prover on Multi-Tasks: We re-
port the performance of PROVER on the constitut-
ing tasks it was initially trained on (Sections 3.1
and 3.2) in Table 6. We generate potential en-
tailment and contradictory sentences from the
premises in SNLI and monotonic sentences from
the premises in MED. We measure the quality of
the generations using the generative metrics BLUE
unigram, METEOR, ROUGE-L, and CIDEr. We
also measure the NLI label of the (premise, gener-
ated sentence) pair using a pre-trained NLI predic-
tion model. The percentage of generated instances
that corresponds to the correct label is shown in the
Acc or Accuracy column in Table 6. In particular,
93.39% of the generated entailment instances are
classified as entailment, and 83.35% of the gener-

ated contradictory instances are classified as a con-
tradiction. The accuracy scores combined with the
generative metrics let us conclude that the PROVER

model is indeed able to generate high-quality infer-
ences as required.

6 Related Work

We explore generation of multiple-step natural lan-
guage proofs for the NLI task for real-world cases,
without full context and without complete super-
vision. We discuss types of proof datasets, proof
generation algorithms and how proofs can be fur-
ther utilized.
Categories of Proofs. The NLP community has
transitioned from summarized explanations (Wiegr-
effe and Marasović, 2021) to multiple-step natu-
ral language-based or structured proof trees (NL-
Prolog). Human-provided explanations (Camburu
et al., 2018) are hard to validate; and structured
explanations are hard to scale. For certain closed-
world setting (Tafjord et al., 2021; Saparov and
He, 2022) and symbolic domains, using synthet-
ically generated explanations as supervision has
been a popular choice. In these datasets (and En-
tailmentBank, ProntoQA), the common assump-
tion is that, all sentences (or facts) required to
prove (or disprove) a statement is provided in con-
text. Similarly, Nye et al. (2021) explored NATU-
RALPROOFS, where each proof step consists of
both natural language and mathematical symbols.
The underlying reasoning task being mathematical,
makes the steps more well-defined. Here, we con-
sider an open-ended context and define constraints
over natural language proofs to ease validation and
generation.

879

Figure 2: Types of proof generation algorithms based on how
they utilize external knowledge and premise sentences. Class
A use a select-compose-iterate strategy and do not use open-

ended set of facts (Hong et al., 2022; Yang et al., 2022). Class
B uses backward-chaining, while taking the entire premise

and (optional) external facts into context in each step (Tafjord
et al., 2022). Ours is Class C , where we use forward chaining,
and add single retrieved fact in each step (or uses monotonic
entailment generator to generate entailments).

Iterative Proof Generation and Search. Tafjord
et al. (2021) utilize synthetically generated end-to-
end proof trees for supervision. Authors propose an
iterative chaining method, utilizing the T5 model
to generate the next step of a proof, and chain
them to generate full proofs. Following the work,
several recent forward and backward chaining al-
gorithms are proposed which generates a proof
tree given a premise and a hypothesis. We show
two classes of existing algorithms (compared to
ours) in Fig. 2. Similar to Tafjord et al. (2021),
class A algorithms (METGEN, NLProofS, IRGR)
(Hong et al., 2022; Yang et al., 2022; Neves Ribeiro
et al., 2022) are focused on evaluating deductive
reasoning capabilities where a set of explicit rules
and facts are provided to the model; and model
uses selection-composition-search to generate the
proof tree. Sprague et al. (2022) proposes ADGV
to extend class A algorithms with abductive step,
where the missing knowledge can be generated us-
ing a context and hypothesis. However, factuality
of these sentences are hard to verify. ENTAILER

(Tafjord et al., 2022) is one algorithm (class B)
where the full context sentences is optional. This
is why we compare with ENTAILER. The model
may use its inherent knowledge, premise sentences
(or optional context sentences). ENTAILER uses
backward chaining algorithm to derive the premise
sentences that successfully entail the hypothesis.
Our method falls in class C , where (similar to B)

we use external sentences and are not limited to
full-context specifications as input. We generate
the tree by adding individual external facts in each
step (or generating single-step entailments), adding
a flavor of sentence selection by Class A .

