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Abstract
Causality expresses the relation between two ar-
guments, one of which represents the cause and
the other the effect (or consequence). Causal
relations are fundamental to human decision
making and reasoning, and extracting them
from natural language texts is crucial for build-
ing effective natural language understanding
models. However, the scarcity of annotated
corpora for causal relations poses a challenge
in the development of such tools. Thus, we
created Resource for Extracting Cause, Effect,
and Signal Spans (RECESS), a comprehensive
corpus annotated for causality at different lev-
els, including Cause, Effect, and Signal spans.
The corpus contains 3,767 sentences, of which,
1,982 are causal sentences that contain a to-
tal of 2,754 causal relations. We report base-
line experiments on two natural language tasks
(Causal Sentence Classification, and Cause-
Effect-Signal Span Detection), and establish
initial benchmarks for future work. We conduct
an in-depth analysis of the corpus and the prop-
erties of causal relations in text. RECESS is a
valuable resource for developing and evaluating
causal relation extraction models, benefiting re-
searchers working on topics from information
retrieval to natural language understanding and
inference.

1 Introduction

A causal relation encodes a semantic relationship
between two arguments, where one is the Cause
argument, and the other is the Effect argument, in
which the occurrence of the Cause leads to the oc-
currence of the Effect (Barik et al., 2016). A Cause
can be a reason, explanation or justification that

leads to an Effect (Webber et al., 2019). Causal
relation extraction is an important information re-
trieval (IR) and natural language processing (NLP)
task. Research has shown the usefulness of ex-
tracting causal relations in text for applications like
summarization and next event prediction (Radin-
sky et al., 2012; Radinsky and Horvitz, 2013; Izumi
et al., 2021; Hashimoto et al., 2014), question an-
swering (Dalal et al., 2021; Hassanzadeh et al.,
2019; Stasaski et al., 2021), inference and under-
standing (Jo et al., 2021; Dunietz et al., 2020). For
example, Izumi et al. (2021) built a prototype using
a database of extracted causal relations from finan-
cial documents such that users can search for his-
torical causal chains to anticipate upcoming events.
Despite the benefits of causal relation extraction,
answering why something has happened is not a
trivial task for multiple reasons, ranging from the
fact that a clear definition is needed of what the op-
timal answer should contain (Dunietz et al., 2020),
to the lack of explicit evidence in a text due to a
reference to commonsense knowledge. Another
difficulty arises because causal relationships may
be general or specific (Mackie, 1980; Hitchcock,
1995), and so it is crucial to identify in what con-
text the causal relation occurs. The importance of
causal relations to humans, and the difficulty in un-
derstanding them, is the main drive of our work to
annotate a dedicated dataset for causal text mining.
By providing a comprehensive annotated corpus of
causal relations, we aim to facilitate the develop-
ment of more effective causal relation extraction
models.

In this paper, we present a Resource for Extract-
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Sentence Label Span Annotations
The bombing created
panic among villagers .

Causal <cause>The bombing</cause> <effect><signal>created</signal> panic
among villagers</effect> .

Lack of medical services
because of the strike left
several patients in agony .

Causal <effect>Lack of medical services</effect> <signal>because of</signal>
<cause>the strike</cause> left several patients in agony .
<cause>Lack of medical services</cause> because of the strike <ef
fect><signal>left</signal> several patients in agony</effect> .

KSRTC buses were at-
tacked at ten places .

Non-
causal

-

Table 1: Annotating sentences with binary labels, Causal or Non-causal, and annotating Causal sentences with
Cause, Effect and Signal spans.

ing Cause, Effect, and Signal Spans (RECESS).1

The most relevant contribution is the fine-grained
annotation of Cause, Effect and Signal spans in
causal sentences. Some examples are shown in Ta-
ble 1. These richer annotations allow us to perform
investigations into properties of causal relations in
text (See Section 6 for detais). Additionally, we
create annotation guidelines and evaluation rules
that can accommodate multiple causal relations in
one sequence, so as to allow the study of causal
chains.

