
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 897–909

November 1–4, 2023. ©2023 Association for Computational Linguistics

897

GrailQA++: A Challenging Zero-Shot Benchmark for Knowledge Base
Question Answering

Ritam Dutt∗
Carnegie Mellon University
rdutt@andrew.cmu.edu

Sopan Khosla
AWS AI Labs

sopankh@amazon.com

Vinayshekhar Bannihatti Kumar
AWS AI Labs

vinayshk@amazon.com

Rashmi Gangadharaiah
AWS AI Labs

rgangad@amazon.com

Abstract

Most benchmarks designed for question an-
swering over knowledge bases (KBQA) oper-
ate with the i.i.d. assumption where one en-
counters the same schema items during infer-
ence as those observed during training. Re-
cently, the GrailQA dataset was established
to evaluate zero-shot generalization capabili-
ties of KBQA models as a departure from the
i.i.d. assumption. Reasonable performance
of current KBQA systems on the zero-shot
GrailQA split hints that the field might be mov-
ing towards more generalizable systems. In
this work, we observe a bias in the GrailQA
dataset towards simpler one or two-hop ques-
tions, which results in an inaccurate assessment
of the aforementioned prowess. We propose
GrailQA++, a challenging zero-shot KBQA
test set that contains more questions relying on
complex reasoning. We leverage the concept of
graph isomorphisms to control the complexity
of the questions and to ensure that our pro-
posed test set has a fair distribution of simple
and complex questions. Existing KBQA mod-
els suffer a substantial drop in performance on
our constructed new test set as compared to
the GrailQA zero-shot split. Our analysis re-
veals how isomorphisms can be used to under-
stand the complementary strengths of different
KBQA models and provide a deeper insight
into model mispredictions. Overall, our paper
highlights the non-generalizability of existing
models and the necessity for designing more
challenging benchmarks. Our dataset is avail-
able at https://github.com/sopankhosla/
GrailQA-PlusPlus

1 Introduction

The task of KBQA involves querying a knowledge
base (KB) for a set of entities that satisfies a natural
language question. Most prior work in KBQA has
been restricted to an i.i.d. setting (Yih et al., 2016;
Talmor and Berant, 2018), where the classes and

∗Work conducted during an internship at Amazon.

relations constituting the KB remains unchanged
during inference and training. However, the ubiq-
uitous applications of KBQA in different domains
such as tax, insurance, and healthcare (Lüdemann
et al., 2020; Huang et al., 2021; Park et al., 2020)
has prompted research on KBQA generalizabilition
to facilitate transfer to these domains (Dutt et al.,
2022; Das et al., 2021; Neelam et al., 2022; Jiang
and Usbeck, 2022).

The most salient work is that of Gu et al. (2021)
where they propose the task of KBQA generaliz-
ability beyond the i.i.d setting, which they term
“zero-shot” generalizability. In a zero-shot setting,
KBQA models operate upon classes and relations
which were unobserved during training. They also
create a dataset called GrailQA to benchmark the
generalizability of KBQA models. This dataset has
garnered significant research interest with state-of-
the-art KBQA models (Ye et al., 2021; Yu et al.,
2022; Gu and Su, 2022; Shu et al., 2022; Liu et al.,
2022) achieving remarkable performance on the
leaderboard, specifically on the zero-shot setting. 1

However, a closer inspection of the GrailQA
dataset reveals that it is biased towards simpler
questions and that existing KBQA systems cannot
deal with complex cases in a non-i.i.d. setting. We
put forward the notion of graph isomorphisms to
characterize the complexity of the questions, which
is similar in spirit to the idea of reasoning paths
or semantic structures of (Li and Ji, 2022; Das
et al., 2022). We observe a pronounced skewness
in the distribution of isomorphisms in the GrailQA
dataset. The simplest isomorphism, where the an-
swer is located one hop away from starting entity,
comprises 78.5% of the GrailQA zero-shot sam-
ples, while a more complex isomorphism with an-
swers three hops away accounts for only 0.53%.
In this work, we leverage the concept of isomor-
phisms to explore the generalization abilities of
KBQA models on questions of varying complexity.

1https://dki-lab.github.io/GrailQA/

https://github.com/sopankhosla/GrailQA-PlusPlus
https://github.com/sopankhosla/GrailQA-PlusPlus
https://dki-lab.github.io/GrailQA/

898

We propose a new zero-shot benchmark called
GrailQA++ that has a balanced distribution of sim-
ple and complex isomorphisms. The dataset com-
prises of questions annotated by domain experts
as well as questions from well-known pre-existing
KBQA datasets that are built over the same Free-
base database as GrailQA. We evaluate two state-
of-the-art (SOTA) KBQA models on this bench-
mark and observe that the performance falls signif-
icantly (28.5 on GrailQA++ as opposed to 83.5 on
GrailQA). Our analysis shows that this drop can
be attributed partly to the skewed distribution in
GrailQA and that different models fare better on
different isomorphism categories.
Our contributions are the following:
• We leverage the concept of graph isomorphisms

to analyze the complexity of KBQA questions.
• We create a new benchmark (GrailQA++) with

complex questions to evaluate zero-shot general-
izability of KBQA models.

• Our experiments show that SOTA models per-
form poorly on the new dataset, emphasizing that
KBQA generalizability is still a challenge. 2

• We also carry out extensive error analysis
to inspect model mispredictions and non-
generalizability that would serve subsequent re-
search in creating better benchmarks.

2 Preliminaries

In this section, we describe the task setting and the
different levels of generalization in the context of
KBQA. A more detailed description can be found
in (Gu et al., 2022).

2.1 Task Formulation

Knowledge Base: We denote a Knowledge Base
or a KB as K = (O,M), where O defines the
ontology of the KB and M specifies the set of
relational facts present in K on the basis of O. The
ontology is a subset of all possible relations R that
can exists between two classes, which are denoted
by C i.e., O ⊆ C × R × C. Likewise, the set of
facts is represented as M ⊆ E ×R× (L ∪ E ∪ C)
, where E and L denote the set of possible entities
and literals respectively.
Semantic-parsing based KBQA: Given the KB,
K, and a natural language question q, the objective
of KBQA is to find a set of entities (answers A)
that satisfies the question q. In a semantic-parsing

2Our dataset is available here at https://github.com/
sopankhosla/GrailQA-PlusPlus.

or translation based setting, the task of KBQA in-
volves converting q into its corresponding logical
form Lq. This Lq is executed over the K to obtain
the answers. Examples of logical forms include
S-expressions, SPARQL queries, and λ-calculus.