Utilization of Proofs to Improve End-task Ac-
curacy. He et al. (2021a) and Kumar and Taluk-
dar (2020) has demonstrated the utility of gener-
ating proofs (or natural language explanations).
In Knowledge-graph based QA context, He et al.
(2021a) show how a teacher network trained on
additional intermediate hops can be used to en-
hance the performance of a student network, that is
exposed only to the final output supervision. Most
importantly, Kumar and Talukdar (2020) uses label-
specific explanations and use them directly to gen-
erate the NLI conclusion. While the authors show
how explanations are used to generate the conclu-
sion, the authors do not generate fine-grained steps.
Authors also compare with a non-recent baseline by
Camburu et al. (2018) on MNLI, instead of SOTA
methods such as DeBERTA-large.

We study multi-step reasoning for the NLI
task; where connecting a premise and hypothe-
sis may require external knowledge. Our under-
lying T5 model is motivated by ProofWriter. How-
ever, we do not provide the required rules ex-
plicitly, do not restrict the natural language input
in any form and do not use end-to-end supervi-
sion. The fact retrieval method is inspired from
Guu et al. (2020); Gontier et al. (2020). Gontier
et al. (2020) proposes to combine a non-parametric
retriever model with a parametric generator for
knowledge-augmented NLP tasks. We use a re-
trieval method with frozen parameters as we do not
have knowledge-augmented sentence composition
supervision for learning retrieval and generation in
an end-to-end fashion.

7 Conclusion

We propose a method to generate knowledge-
enriched multiple-step textual proofs (intermedi-
ate conclusions) for the NLI task utilizing only
next-step supervision. We train a T5 model to gen-
erate the next step given a premise-hypothesis pair,
and use external commonsense knowledge aug-
mentation to search for more generalized proofs.
To ease generation and verification, we introduce
constraints over expected proofs, and associated
metrics. Human verification shows the effective-
ness of our proposed method. We also show that

880

our generated proofs can be used to improve NLI
task performance using standard data augmenta-
tion techniques (on low-data scenarios), benefiting
targeted reasoning types.

8 Limitations

Firstly, we evaluated our model on the NLI task of
English language. Multilingual NLI models have
been proposed in the last few years, on which we
want to evaluate our framework as future work.
However, the absence of large commonsense cor-
pus for retrieval could present some difficulty for
non-English languages. Secondly, we have evalu-
ated our model on SNLI which contains simple
premise hypothesis pairs. In the future our work
could be extended to tackle more complex sen-
tences or paragraphs and mathematical reasoning
datasets for proof generation.

References
Sumithra Bhakthavatsalam, Chloe Anastasiades, and

Peter Clark. 2020. Genericskb: A knowledge
base of generic statements. arXiv preprint
arXiv:2005.00660.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
Lukasiewicz, and Phil Blunsom. 2018. e-snli: Natu-
ral language inference with natural language expla-
nations. Advances in Neural Information Processing
Systems, 31.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,
pages 3882–3890. ijcai.org.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177–190. Springer.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. arXiv preprint arXiv:2104.08661.

Bhavana Dalvi, Oyvind Tafjord, and Peter Clark.
2022. Towards teachable reasoning systems. CoRR,
abs/2204.13074.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and Chris
Pal. 2020. Measuring systematic generalization in
neural proof generation with transformers. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 22231–22242. Curran Associates,
Inc.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Ming-Wei Chang. 2020. Retrieval augmented
language model pre-training. In Proceedings of the
37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume
119 of Proceedings of Machine Learning Research,
pages 3929–3938. PMLR.

Gaole He, Yunshi Lan, Jing Jiang, Wayne Xin Zhao, and
Ji-Rong Wen. 2021a. Improving multi-hop knowl-
edge base question answering by learning interme-
diate supervision signals. In WSDM ’21, The Four-
teenth ACM International Conference on Web Search
and Data Mining, Virtual Event, Israel, March 8-12,
2021, pages 553–561. ACM.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021b.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Ruixin Hong, Hongming Zhang, Xintong Yu, and
Changshui Zhang. 2022. METGEN: A module-
based entailment tree generation framework for an-
swer explanation. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
1887–1905, Seattle, United States. Association for
Computational Linguistics.