We provide competitive baseline scores based
on state-of-the-art models for two NLP tasks:
(1) Causal Sentence Classification and (2) Cause-
Effect-Signal Span Detection. With a total of
2,574 causal relations, RECESS is larger than other
causal text mining benchmarks: CausalTimeBank
(CTB) (Mirza et al., 2014) contains 318 causal pairs
and EventStoryLine (ESL) (Caselli and Vossen,
2017) contains 1,770 causal pairs. In our experi-
ments, we demonstrate that RECESS’ data size is
sufficient to train models that return reasonable F1
scores for both tasks. We also propose a rule-based
scheme to convert RECESS into SQuAD format,
and demonstrate its relevance to Why-Questions.
To promote research on causal text mining, we
hosted a shared task using RECESS.2

The rest of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 outlines
the creation process of RECESS while Section 4
analyzes the properties of the final dataset. Sec-
tion 5 presents our experiments, models, and their
evaluation against RECESS. Section 6 investigates
some research questions about causal relations in
text. Finally, Section 7 concludes this paper.

1Our repository is available at: https://github.com/
tanfiona/CausalNewsCorpus. RECESS is equivalent to
CNC-V2.

2At the point of this paper’s submission, the Event Causal-
ity Identification Shared Task (Tan et al., 2023) was in
progress.

2 Related Work

Extraction of causality from text is a non-trivial
task since the semantic understanding of the con-
text and world knowledge is often necessary. Auto-
matic extraction of causal knowledge from text has
been of interest to many computational linguistic
researchers (Blanco et al., 2008; Do et al., 2011;
Kontos and Sidiropoulou, 1991; Riaz and Girju,
2013). There have been corpora that have been
annotated for causal events, like the CTB (Mirza
et al., 2014), CaTeRS (Mostafazadeh et al., 2016)
and ESL (Caselli and Vossen, 2017). However,
they only include annotations of event root words
and, thus, do not take into account contexts relevant
to the Cause and Effect events. Furthermore, CTB
only annotates explicit causal relations. On the
other hand, the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008; Webber et al., 2019; Prasad
et al., 2006) includes many causal relations but only
between clauses. Hence, PDTB does not capture re-
lationships of more fine-grained arguments within
clauses. Our approach is mostly inspired by the BE-
CauSE 2.0 corpus (Dunietz et al., 2017) to include
more varied constructions of causality. However,
BECauSE 2.0 only contains 1,803 causal relations,
of which, more than half rely on resources that
require paid access.

To address the lack of publicly available corpora
suitable for causal text mining, the Causal News
Corpus (CNC) (Tan et al., 2022b) was created. Sub-
sequently, the authors also annotated a small subset
of their data with Cause-Effect-Signal spans for
the Event Causality Identification shared task (Tan
et al., 2022a). However, their work was incom-
plete: only 264 sentences were annotated from
CNC, and the guidelines, descriptions and analyses
were brief. In RECESS, we annotated all of CNC’s
Causal sentences. Having a completed dataset al-
lows us to provide deeper analyses on the CNC

https://github.com/tanfiona/CausalNewsCorpus
https://github.com/tanfiona/CausalNewsCorpus
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data which previously was not possible, especially
about the properties of causal relationships in text,
as discussed in Section 6. Furthermore, we also
revised the binary labels of sentences for which
we did not find causal relations during the span
annotation phase, and performed sentence splitting
for examples found to contain multiple sentences.
Therefore, on top of having more fine-grained span
annotations, RECESS is also a larger and cleaner
corpus than CNC for binary causal relation classifi-
cation.

3 The RECESS Corpus

In RECESS, we annotated Causal sentences with
Cause, Effect and Signal spans, where available.

3.1 Defining Causal Relations

A sentence that contains at least one Cause and
Effect pair is said to be Causal. The causal relation
must be expressed in the target sentence, regardless
of its truthfulness in the world.