Each logical form Lq has a particular schema
Sq that includes elements from the set of relations,
classes, and other constructs specific to the logical-
form. The specific composition of items in Sq

forms a logical template or Tq. E.g., the questions
“Who wrote Pride and Prejudice?” and “Who was
the author of Oliver Twist?” have the same tem-
plate but different logical forms since they refer
to different novels. However the questions “Who
wrote Pride and Prejudice?” and “Which author
wrote both the Talisman and It?” have the same
schema but different logical templates since the for-
mer involves only one constraint or entity (“Pride
and Prejudice”) while the latter specifies two (“Tal-
isman” and “It”),

2.2 KBQA Generalization

Gu et al. (2021) puts forward the three levels of
generalization based on how the schema Sq and
logical template Tq for a question q differs from the
set of all possible schema items and templates seen
during training, i.e. Strain and Ttrain respectively.

(i) I.I.D. generalization occurs when Sq ⊂
Strain and Tq ∈ Ttrain.

(ii) Compositional generalization occurs when
Sq ⊂ Strain but Tq /∈ Ttrain. Thus the questions
operate upon a subset of schema items seen during
training but they have new templates.

(iii) Zero Shot generalization occurs when ∃s ∈
Sq such that s /∈ Strain. Thus the questions oper-
ate upon novel schemas, mostly new classes and
relations that were not encountered during training.

Conceptually, these three levels of generaliza-
tion could be stacked in an hierarchical fashion in
increasing order of difficulty; with I.I.D. being the
least challenging since it operates over templates
seen during training, followed by Compositional,
which occurs over unseen templates, and then Zero
Shot which have unseen schema items.

3 Isomorphisms in GrailQA

In a semantic-parsing based KBQA setting, a natu-
ral language question is first converted to a logical
form and then executed over the KB to yield an an-
swer. To ensure generalization, such KBQA mod-
els need to handle different kinds of logical forms.

https://github.com/sopankhosla/GrailQA-PlusPlus
https://github.com/sopankhosla/GrailQA-PlusPlus

899

GrailQA++

Iso-Code Pictoral Desc. GrailQA EAD GraphQ WebQSP CWQ Tot
Freq Perc Freq Perc Freq Perc Freq Perc Freq Perc Freq Perc

Iso-0 2809 77.9 83 11.9 292 43.9 245 43.2 0 0.0 620 16.1

Iso-1 559 15.5 151 21.7 237 35.6 177 31.2 324 16.8 889 23.0

Iso-2 135 3.8 96 13.8 33 5.0 6 1.1 289 14.9 424 11.0

Iso-3 18 0.5 81 11.6 31 4.7 3 0.5 695 35.9 810 21.0

Iso-4 61 1.7 101 14.5 39 5.9 136 24.0 0 0.0 276 7.2

Iso-5 22 0.6 98 14.1 33 5.0 0 0.0 252 13.0 383 9.9

Iso-6 0 0.0 0 0.0 0 0.0 0 0.0 302 15.6 302 7.8

Iso-8 0 0.0 0 0.0 0 0.0 0 0.0 72 3.7 72 1.9

Iso-11 0 0.0 85 12.2 0 0.0 0 0.0 0 0.0 85 2.2

Table 1: Distribution of isomorphisms in the GrailQA (Dev) set and our curated GrailQA++ dataset (Tot). We show
the total count of isomorphisms for each of the datasets (Freq) and their corresponding proportion in % (Perc). Note
that complex isomorphisms belonging to Iso-6, Iso-8, and Iso-11 do not occur in the original GrailQA dataset. The
red and green nodes in each isomorphism correspond to the constraints and the final answer respectively.

In this section we propose a way to categorize these
logical forms using the notion of isomorphisms.

3.1 Isomorphisms

Each logical form Lq has an equivalent graphical
notation Gq, where the set of vertices Vq correspond
to the different constraints (E ,L) and classes C
in the Lq while edges Eq represents the relations
R present in Lq. This notation is similar to the
design of query-graphs (Lan and Jiang, 2020) but
where the operations (aggregation or comparative)
do not have any specialized vertices. We however
denote one of the vertices in Vq that correspond to
the answers as Aq and call it the root. The nodes
corresponding to the root and the constraints are
denoted in green and red respectively in Figure 1.

We say two logical forms for questions qi and qj
belong to the same isomorphism category, iff their
equivalent graphs Gqi and Gqj are isomorphic. Sub-
sequently, two graphs Gqi and Gqj are isomorphic
iff there exists a mapping function ψ from Vqi to
Vqj such that ∀m,n nodes in Vqi , that correspond
to an edge in Gqi i.e (m,n) ∈ Eqi , the mapping of

the nodes should also correspond to an edge in Gqj

or, (ψ(m), ψ(n)) ∈ Eqj . This mapping is bijective.
Furthermore the roots in the two graphs also share
the same mapping, i.e. Aqj = ψ(Aqi).

Isomorphisms describe how the constraints in
the query graph are connected to the root (or the
answer). It obfuscates any specific information
such as the name of the entities or classes in the
graph. They provide a unified way to characterize
a query graph (and subsequently a logical form)
based on the number of constraints, and the number
of hops required to reach the answer from said
constraints. For example, in Figure 1, the green Tea
node corresponds to Ans while the red constraint
nodes, Fujian and White tea, corresponds to E1 and
E2 respectively. Thus the given logical form is an
instance of Iso-2. The distribution of isomorphisms
spanning all datasets appears in Table 7.

While the notion of isomorphisms is similar in
concept to the idea of reasoning paths (Das et al.,
2022) or semantic structures (Li and Ji, 2022), we
use the generic definition of “isomorphisms” to
account for the fact that these graph isomorphisms

900

can also have cycles in them. For example, in Table
7, we note instances of isomorphisms (CIso-0 to
CIso-4) where at least one cycle is present.