Divyansh Kaushik, Eduard Hovy, and Zachary C. Lip-
ton. 2019. Learning the difference that makes a dif-
ference with counterfactually-augmented data.

Sawan Kumar and Partha P. Talukdar. 2020. NILE : Nat-
ural language inference with faithful natural language
explanations. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
8730–8742. Association for Computational Linguis-
tics.

Zachary C. Lipton. 2018. The mythos of model inter-
pretability. Commun. ACM, 61(10):36–43.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Rui
Dong, Xiaokai Wei, Henghui Zhu, Xinchi Chen,
Peng Xu, Zhiheng Huang, Andrew Arnold, and Dan
Roth. 2022. Entailment tree explanations via itera-
tive retrieval-generation reasoner. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 465–475, Seattle, United States. Associ-
ation for Computational Linguistics.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.

https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.24963/ijcai.2020/537
https://doi.org/10.48550/arXiv.2204.13074
https://proceedings.neurips.cc/paper/2020/file/fc84ad56f9f547eb89c72b9bac209312-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fc84ad56f9f547eb89c72b9bac209312-Paper.pdf
http://proceedings.mlr.press/v119/guu20a.html
http://proceedings.mlr.press/v119/guu20a.html
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.1145/3437963.3441753
https://doi.org/10.18653/v1/2022.findings-naacl.145
https://doi.org/10.18653/v1/2022.findings-naacl.145
https://doi.org/10.18653/v1/2022.findings-naacl.145
http://arxiv.org/abs/1909.12434
http://arxiv.org/abs/1909.12434
https://doi.org/10.18653/v1/2020.acl-main.771
https://doi.org/10.18653/v1/2020.acl-main.771
https://doi.org/10.18653/v1/2020.acl-main.771
https://doi.org/10.1145/3233231
https://doi.org/10.1145/3233231
https://doi.org/10.18653/v1/2022.findings-naacl.35
https://doi.org/10.18653/v1/2022.findings-naacl.35

881

2021. Show your work: Scratchpads for interme-
diate computation with language models. CoRR,
abs/2112.00114.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin,
and Sameer Singh. 2020. Beyond accuracy: Behav-
ioral testing of NLP models with CheckList. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 4902–4912,
Online. Association for Computational Linguistics.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation for
interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 122–136. Association
for Computational Linguistics.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019.
ATOMIC: an atlas of machine commonsense for if-
then reasoning. In The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 3027–3035. AAAI Press.

Abulhair Saparov and He He. 2022. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. CoRR, abs/2210.01240.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the gen-
eral public. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Sys-
tems”, pages 1223–1237. Springer.

Zayne Sprague, Kaj Bostrom, Swarat Chaudhuri, and
Greg Durrett. 2022. Natural language deduction with
incomplete information. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8230–8258, Abu Dhabi,
United Arab Emirates. Association for Computa-
tional Linguistics.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. 2021.
Proofwriter: Generating implications, proofs, and ab-
ductive statements over natural language. In Find-
ings of the Association for Computational Linguis-
tics: ACL/IJCNLP 2021, Online Event, August 1-6,
2021, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 3621–3634. Association for Computational
Linguistics.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark.
2022. Entailer: Answering questions with faithful
and truthful chains of reasoning. In Proceedings of
the 2022 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2078–2093, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Ishan Tarunesh, Somak Aditya, and Monojit Choudhury.
2021. Trusting roberta over bert: Insights from check-
listing the natural language inference task. arXiv
preprint arXiv:2107.07229.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2020. Is multihop QA in
DiRe condition? measuring and reducing discon-
nected reasoning. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8846–8863, Online. As-
sociation for Computational Linguistics.