To define causality more concretely, we used
the five tests for causality from Grivaz (2010) to
logically verify the Cause and Effect spans, in a
similar way to previous works (Dunietz et al., 2017;
Tan et al., 2022b,a). The tests are described as
follows:

1. Why: The event pair is not causal if the reader
cannot construct a “Why" question based on
the Effect.

2. Temporal order: The event pair is not causal
if the Cause does not precede the Effect in
terms of time.

3. Counterfactual: The event pair is not causal
if the Effect is equally likely to occur or not
occur without the Cause.

4. Ontological asymmetry: The event pair is
not causal if the reader can swap the Cause
and Effect spans.

5. Linguistic: The event pair is likely to be
causal if it can be rephrased into “X causes Y"
or “Because of X, Y."

All five checks must be met in order for a pair of
events to be considered Causal. Annotators used
this framework to propose annotations, and Table
2 demonstrates this in application.

3.2 Data Source

RECESS builds on the CNC (Tan et al., 2022b),
which is based on the GLOCON dataset of an
Event Extraction Shared Task at CASE2021 (Hür-
riyetoğlu et al., 2021). CNC contains 869 news
documents and 3,559 English sentences. The news
were reported from the year 2000 to the beginning
of 2018 (Hürriyetoglu et al., 2021). After post-
curation and cleaning (discussed later), the final
dataset comprises of 3,767 sentences. We used the
same train-validation-test splits as CNC.

3.3 Annotation Guidelines

We define a Cause or Effect span as a continuous
set of words sufficient for interpreting the causal
relation. This means that any context modifying
or describing the argument relevant to the causal
relation is included. Each Cause or Effect span
must contain an event, where an event is defined
by a situation that happens or occurs, or a predi-
cate that describes a state or circumstance in which
something obtains or holds true (Pustejovsky et al.,
2003).

Signal spans refer to words that explicitly re-
late the Cause and the Effect argument. Signals
can occur in any position in a sentence relative
to the Cause and Effect arguments. Signals can
be comprised of multiple words (E.g. “so in-
tense that"), and can also be discontinuous (E.g.

“if...then”), again, consistent with the treatment of
connectives by BECAUSE (Dunietz et al., 2017)
and PDTB (Prasad et al., 2008; Webber et al., 2019;
Prasad et al., 2006). Signals are usually classified
into three types: explicit (relations are signaled by
discourse connectives), alternative lexicalizations
(AltLex) (relations are signaled by a different lexi-
cal form), and implicit (no connectives) (Webber
et al., 2019; Knaebel and Stede, 2022; Hidey and
McKeown, 2016).

In the Appendix A.1, we highlight the exclusion
rules, and on how we annotated multiple causal
relations. For detailed explanation and examples
of the annotation guidelines, please refer to the
Annotation Manual available in our repository.

3.4 Annotation and Curation Process

Annotation and curation were conducted using We-
bAnno (Eckart de Castilho et al., 2016), and post-
processed with Python. Appendix A.2 provides a
description and screenshots of this tool.

Five annotators, from different academic back-
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Sentence
Causality Tests

Label
Why? Temporal

Order
Counter-
fact.

Onto.
Asym.

Linguis-
tic

<cause>This strike</cause> <signal>is causing</signal> <ef
fect>huge disruptions</effect>. . .

✓ ✓ ✓ ✓ ✓ Causal

<potential-effect>Some protesters attacked
me</potential-effect> when <potential-cause>I was
clicking pictures<potential-cause>. . .

✗ ✓ ✗ ✓ ✓ Non-
causal

Table 2: Examples illustrating how to use the Five Tests for Causality to check span annotations.

grounds, were involved in the span annotations.
Four curators, comprising of a linguistics under-
graduate, linguistics graduate, NLP PhD student,
and linguistics professor, were also involved. After
each annotation round, a curator considered the
spans proposed by all annotators and decided on
the final annotations. For some subsets, a second
curator looked through these final annotations and
discussed disagreements. At the end of every anno-
tation round, the final span annotations were made
available to all annotators and curators to review
and dispute.

Curators also helped to revise annotations from
earlier rounds to adhere to the latest guidelines.
Some examples wrongly contained multiple sen-
tences due to the reliance on automatic splitting
of sentences from the GLOCON dataset. Thus,
curators also helped to mark locations to split up
such instances into single sentences. For sentences
where no causal relations were found, we revised
the sequence classification label to Non-causal in-
stead.