3.2 Statistics for GrailQA
We categorize the questions in GrailQA according
to the isomorphism type of the corresponding log-
ical form. We refer to isomorphisms with fewer
than 3 relations as simple and the rest as complex
isomorphisms. The simple isomorphisms for the
remainder of the paper are Iso-0,1,2. We show the
distribution of the isomorphisms in the zero-shot
development data of GrailQA in Table 1.

We observe that the simple isomorphisms (Iso-
0, 1, 2) comprise more than 97% of all zero-shot
examples in the development set. A similar story
holds true for the train set where 95% of all isomor-
phisms belong to these three classes (See Table 7 in
the Appendix). We hypothesize that this skewness
could exaggerate the perceived generalization capa-
bilities of KBQA models, such that the staggering
numbers on the leaderboard reflect the performance
on these simpler isomorphisms.

4 GrailQA++

To gauge whether KBQA models exhibit zero-shot
generalization capabilities across different isomor-
phisms, we propose GrailQA++, a challenging
dataset with an equal distribution of simple and
complex isomorphisms. To create GrailQA++, we
not only employ annotators with prior expertise
in KBQA, but also leverage pre-existing KBQA
datasets. We outline the creation process below
and illustrate the same in Figure 1.

4.1 Expert Annotated Instances
We describe our controlled approach to sample and
annotate instances of different isomorphism classes.
Our process is similar to that of GrailQA albeit
with a few differences, namely in terms of query
sampling and natural language query generation.

Query Graph Sampling: GrailQA was created
using the OVERNIGHT process (Su et al., 2016)
which extracts templates by traversing Freebase
and obtains a query graph. Since traversal is easier
for simpler hops and subsequently simpler isomor-
phisms, they appear higher in GrailQA. We, how-
ever, follow a more controlled algorithm to sample
the query graph.

We first choose a particular isomorphism, which
determines the number of constraints. If there is

exactly one constraint (Iso-0, 1, and 5), we first
choose a class at random and then sample an entity
randomly from that class. We then follow the rela-
tions that originate from the instantiated entity and
continue our traversal of the KB till we reach the
answer node. In case of multiple constraints (Iso-2,
3, 4, and 11), we first randomly sample the answer
class and then traverse the KB by adding relations
in a manner that conforms with the isomorphism
structure. At each expansion step, we ensure that
there exists an entity which can be instantiated us-
ing the new relation. This ensures executability of
the current sub-query and thus of the main query.

The authors chose to sample instances corre-
sponding to Iso-0,1,2,3,4,5 since these were already
present in the zero-shot split of GrailQA. Addition-
ally, we also sampled and annotated instances of
Iso-11, since it was the simplest isomorphism that
could be formed with three constraints.

Filtering: We filter query graphs that do not con-
form with the zero-shot generalizability criteria.
Specifically, the query graph should have at least
one class or relation absent from the GrailQA train-
ing split. Later, we employ the filtering techniques
proposed in Gu et al. (2021) to discard illegal rela-
tions, and ignore instances with entities or relations
written in a language other than English.

Logical Form: Once we obtain the filtered query
graph, we convert it to its canonical logical form us-
ing the deterministic algorithm of Gu et al. (2021).
We then execute this logical form over Freebase
to obtain the answers, and discard instances where
the logical form was inexecutable or unanswerable.

Natural Language Query Annotation: To cre-
ate the corresponding natural language question we
choose annotators who are fluent in English, are
current working professionals with a graduate de-
gree to their name, and have prior domain expertise
in KBQA. The annotators are first provided with
a design document with examples of query graphs
and their corresponding logical form. We also pro-
vide the annotators with aliases of the constraints
and relations to better interpret the query graph as
they compose the corresponding question.3 We
randomly select 35 instances (5 from each isomor-
phism) to include in the pilot study after which
the annotators meet to discuss their interpretations
and resolve any differences. We find that all three
annotators agree on 75% of the examples, while

3Example screenshots provided in Appendix C.

901

GrailQA++

Isomorphism Natural Language
Query

Logical
Form

Query
Graph Filter

KB

(AND food.tea (AND(JOIN
food.tea.tea_type m.026vr7)
(JOIN
food.tea.regions_where_grown
m.0m5pn)))

m.026vr7 -> White tea
m.0m5pn -> Fujian
food.tea -> Tea

Which white tea
grows in Fujian?

Iso-2

WebQSP CWQGraphQ

Isomorphism
Criertion

Zero Shot
Criterion

Pre-existing Datasets

Expert Annotated Dataset

Figure 1: Schematic diagram that outlines the GrailQA++ dataset creation. The dataset comprises of question and
corresponding logical forms, from two different sources. The former are instances which are hand-annotated by
domain experts, and the latter are instances obtained from pre-existing datasets (WebQSP, CWQ, and GraphQ)
which also operate over the same Freebase KB. (more details in Section 4).

at least two agree on 97%. The main causes of
disagreement was determining how explicitly the
entities should be referred in the NL query. The
annotators decided to be explicit in specifying the
hidden nodes to facilitate evaluation. Finally, we
sample a large set with 1000 unique query-graphs
equally distributed among the three annotators. We
ensure a balanced distribution between the different
kinds of isomorphisms (see Table 1). All annota-
tions were carried out by domain experts and we
did not employ any crowd-workers unlike in Gu
et al. (2021) for paraphrasing.

4.2 Pre-existing Datasets
We also leveraged pre-existing public datasets that
were built over the same Freebase KB as GrailQA.
These datasets were chosen since they were de-
signed to evaluate progress on KBQA.
WebQSP (Yih et al., 2016) uses Amazon Mechan-
ical Turk to answer questions from non-experts
collected using the Google Suggest API. Since the
dataset is restricted to to "wh" questions from non-
experts the questions tend to more colloquial.
GraphQ (Su et al., 2016) was created in a fash-
ion similar to GrailQA with questions exhibiting
variation in terms of complexity, topic space, and
number of answers.
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018) was created on top of WebQSP with the

intention of generating complex questions by in-
corporating compositions (more hops), conjuctions
(more constraints), and superlatives and compara-
tives (more function types).

Zero-shot splits: We consider only the questions
in the test splits of the pre-existing datasets which
satisfy the zero-shot crieteria of Gu et al. (2021).
Specifically, zero-shot instances have at least one
schema item (class or relation) that were not seen
during training in the training data of GrailQA.
Following Khosla et al. (2023), we also exclude
questions if a relation’s corresponding inverse rela-
tion was observed during training to make the task
more challenging. We follow the same criteria for
the expert annotated dataset as well.