Sarah Wiegreffe and Ana Marasović. 2021. Teach me
to explain: A review of datasets for explainable nlp.
In Proceedings of NeurIPS.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112–1122.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 31–40, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 89–105, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

http://arxiv.org/abs/2112.00114
http://arxiv.org/abs/2112.00114
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://www.aclweb.org/anthology/2020.acl-main.442
https://www.aclweb.org/anthology/2020.acl-main.442
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.18653/v1/2020.emnlp-main.9
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
http://arxiv.org/abs/2210.01240
http://arxiv.org/abs/2210.01240
http://arxiv.org/abs/2210.01240
https://aclanthology.org/2022.emnlp-main.564
https://aclanthology.org/2022.emnlp-main.564
https://doi.org/10.18653/v1/2021.findings-acl.317
https://doi.org/10.18653/v1/2021.findings-acl.317
https://aclanthology.org/2022.emnlp-main.134
https://aclanthology.org/2022.emnlp-main.134
https://www.aclweb.org/anthology/2020.emnlp-main.712
https://www.aclweb.org/anthology/2020.emnlp-main.712
https://www.aclweb.org/anthology/2020.emnlp-main.712
https://arxiv.org/abs/2102.12060
https://arxiv.org/abs/2102.12060
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/W19-4804
https://aclanthology.org/2022.emnlp-main.7
https://aclanthology.org/2022.emnlp-main.7
https://aclanthology.org/2022.emnlp-main.7

882

A Prover

The multitask T5 generator model(§3.1) can be
trained on additional objective functions for im-
proved performance and better generalization. The
objectives are as follows:
Explanation Generation: The model is trained
to generate an explanation X given the premise
P and hypothesis H . The input is explain: P
<sep> H and the output to be generated is X.
The non-neutral instances of the E-SNLI (Cam-
buru et al., 2018) dataset is used for this objective.

Entailment Bank Proof Generation: The model
is also trained to generate one-step proofs given a
premise and a conclusion. Suppose conclusion c
can be derived from premise sentences s1, s2. For
this instance, the input to the model is proof:
s1 <sep> c and the output to be generated is s2.
Another instance is also created by interchanging
s1 and s2 in the input and output. We consider all
leaf sentences, intermediate conclusions, and the
final hypothesis of the proof trees in the Entailment
Bank dataset (Dalvi et al., 2021) to create these
instances.

These two objectives are more useful for expla-
nation / intermediate step generation for neutral
premise-hypothesis pairs.

B Constrained Proof Generation

The explain: and proof: generation setup can be
used to directly generate the proof in using the
premise P and hypothesis H . We observe that the
generator model learns to exploit the proof gener-
ation process by generating a single sentence as
proof, due to the nature of the training data in E-
SNLI and Entailment Bank. We thus evaluate the
generated proofs against the gold test set annota-
tions in E-SNLI with a number of text generation
evaluation metrics – BLEU, METEOR, ROUGE,
CIDER and semantic similarity (SIM) using all-
mpnet-base-v2. The results are reported in Table 7.

Prefix BLEU1 METEOR ROUGE CIDEr SIM

explain 40.63 24.91 38.98 66.03 63.72
proof 26.31 15.37 26.98 77.05 47.20

Table 7: Results for constrained proof generation. The
generated proofs are matched against the gold annota-
tions in E-SNLI. SIM indicates semantic similarity. All
scores except CIDEr are shown on a scale of 0-100.

C Datasets used

All datasets used and results reported in this paper
are for English language.

LoNLI: The dataset contains templates of
(premise, hypothesis) pairs, associated examples,
and corresponding entailment, neutral, or contra-
diction labels. For instance, one such entailment
template is - premise: Name moved from Country1
to Country2; hypothesis: Name now lives in Coun-
try2. All examples created from this template are
labeled as entailment. There are 363 templates in
total (166 entailment, 163 contradiction, 34 neutral)
each having 1000 examples. The templates are cat-
egorized according to reasoning categories, such as
lexical, syntactic, boolean, causal, etc. The dataset
was inspired by the behavioral testing methodology
of NLP systems proposed in CHECKLIST (Ribeiro
et al., 2020).

D Additional Results

We show some additional results to show the useful-
ness of the PROVER for various NLI tasks. This is
an extension of the results reported in §5.3. As de-
scribed earlier, we use the PROVER generated data
as additional labeled data for supervised learning in
NLI tasks. We train a DeBERTa-Large model (He
et al., 2021b) with i) MNLI-only data or ii) a mix
of MNLI data and PROVER or ENTAILER gener-
ated data. The results are reported for MNLI and
MED datasets in table 8, and for Lo-NLI dataset in
table 9.