3.5 Inter-annotator Agreement

Given two proposed annotations for a causal rela-
tion, we first computed the Krippendorf’s Alpha (K-
Alpha) (Krippendorff, 2011)3 scores for the Cause,
Effect and Signal spans independently. Given a
sentence of n/2 words, we revised the span annota-
tions into a list of 0s and 1s, where 1 represents that
the word is part of the identified span, 0 otherwise.
n0 is the number of words that are not tagged as
part of the span in the both annotations, while n1 is
the opposite. This means that n = n0 + n1 is the
total number of words from both annotations. o01
is the number of words where the two annotators
disagree. K-Alpha is then represented by:

αbinary = 1− (n− 1) · o01
n0 · n1

(1)

3Code to calculate K-Alpha across multiple annotators:
https://github.com/emerging-welfare/kAlpha.

Stat. Label Train Dev Test Total
#
Sent-
ences

Causal 1624 185 173 1982
Non-causal 1451 155 179 1785
Total 3075 340 352 3767

Avg.
#
words

Causal 33.44 34.41 35.93 33.75
Non-causal 26.69 26.85 28.67 26.90
Total 30.25 30.96 32.24 30.50

Table 3: Sequence Labels for Event Sentences Summary
Statistics.

Statistic Train Dev Test Total
# Sentences 1624 185 173 1982
# Relations 2257 249 248 2754
Avg. rels/sent 1.39 1.35 1.43 1.39
Avg. # words 33.44 34.41 35.93 33.75

Cause 11.56 12.20 12.96 11.74
Effect 10.71 10.18 11.54 10.74
Signal 1.45 1.53 1.46 1.46

Avg # Sig./rel 0.70 0.64 0.79 0.70
Prop. of rels w/ Sig. 0.68 0.63 0.76 0.69

Table 4: Span Annotations for Causal Sentences Sum-
mary Statistics.

Since annotators can propose multiple causal
relations per example, we considered all possible
combination to match the proposed relations, and
kept the match that returned the highest possible
sum of Exact Match (EM), One-Side Bound (OSB)
and Token Overlap (TO) scores. The calculations
for EM, OSB and TO are detailed in Appendix
Section A.3.

To obtain the K-Alpha score per example, we
weighted the score of each span by its true length
(i.e. number of words). Essentially, the K-Alpha
score weights each true word equally.

Finally, we aggregated the scores across exam-
ples to obtain the dataset level scores. Again, each
example’s score was weighted by its true span
lengths. Overall, the inter-annotator agreement
score (based on K-Alpha (Krippendorff, 2011)) is
42.66%, 44.36% and 28.45% for Cause, Effect and
Signal spans respectively, and 42.96% overall.

https://github.com/emerging-welfare/kAlpha
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Topic Type Example Annotated Sentence
Arg.
Order
in Text

Cause before Ef-
fect

<signal>Since</signal> <cause>the work on the bridge was progressing at a snail ‘ s
pace</cause> , <effect>the locals had begun an agitation since June 16</effect> .

Effect before
Cause

The R82 , <effect>an arterial road linking Vereeniging to Johannesburg remains closed</ef
fect> <signal>due to</signal> <cause>the public unrest</cause> .

No.
and
Flow of
Events

Single Event <signal>Since</signal> <cause>the work on the bridge was progressing at a snail ‘ s
pace</cause> , <effect>the locals had begun an agitation since June 16</effect> .

Concurrent
Events

<cause>Police opened fire</cause> , <effect><signal>killing</signal> 34 striking
workers and <signal>wounding</signal> 78</effect> ...

Consecutive
Events

<effect>Lack of medical services</effect> <signal>because of</signal> <cause>the
strike</cause> left several patients in agony .
<cause>Lack of medical services</cause> because of the strike <effect><sig
nal>left</signal> several patients in agony</effect> .