Isomorphism crietrion: We sample instances
corresponding to the following isomorphisms, Iso-
0,1,2,3,4,5,6,8. The selection of these isomor-
phisms were driven by two criteria, namely (i) the
isomorphisms should be present in the training split
of the GrailQA dataset and (ii) there should be suf-
ficient representation of these isomorphisms in the
combined test-split of GrailQA++(>50).

4.3 Statistics of GrailQA++
We present the distribution of isomorphisms corre-
sponding to our curated GrailQA++ in Table 1.
We see that simple and complex isomorphisms

902

RNG-KBQA ArcaneQA

Dataset EM F1 EM F1

GrailQA (dev) 83.5 86.0 77.9 81.7

GrailQA++ 28.5 38.6 18.6 32.5
- EAD 56.1 70.2 31.5 49.9
- GraphQ 53.2 61.7 30.2 44.8
- WebQSP 19.9 25.9 17.6 28.7
- CWQ 12.6 23.0 10.2 23.2

Table 2: EM and F1 scores for RNG-KBQA and the Ar-
caneQA model on the GrailQA and GrailQA++ datasets
(with gold entities). EAD stands for the Expert Anno-
tated Dataset that we had created.

are equally represented in the dataset, where the
simple isomorphsims that correspond to Iso-0,1,2
comprise 50.1% of the dataset. We also include
isomorphisms corresponding to Iso-6, Iso-8, and
Iso-11 which are absent in the original dev split of
GrailQA. This enables us to evaluate the zero-shot
generalization performance of KBQA models on
these unseen isomorphism categories.

5 Experimental Setup

Baselines: We experiment with two semantic-
parsing baselines for KBQA namely RNG-KBQA
(Ye et al., 2021) and ArcaneQA (Gu and Su, 2022).
We chose these models because they encapsulate
two different strategies of carrying out semantic
parsing in the context of KBQA (Gu et al., 2022).
Furthermore, they achieve impressive performance
on the GrailQA leaderboard and also have publicly
available checkpoints which can be used for evalu-
ation. We follow the inference setting mentioned in
their Github repositories, with the single exception
that for RNG-KBQA we do not restrict ourselves
to the subset of Freebase domains for GrailQA.

RNG-KBQA (Ye et al., 2021) follow a ranking-
based approach wherein they first enumerate all
possible candidates and then perform semantic
matching to rank the enumerated candidates in de-
creasing order of relevance. They then use a pre-
trained LM (T5-large) to generate an executable
query from the top-ranked candidates.

ArcaneQA (Gu and Su, 2022) employ a seq2seq
generative LM to obtain the final logical form from
the natural language query. They leverage a con-
strained decoding paradigm that leverages the in-
formation in the KB during query generation to
ensure executability.

Evaluation Criteria: We evaluate the perfor-
mance of the two baselines in terms of EM (exact
match) and F1 scores (between the predicted and
gold answers). We decouple the impact of entity
recognition and entity linking from the main task of
KBQA by providing gold entities during inference.
All experiments are carried out on a RTX-1080Ti
GPU with 12GB RAM, using the author-provided
model-checkpoints on the public GrailQA dev set.

6 Results

In this section we put forward the following re-
search questions and attempt to answer the same.
RQ1. How well do the baselines generalize to
our proposed GrailQA++ dataset?

We present the zero-shot performance of RNG-
KBQA and ArcaneQA on GrailQA and GrailQA++
in Table 2. We observe that models show impres-
sive performance on GrailQA with RNG-KBQA
achieving a very high F1 score of 86.0 overall. We
also note that these models suffer a drop of at least
10 points in Gu and Su (2022) in absence of gold
entities, emphasizing the importance of NER and
entity-linking (EL) for KBQA.

Nevertheless, even while controlling for perfect
EL, the performance drops sharply on GrailQA++,
resulting in an F1 score of 38.6 and 32.5 for RNG-
KBQA and ArcaneQA respectively. We attribute
this to the skewed distribution of ismorphisms in
the original GrailQA dev split, where the simpler
isomorphisms (Iso-0,1,2) accounts for 97% of the
dataset. RNG-KBQA achieves an F1 score of 86.5
and 30.1 on the simple and complex isomorphisms
in GrailQA respectively (see Table 3).

We also investigate the models’ performance on
questions with additional functions. These func-
tions are (i) comparatives (ex. greater than, less
than), (ii) superlatives (argmax, argmin), (iii) count-
ing or aggregation, and (iv) none (absence of any
specific operation). The results in Table 4 high-
lights that ArcaneQA scores higher on superlatives
and comparative functions (in terms of F1 score)
as opposed to RNG-KBQA for GrailQA++.
RQ2. Do models exhibit similar performance on
different isomorphism types?

We present a breakdown of the model perfor-
mance according to the isomorphism type for
GrailQA and GrailQA++ in Table 3.

The enumeration strategy of RNG-KBQA gen-
erates candidates corresponding to the first 5 iso-
morphisms (Iso-0,1,2,3 and 4). Consquently, we

903

GrailQA (Dev) GrailQA++ EAD GraphQ WebQSP CWQ

Iso-Codes RNG Arc RNG Arc RNG Arc RNG Arc RNG Arc RNG Arc

0 87.1/ 88.0 83.8/ 86.4 53.2/ 59.7 36.9/ 47.6 89.2/ 91.2 71.1/ 77.1 63.4/ 69.9 31.8/ 42.7 29.0/ 36.7 31.4/ 43.4 - -

1 81.9/ 85.1 66.7/ 70.5 47.9/ 53.4 36.7/ 47.0 81.5/ 83.7 52.6/ 59.3 53.2/ 57.6 32.1/ 44.8 9.0/ 13.3 13.0/ 26.2 49.7/ 58.1 45.4/ 53.9

2 74.8/ 86.2 53.3/ 75.8 39.2/ 51.9 15.8/ 34.7 96.9/ 97.9 50.0/ 67.8 63.6/ 87.9 6.1/ 6.1 0.0/ 16.9 0.0/ 16.7 18.0/ 33.2 5.9/ 27.3