For the DeBERTa-Large model, we found sim-
ilar conclusions that we made for the RoBERTa-
Large model. The incorporation of PROVER gen-
erated data helps in improving performance across
most settings in the three datasets. In the low data

Trained On MNLI MEDMNLI % Proofs % Proofs From

1 0 - 88.67 42.31
1 1 ENTAILER 87.56 41.74
1 1 PROVER 88.99 43.26

5 0 - 89.06 42.63
5 5 ENTAILER 89.44 41.32
5 5 PROVER 89.80 44.54

10 0 - 89.81 44.30
10 10 ENTAILER 89.85 42.58
10 10 PROVER 90.28 45.27

Table 8: F1 scores for MNLI (val-matched) and MED
datasets for the DeBERTa-Large model. Scores are av-
erage of 3 runs.

883

MNLI, Proofs % 1, 0% 1, 1% 1, 1% 10, 0% 10, 10% 10, 10 % 50, 0% 50, 50% 50, 50%
Proofs From - ENTAILER PROVER - ENTAILER PROVER - ENTAILER PROVER
Category ↓
Boolean 65.99 64.30 61.81 64.24 62.41 66.71 81.07 71.01 76.78
Conditional 37.28 41.25 53.69 50.67 66.02 64.19 49.89 66.86 77.30
Coreference 64.23 50.25 56.11 78.23 65.22 78.45 78.66 77.68 83.52
Negation 94.69 96.74 96.80 97.33 95.56 96.24 95.73 95.15 88.73
Numerical 61.57 61.70 62.90 72.48 76.18 82.64 83.68 71.59 86.33
Quantifier 65.54 61.36 69.32 71.93 73.43 73.58 68.49 60.97 71.75
Relational 98.27 91.80 98.95 98.52 62.54 98.74 97.93 96.09 97.09
Spatial 66.47 49.60 66.28 59.89 45.46 53.69 49.01 78.77 61.93
Syntactic 99.88 99.86 99.13 99.97 96.00 99.99 99.99 99.98 100.0
Temporal 51.41 43.20 46.99 61.00 46.89 64.60 79.75 76.96 75.35
World 99.88 99.58 99.60 99.47 99.82 99.24 99.22 99.98 99.40

Implicature* 31.76 23.39 29.15 30.33 52.97 30.42 30.24 36.69 33.61
Presupposition* 85.70 87.27 90.41 99.04 99.81 97.08 98.82 99.80 99.90

Average 70.97 66.95 71.63 75.62 72.49 77.35 77.88 79.35 80.90

Table 9: Reasoning category wise F1 scores on the Lo-NLI dataset for the DeBERTa-Large model. Scores are average
of 3 runs. We omit categories, for which relevant knowledge is absent from MNLI, SNLI, and EntailmentBank.
Implicature and Presupposition are marked as * as they are rare in the source datasets.

regime, the additional instances from PROVER

helps in improving average performance in the
MED dataset. The additional instances from EN-
TAILER do help in improving the performance in
some cases, but not always. In contrast, the perfor-
mance in MED drops when ENTAILER generated
data is used.

The incorporation of PROVER generated data
also helps in improving the overall performance
with significant gains across a number of reasoning
categories in the Lo-NLI dataset.

E Instructions for Human Verification

We performed human verification for proofs with
two intermediate steps. The following instructions
were given as it is to the human annotators.

E.1 Definition of Entailment
Entailment is a directional relation between two
sentences - S1 and S2. The relation holds whenever
the truth of the second sentence S2 follows from
the first sentence S1. In other words, if a human
reading S1 infers that S2 is true, then (S1, S2) is
an entailment pair. Note that, (S1, S2) being an
entailment pair does not necessarily mean that the
reverse pair (S2, S1) is an entailment pair. Some
examples are given below:

• S1: A football game with multiple males playing.

S2: Some men are playing a sport.

Label: (S1, S2) is an entailment pair.

However, (S2, S1) is not an entailment pair be-
cause playing a sport does not necessarily mean
playing football. More examples:

• S1: A woman is walking outside.

S2: A person outdoors.

Label: (S1, S2) → Entailment.

• S1: An older and younger man smiling.