3 5.6/ 44.8 0.0/ 20.2 13.2/ 28.3 2.1/ 24.3 75.3/ 88.8 14.8/ 44.1 48.4/ 98.9 0.0/ 72.1 0.0/ 13.3 0.0/ 13.3 4.5/ 18.2 0.7/ 19.9

4 9.8/ 47.6 11.5/ 27.5 25.0/ 32.9 1.8 / 16.8 35.6/ 49.0 4.9/ 25.6 17.9/ 24.7 0.0/ 30.9 19.1/ 23.4 0.0/ 6.3 - -

5 0.0/ 1.5 0.0/ 0.0 0.8/ 10.1 16.7/ 22.1 3.1/ 19.2 15.3/ 25.9 0.0/ 0.0 90.9/ 92.1 - - 0.0/ 7.9 7.5/ 11.5

6 - - 0.0/ 3.4 3.0/ 8.8 - - - - - - 0.0/ 3.4 3.0/ 8.8

8 - - 0.0/ 4.4 0.0/ 1.6 - - - - - - 0.0/ 4.4 0.0/ 1.6

11 - - 0.0/ 61.2 0.0/ 47.5 0.0/ 61.2 0.0/ 47.5 - - - - - -

Table 3: EM / F1 scores for RNG-KBQA (RNG) and ArcaneQA (Arc), across the different Isomorphisms (Iso) in
GrailQA (zero-shot subset) and GrailQA++. EAD stands for the expert annotated dataset that was created.

RNG-KBQA ArcaneQA

Dataset None Count Comparative Superlative None Count Comparative Superlative

GrailQA (Dev) 90.1/ 90.9 91.1/ 95.3 38.6/ 73.8 0.0/ 7.8 80.2/ 83.2 68.1/ 71.7 41.2/ 65.5 72.1/ 76.5

GrailQA++ 29.9/ 40.9 84.3/ 84.3 0.0/ 1.9 0.0/ 6.6 20.0/ 34.7 20.6/ 21.6 0.0/ 15.5 8.7/ 15.5

Table 4: EM/ F1 scores for RNG-KBQA and the ArcaneQA model on the GrailQA and GrailQA++ datasets with
different functional forms. None means no special function was present.

Iso-0Iso-1Iso-2Iso-3Iso-4Iso-5Iso-6Iso-8
Iso-11

Other

Iso-0
Iso-1
Iso-2
Iso-3
Iso-4
Iso-5
Iso-6
Iso-8

Iso-11
Other

76 14 0.16 0 0 8.5 0 0 0 1.9

19 69 0.120.12 0 10 0 0 0 1.4

50 10 21 2.4 0.79 11 0 0 0.79 4

51 18 4.7 5.6 0.94 11 0.8 0.13 2.1 5.2

14 37 17 4.5 6.7 10 1.8 0 0.89 8.9

6 46 0 1.9 0 42 0.27 0 0 3.3

17 23 9.5 9.5 1.6 19 6.2 0 5.2 9.2

19 43 0 0 0 31 0 0 0 7.1

48 0 48 1.6 1.6 0 0 0 0 0

0 57 0 0 0 29 0 0 0 14
0

10

20

30

40

50

60

70

(a) ArcaneQA on GrailQA++

Iso-0Iso-1Iso-2Iso-3Iso-4Iso-5Iso-6Iso-8
Iso-11

Other

Iso-0
Iso-1
Iso-2
Iso-3
Iso-4
Iso-5
Iso-6
Iso-8

Iso-11
Other

96 3.5 0 0 0 0.31 0 0 0 0

36 64 0 0 0 0 0 0 0 0

42 2.2 50 2.2 3.4 0 0 0 0 0

51 9.8 15 20 0.76 2.9 0 0 0 0.13

31 7.1 26 3 33 0 0 0 0 0

55 44 0 0 0 0.78 0 0 0 0

64 15 17 1.3 0.65 2.3 0 0 0 0

34 15 45 4.6 0 1.5 0 0 0 0

75 7 17 0 0 1 0 0 0 0

79 14 0 7.1 0 0 0 0 0 0
0

20

40

60

80

(b) RNG-KBQA on GrailQA++

Figure 2: Confusion matrices for gold Isomorphisms vs
predicted Isomorphisms on the GrailQA++ dataset for
ArcaneQA (top) and RNG-KBQA (bottom).

obtain high scores for those specific isomorphisms
and low (or zero) EM for the others. This sug-
gests that a ranking-based approach, such as RNG-
KBQA, requires prior knowledge of all possible
isomorphisms to facilitate meaningful generaliza-
tion. Nevertheless, RNG-KBQA achieves a com-
paratively higher F1 score for most isomorphisms
in GrailQA++. ArcaneQA, on the other hand, has
a higher score on Iso-5, and Iso-6 for GrailQA++.

We hypothesize that different KBQA models are
biased towards generating/retrieving logical forms
that conform to specific isomorphisms. To delve
deeper, we categorize the models mispredictions
into different isomorphism types. We obtain con-
fusion matrices for correct isomorphisms against
the predicted isomorphism type for ArcaneQA and
RNG-KBQA in Figure 2.

We observe that ArcaneQA is biased towards
generating logical forms with longer hops (See the
column corresponding to Iso-5 and Iso-1 in Figure
2a) which explains the higher EM of ArcaneQA
on GrailQA++ for Iso-5. Furthermore, since RNG-
KBQA outputs logical forms corresponding to the
first 5 isomorphisms (Iso-0,1,2,3,4), the mispredic-
tions are mostly confined to those specific forms.

Our experiments demonstrates the complemen-
tary strengths of these models such that RNG-
KBQA fares better in presence of multiple con-

904

Dimension GrailQA EAD GraphQ WebQSP CWQ All

Complexity Score −0.282∗∗∗ +0.001 +0.00 +0.00 −0.124 −0.093∗

Grammaticality +0.013 +0.011 −0.063 +0.037 +0.027 −0.023
Readability +0.000 +0.001 −0.001 −0.001 −0.001 −0.002∗∗∗

Coherence −0.069∗∗∗ −0.075∗∗∗ −0.085∗∗∗ −0.031∗∗ −0.024∗∗∗ −0.068∗∗∗

Sentence Length (#W) +0.010∗∗∗ −0.006 −0.015∗ +0.028∗ +0.006 +0.0021
Common Nouns (#N) +0.037∗∗∗ +0.000 +0.031 −0.022 +0.027∗∗∗ +0.026∗∗∗

Zero-shot Items (#Z) −0.065∗∗∗ +0.011 −0.005 −0.114∗∗∗ −0.100∗∗∗ −0.035∗∗∗

Table 5: Coefficients of the different dimensions on the F1 score obtained through linear regression and their
corresponding p-values. A positive coefficient indicates a positive correlation and vice versa. *, **, *** indicate
that the coefficient is statistically significant with a p-value ≤ 0.05, 0.01, and 0.001 respectively.

Dimension GrailQA(Dev) EAD GraphQ WebQSP CWQ

Complexity Score 0.0 (0.1) 0.2 (0.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.1)

Grammaticality 0.7 (0.5) 0.6 (0.5) 0.8 (0.4) 0.7 (0.4) 0.8 (0.4)

Readability 60.5 (26.9) 58.4 (24.5) 71.8 (25.7) 77.0 (25.3) 69.9 (22.1)

Coherence -9.8 (1.2) -9.7 (1.2) -9.4 (1.2) -9.9 (1.3) -9.3 (1.2)

Sentence Length (#W) 12.6 (3.7) 17.3 (5.2) 11.1 (3.0) 6.7 (1.6) 14.4 (3.3)

Common Nouns (#N) 4.7 (1.8) 6.6 (2.4) 3.4 (1.3) 2.2 (1.0) 5.3 (1.6)

Zero-shot items (#Z) 2.1 (0.9) 2.6 (1.3) 2.4 (1.2) 1.6 (0.7) 2.1 (0.9)

Table 6: We present the mean (std) on different linguistic dimensions on the zero-shot split of GrailQA development
set (Dev), and GrailQA++.

straints (Iso-3,4) whereas ArcaneQA is better for
multiple hops (Iso-5).
RQ3. What linguistic characteristics of a dataset
enable zero-shot generalization?

We observe from Table 2 that the constituent
datasets of GrailQA++ exhibit wide variation in
performance for both models. While complex iso-
morphisms usually have lower scores than the sim-
pler ones, there are a few exceptions . For example,
on the GraphQ split in Table3, RNG-KBQA has a
very high F1 score of 98.9 on Iso-3 as opposed to
69.9 for Iso-0. This motivates us to delve deeper
and investigate whether certain dataset characteris-
tics can explain this variation.

We inspect the following dataset characteristics
namely the sentence length (#W), number of com-
mon nouns (#N), number of zero-shot items (#Z),
readability, grammaticality, complexity, and coher-
ence. The number of common nouns (#N) serves
as a proxy for explicitness, i.e how thorough were
the annotators in framing the question. The met-
rics corresponding to readability, complexity, and
grammaticality helps to gauge the naturalness of
a question, whereas coherence is used to quantify
fluency. We describe the use of the metrics in the
Appendix. We also outline the mean and standard
deviation for each metric in Table 6.

We perform a multivariate regression analysis
over the combined dataset or “All” with F1 score
as the dependent variable and the aforementioned
linguistic factors and number of zero-shot items
as the independent variables to identify which di-
mensions are statistically significant. We carry out
the same analysis for each individual dataset. We
present the results in Table 5.

For the combined dataset, All, we observe that
all factors except grammaticality and sentence
length, are significant . We also note that com-
plexity, readability, coherence, and the number of
zero-shot items are negatively correlated with F1,
while the number of common nouns (#N) is posi-
tively correlated.

While, there are fluctuations in trends, we note
that for all the datasets, “coherence” is significantly
and negatively correlated with performance. This
observation aligns with prior findings of Linjordet
and Balog (2022) where the fluency and natural-
ness of questions degrades KBQA performance.
Moreover, the negative correlation with #Z implies
that questions with a greater proportion of unseen
classes and relations are harder for models to an-
swer. Furthermore, a positive correlation with #N
signifies that being more explicit in framing ques-
tions is beneficial for model performance. We see

905

similar trends in #N and #Z across most datasets.
One interesting observation is that our con-

structed dataset, EAD, is most similar to
GraphQuestions both in terms of the EM/F1 scores
(Table 2) as well as coefficients of different linguis-
tic dimensions (Table 5). One possible hypothesis
is that both these datasets were created in a similar
fashion.

We observe that GrailQA mostly follows a sim-
ilar trend to All since it accounts for 50% of the
entire dataset. However, the readability metric for
All is influenced by the pre-existing datasets (CWQ,
GraphQ, and WebQSP) which have comparatively
higher scores in Table 6. All in all, we note that
KBQA systems struggle with fluent and natural
questions (high coherence and readability scores).

7 Conclusion

We propose a new dataset, GrailQA++, to bench-
mark the zero-shot generalization capabilities of
KBQA models on complex questions. We char-
acterize the question complexity by introducing
the concept of graph isomorphisms that character-
izes both the dimensions of hops and constraints.
Our experiments reveal poor generalization perfor-
mance of SOTA KBQA models on our proposed
dataset even when gold entities are provided during
inference. Our analysis also reveals complemen-
tary strengths of different KBQA models on differ-
ent types of isomorphisms and how isomorphisms
can be used to categorize and group model mispre-
dictions. We also carry out extensive analysis on
our proposed dataset to identify linguistic factors,
that are correlated with non-generalizability such
as high coherence and readability. Our research
sheds light on how to design harder benchmarks to
evaluate zero-shot generalization of KBQA mod-
els.

8 Limitations

Since the major contribution of our work is the
creation of a new dataset to test the zero-shot gen-
eralization capabilities of KBQA, the limitations
of the work could be stated with regards to the
dataset creation. An important thing to note is that
unlike other benchmarks, our proposed GrailQA++
is designed solely for the purpose of evaluation.
The dataset was created keeping in mind that the
only training data one has access to is the train split
of GrailQA. This is because the test splits in pre-
existing datasets share a huge overlap with their

corresponding train splits. Consequently KBQA
models trained on any additional dataset might vio-
late the zero-shot criteria.

Additionally, we decouple the act of entity link-
ing from question answering and thus the perfor-
mance of models stated in this work are expected
to be higher than using models that do not have
access to gold entities. Furthermore, to aid ma-
chine understanding we avoid paraphrasing and try
to construct natural language queries with explicit
mention of classes and relations of interest. We
intend to address these limitations in the future, but
for the time being we wanted to control for com-
plexity using isomorphisms which motivated the
following design choice.