S2: Two men are smiling and laughing at the cats
playing on the floor.

Label: (S1, S2) → Not Entailment.

If S1 and S2 are the same sentences or very
similar sentences with minimal difference in tokens
then consider that as entailment.

• S1: An older and younger man smiling.

S2: An older and younger man smiles.

Label: (S1, S2) → Entailment.

E.2 Definition of Uniqueness

S1 and S2 are two given sentences. If S1 and S2
are very similar in the token space then consider
(S1, S2) as not unique. If they are not very similar
then they are unique. This is a symmetrical relation.
The uniqueness of (S1, S2) is the same as (S2, S1).

• S1: A football game with multiple males playing.

S2: Some men are playing a sport.

Label: Unique.

• S1: An older and younger man smiling.

S2: An older and younger man smiles.

Label: Not unique.

884

• S1: A man is playing a guitar.

S2: A man is playing a musical instrument.

Label: Unique.

• S1: A man is playing a guitar.

S2: A guitar is being played by a man.

Label: Not Unique.

Please note the difference between the last two
examples carefully. The usage of the word musical
instrument makes the third pair unique.

E.3 Instructions
Consider a proof from the proof search with
facts method. Each instance has four elements: i)
Premise, ii) Intermediate Steps, iii) Hypothesis, and
iv) Facts used. We are aiming to evaluate the quality
of the proof.

We illustrate a proof example which uses two
facts – Fact 1, Fact 2, and has two intermediate
steps – Step 1, Step 2. Considering this, we have 3
sentence pairs from the proof:

• X1 : (Premise, Step 1)

• X2 : (Step 1, Step 2)

• X3 : (Step 2, Hypothesis)

Each instance has to be scored in five aspects
using the three above pairs and the two facts:

1. Correctness: Give a score among [3, 2, 1, 0].
This is assigned by checking the entailment
label of the three pairs.

• X1, X2, X3 are all entailment: Score is 3.
• Only X1, X2 are entailment: Score is 2.
• Only X1 is entailment: Score is 1.
• All other cases: Score is 0.

Note that the priority of the pairs are: X1 >
X2 > X3. If X2, X3 are both entailment but
X1 is not then we will give a score of 0.

2. Minimality: Give a score among [3, 2, 1, 0]:

• If X1, X2, X3 are all unique pairs: Score is
3.

• Score of 2, or 1, or 0 analogous to correct-
ness, but conditioned on uniqueness.

3. Useful Facts: Give a score between [2, 1, 0]
denoting how many facts are useful for the
proof.

• Both facts are useful: Score is 2
• Only one fact is useful: Score is 1.
• Neither facts are useful: Score is 0.

4. Hypothesis follows: Does the hypothesis fol-
low from the premise and the listed facts? This
score is inspired from Dalvi et al. (2022).

• Clearly follows: Score is 2
• Somewhat follows: Score is 1.
• Does not follow: Score is 0.

We do not have any facts in the proof for the un-
constrained proof search method. So, we measure
only correctness and minimality for such proofs.

The scores for Correctness, Minimality, and Use-
ful Facts are scaled appropriately for proofs with
more intermediate steps and facts. During evalua-
tion, we normalize all the scores between 0-1 (0-
100 in %) by appropriately considering the number
of intermediate steps and facts.

Details of the Annotators : The human verifi-
cation was performed by five graduate students
who are trained in natural language processing. All
the students are fluent in English. They were paid
hourly rates as deemed by our university.

F Experimental Setup

We use beam search to generate outputs from
the T5-Large models. A beam length of 10 is
used. The T5-Large models were trained with the
Adafactor optimizer (Shazeer and Stern, 2018)
with a learning rate of 5e-6. We retrieve top 8
facts (according to cosine similarity) from the re-
triever model for composition. We compute the
generative evaluation metrics using this package:
https://github.com/Maluuba/nlg-eval

G Computational Resources

We use a single Quadro RTX 8000 GPU for our
experiments. We train the PROVER T5 model and
composition T5 model for 15 and 5 hours in this
GPU. The T5-Large and RoBERTa-Large models
have 770M and 355M parameters, respectively.

https://github.com/Maluuba/nlg-eval