9 Ethics Statement

The task of KBQA involves querying a knowledge
graph to return an answer. Like most NLP re-
search, the work leverages the prowess of large
pre-trained language models like BERT, and T-5
and thus the harms associated with these models
are to be noted during deployment. Furthemore,
since KBQA involves interaction with an user to
answer queries, these models should undergo rigor-
ous model-testing before deployment.

References
Rajarshi Das, Ameya Godbole, Ankita Naik, Elliot

Tower, Manzil Zaheer, Hannaneh Hajishirzi, Robin
Jia, and Andrew Mccallum. 2022. Knowledge base
question answering by case-based reasoning over
subgraphs. In Proceedings of the 39th International
Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages
4777–4793. PMLR.

Rajarshi Das, Manzil Zaheer, Dung Thai, Ameya
Godbole, Ethan Perez, Jay-Yoon Lee, Lizhen Tan,
Lazaros Polymenakos, and Andrew McCallum. 2021.
Case-based reasoning for natural language queries
over knowledge bases.

Ritam Dutt, Kasturi Bhattacharjee, Rashmi Gangadhara-
iah, Dan Roth, and Carolyn Rose. 2022. Perkgqa:
Question answering over personalized knowledge
graphs. In Findings of the Association for Computa-
tional Linguistics: NAACL 2022, pages 253–268.

Yu Gu, Sue Kase, Michelle Vanni, Brian Sadler, Percy
Liang, Xifeng Yan, and Yu Su. 2021. Beyond iid:
three levels of generalization for question answering
on knowledge bases. In Proceedings of the Web
Conference 2021, pages 3477–3488.

Yu Gu, Vardaan Pahuja, Gong Cheng, and Yu Su.
2022. Knowledge base question answering: A

https://proceedings.mlr.press/v162/das22a.html
https://proceedings.mlr.press/v162/das22a.html
https://proceedings.mlr.press/v162/das22a.html
http://arxiv.org/abs/2104.08762
http://arxiv.org/abs/2104.08762

906

semantic parsing perspective. arXiv preprint
arXiv:2209.04994.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic pro-
gram induction and contextualized encoding for
knowledge base question answering. arXiv preprint
arXiv:2204.08109.

Xiaofeng Huang, Jixin Zhang, Zisang Xu, Lu Ou, and
Jianbin Tong. 2021. A knowledge graph based ques-
tion answering method for medical domain. PeerJ
Computer Science, 7:e667.

Longquan Jiang and Ricardo Usbeck. 2022. Knowledge
graph question answering datasets and their general-
izability: Are they enough for future research? arXiv
preprint arXiv:2205.06573.

Pei Ke, Hao Zhou, Yankai Lin, Peng Li, Jie Zhou,
Xiaoyan Zhu, and Minlie Huang. 2022. Ctrleval:
An unsupervised reference-free metric for evaluat-
ing controlled text generation. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2306–2319.

Sopan Khosla, Ritam Dutt, Vinayshekhar Bannihatti
Kumar, and Rashmi Gangadharaiah. 2023. Exploring
the reasons for non-generalizability of kbqa systems.
In The Fourth Workshop on Insights from Negative
Results in NLP, pages 88–93.

Yunshi Lan and Jing Jiang. 2020. Query graph gen-
eration for answering multi-hop complex questions
from knowledge bases. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 969–974, Online. Association for
Computational Linguistics.

Mingchen Li and Jonathan Shihao Ji. 2022. Semantic
structure based query graph prediction for question
answering over knowledge graph. arXiv preprint
arXiv:2204.10194.

Trond Linjordet and Krisztian Balog. 2022. Would you
ask it that way? measuring and improving question
naturalness for knowledge graph question answering.
arXiv preprint arXiv:2205.12768.

Ye Liu, Semih Yavuz, Rui Meng, Dragomir Radev,
Caiming Xiong, and Yingbo Zhou. 2022. Uni-
parser: Unified semantic parser for question answer-
ing on knowledge base and database. arXiv preprint
arXiv:2211.05165.

Niklas Lüdemann, Ageda Shiba, Nikolaos Thymianis,
Nicolas Heist, Christopher Ludwig, and Heiko Paul-
heim. 2020. A knowledge graph for assessing agres-
sive tax planning strategies. In International Seman-
tic Web Conference, pages 395–410. Springer.

Sumit Neelam, Udit Sharma, Hima Karanam, Shajith
Ikbal, Pavan Kapanipathi, Ibrahim Abdelaziz, Nan-
dana Mihindukulasooriya, Young-Suk Lee, Santosh
Srivastava, Cezar Pendus, et al. 2022. A benchmark

for generalizable and interpretable temporal ques-
tion answering over knowledge bases. arXiv preprint
arXiv:2201.05793.

Junwoo Park, Youngwoo Cho, Haneol Lee, Jaegul Choo,
and Edward Choi. 2020. Knowledge graph-based
question answering with electronic health records.
arXiv preprint arXiv:2010.09394.

Yiheng Shu, Zhiwei Yu, Yuhan Li, Börje F Karlsson,
Tingting Ma, Yuzhong Qu, and Chin-Yew Lin. 2022.
Tiara: Multi-grained retrieval for robust question an-
swering over large knowledge bases. arXiv preprint
arXiv:2210.12925.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gür, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for qa
evaluation. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 562–572.

Alon Talmor and Jonathan Berant. 2018. The web as
a knowledge-base for answering complex questions.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 641–651, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. arXiv preprint arXiv:2109.08678.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206, Berlin,
Germany. Association for Computational Linguis-
tics.

Donghan Yu, Sheng Zhang, Patrick Ng, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Yiqun Hu, William
Wang, Zhiguo Wang, and Bing Xiang. 2022. Decaf:
Joint decoding of answers and logical forms for ques-
tion answering over knowledge bases. arXiv preprint
arXiv:2210.00063.

https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/2020.acl-main.91
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/P16-2033

907

Supplementary Material

A Isomorphism Distribution

We show the distribution of different isomorphisms
in the training and test data of the different datasets
in Table 7.

B Analyzing Linguistic Variation

We adopt the following dimensions of Khosla et al.
(2023) on our proposed dataset.

Sentence Length (#W): We simply count the
number of words for each natural language ques-
tions across all datasets.

Common Nouns (#N): We use NLTK’s POS-
tagger to identify common nouns that correspond-
ing to “NN” and “NNS” tags.

Grammaticality & Complexity: We use the
BLIMP (Warstadt et al., 2020) and COLA corpora
(Warstadt et al., 2019) to fine-tune BERT-based
text classification model to detect whether a given
question is grammatical or not. We follow the same
to determine whether a given question is complex
or not, i.e. has several clauses.

Readability: We use the Flesch-reading score to
characterize the readability of each question in the
dataset, using the readability library in python. 4

Coherency: We quantify fluency or naturalness
of a question using coherency. We measure co-
herency using a reference free metric called CTRL-
Eval (Ke et al., 2022).

C Annotation Screenshots

We present examples of annotation screenshots for
different Isomorphisms that we considered for cu-
rating the expert-annotations from the GrailQA++
dataset. Each screenshot includes a pictoral repre-
sentation of a query graph along with additional
information, namely the S-expression or logical
form corresponding to the query graph, the con-
straints in the form of entities and literals, and the
answers. Each annotator was presented with each
of these information before constructing the natural
language query for it.

4https://pypi.org/project/
py-readability-metrics/

https://pypi.org/project/py-readability-metrics/
https://pypi.org/project/py-readability-metrics/

908

(AND radio.radio_episode_segment (AND (JOIN
(R radio.radio_subject.segments_with_this_subject) m.02j8z)
 (JOIN (R radio.radio_program_episode.segments) m.0blhhfg)))

m.02j8z --> Evolution
m.0blhhfg --> The Connection with Stephen Jay Gould
radio.radio_episode_segment --> Radio episode segment

m.0blhk6j --> Christopher Lydon with Stephen Jay Gould

S-expression

Constraints and Relations

Answer

Iso-2

(AND astronomy.type_of_planetographic_feature (AND (JOIN
(R astronomy.extraterrestrial_location.
type_of_planetographic_feature)
(JOIN (R astronomy.celestial_object.locations) m.04wv_))
(JOIN astronomy.type_of_planetographic_feature.
 planetographic_features_of_this_type m.01d80r)))

astronomy.type_of_planetographic_feature -->
Type of planetographic feature
astronomy.extraterrestrial_location --> Extraterrestrial location
m.04wv_ --> Moon
m.01d80r --> Mare Vaporum

m.03dy13 --> Lunar mare

S-expression

Constraints and Relations

Answer

Iso-3

(AND metropolitan_transit.transit_line (JOIN
(R metropolitan_transit.transit_stop.terminus_for_lines)
(JOIN (R metropolitan_transit.transit_line.stops)
(JOIN metropolitan_transit.transit_line.service_type m.0452jfk))))

m.0452jfk --> Van
metropolitan_transit.transit_line --> Transit Line
metropolitan_transit.transit_stop --> Transit Stop
metropolitan_transit.transit_line --> Transit Line

m.0452j59 --> Quartzsite Transit Service
m.0403pn4 --> Walnut Line

S-expression

Constraints and Relations

Answer

Iso-5

Figure 3: Annotation screenshots for three isomorphism categories; Iso-2 (top), Iso-3 (middle), and Iso-5 (bottom).
For each instance, we provide the S-expression, the friendly name for each entity and relation, as well as the answers.

909

Iso-Code Pictoral Desc GrailQA GraphQ WebQSP CWQ

Iso-0 30496 (68.8) 2809 (77.9) 1533 (64.4) 640 (52.2) 1750 (58.3) 288 (43.8) 0 (0.0) 0 (0.0)

Iso-1 8900 (20.1) 559 (15.5) 544 (22.8) 391 (31.9) 716 (23.8) 197 (30.0) 5869 (21.8) 360 (14.5)

Iso-2 2676 (6.0) 135 (3.7) 167 (7.0) 37 (3.0) 106 (3.5) 19 (2.9) 4046 (15.0) 311 (12.5)

Iso-3 1066 (2.4) 18 (0.5) 69 (2.9) 50 (4.1) 35 (1.2) 6 (0.9) 6496 (24.1) 755 (30.4)

Iso-4 523 (1.2) 61 (1.7) 5 (0.2) 68 (5.6) 352 (11.7) 136 (20.7) 0 (0.0) 0 (0.0)

Iso-5 540 (1.2) 22 (0.6) 48 (2.0) 33 (2.7) 1 (0.0) 0 (0.0) 3712 (13.8) 279 (11.2)

Iso-6 42 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2454 (9.1) 324 (13.0)

Iso-7 26 (0.1) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 188 (0.7) 6 (0.2)

Iso-8 18 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 644 (2.4) 76 (3.1)

Iso-9 12 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 7 (0.2) 2 (0.3) 217 (0.8) 19 (0.8)

Iso-10 15 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Iso-11 23 (0.1) 0 (0.0) 0 (0.0) 6 (0.5) 4 (0.1) 1 (0.2) 225 (0.8) 17 (0.7)

Iso-12 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 30 (1.0) 8 (1.2) 0 (0.0) 0 (0.0)

Iso-13 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 69 (0.3) 14 (0.6)

Iso-14 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 810 (3.0) 111 (4.5)

Iso-15 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 57 (0.2) 9 (0.4)

Iso-16 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1102 (4.1) 117 (4.7)

Iso-17 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 501 (1.9) 49 (2.0)

Iso-18 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 319 (1.2) 27 (1.1)

Iso-19 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 67 (0.2) 3 (0.1)

Iso-20 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 5 (0.0) 0 (0.0)

Iso-21 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 72 (0.3) 10 (0.4)

Iso-22 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 12 (0.0) 0 (0.0)

Iso-23 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 13 (0.0) 0 (0.0)

Iso-24 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 9 (0.0) 0 (0.0)

Iso-25 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0)

Iso-26 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.0) 0 (0.0)

CIso-0 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

CIso-1 0 (0.0) 0 (0.0) 15 (0.6) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

CIso-2 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 13 (0.0) 0 (0.0)

CIso-3 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 39 (0.1) 0 (0.0)

CIso-4 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.0) 0 (0.0)

Table 7: Distribution of different isomorphisms across the training and test splits for KBQA datasets. We include
only instances in the test split that conform with the zero-shot criteria of GrailQA.