Signal
Explicit The R82 , <effect>an arterial road linking Vereeniging to Johannesburg remains closed</ef

fect> <signal>due to</signal> <cause>the public unrest</cause> .
AltLex <cause><signal>Irked over</signal> the arrests</cause> , <effect>the protestors

staged dharna</effect> .
Implicit However, <cause>trade unions refused to accept it</cause> and <signal>(Im-

plicit=thus)</signal> <effect>continued their strike</effect>.

Sense

Cause <effect>Spokesman Keith Khoza said they had decided to March to Prime Media</effect>
<signal>because</signal> <cause>the cartoon had raised various concerns</cause>.

Purpose <effect>The protesters planted the saplings in potholes</effect> <cause><sig
nal>to</signal> draw the attention of the officials to the poor condition of the
road</cause> .

Condition <signal>If</signal> <cause>it does not act</cause>, <effect>the protests will con-
tinue</effect> .

NegCondition
or NegResult

<effect>We will continue our strike</effect> <signal>till</signal> <cause>we get an
assurance from the Government</cause> .

Table 5: Examples from RECESS.

Rank Signal Count Rank Signal Count
1 to 364 11 because 20
2 for 170 12 in protest 19
3 as 141 13 in connection with 17
4 demanding 111 14 in support of 14
5 following 78 15 seeking 12
6 by 64 16 even as 12
7 over 64 17 protesting 10
8 if 46 18 despite 10
9 with 44 19 in the wake of 10
10 due to 25 20 led to 10

Table 6: Top 20 Signals in RECESS.

4 Dataset Analysis

Table 3 and 4 present summary statistics of RE-
CESS. RECESS contains 1,982 Causal and 1,785
Non-causal sentences. In total, the Causal sen-
tences correspond to 2,754 causal relations. This
means that each sentence has an average number of
1.39 causal relations. The distribution of the num-
ber of causal relations in the corpus is as follows:
1,354 sentences have one causal relation, while 498,
118, 10, and 2 sentences have 2, 3, 4 and 5 causal
relations, respectively.

In RECESS, Causal sentences are longer than
Non-causal sentences in terms of word counts.
More specifically, Causal sentences have an av-
erage length of 33.75 words while Non-causal sen-

tences have an average length of 26.90 words. Fi-
nally, since Signals can be implicit, the average
number of relations that have Signals marked is
less than one, at 0.69.

Table 5 presents some annotated sentences while
Table 6 highlights the 20 most common Signals
from RECESS. The annotation guidelines support
a wide array of linguistic, syntactic and semantic
structures in terms of (1) argument order in text,
(2) number and flow of events, (3) signal type, and
(4) sense type. Therefore, RECESS is a useful,
diverse corpus for various types of linguistic and
NLP research.

5 Experiments

In this Section, we demonstrate use-cases of RE-
CESS for NLP research.

5.1 Tasks

RECESS is suitable for Event Causality Identifica-
tion tasks, which aim to design models that tackle
problems such as:

1. Causal Sentence Classification (CSC): Does
an event sentence contain any cause-effect
meaning?
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2. Cause-Effect-Signal Span Detection (CES-
SD): Which spans correspond to cause, effect
or signal per causal sentence?

5.2 Models

For the CSC task, we replicate CNC’s BERT bench-
mark (Tan et al., 2022b). The model fine-tunes
the pre-trained (PTM) BERT model (Devlin et al.,
2019) for sequence classification. After BERT en-
codes sentences into word embeddings, the hid-
den state corresponding to the [CLS] token is
fed through a binary classification head to obtain
the predicted logits. We experimented with both
bert-base-cased and bert-large-cased.

For the CES-SD task, we replicate the winning
submission (Chen et al., 2022)4 for the CES-SD
Event Causality Identification Shared Task (Tan
et al., 2022a). Chen et al. framed the challenge as a
reading comprehension task that aims to predict the
start and end token positions of each Cause, Effect,
and Signal span. On top of this baseline, they devel-
oped three components to further improve model
performance: Beam-search span selector (BSS),
signal classifier (SC), and data augmentation (DA).
We incrementally incorporated these components
on top of Baseline, resulting in the three addi-
tional models investigated: Baseline+BSS, Base-
line+BSS+SC and Baseline+BSS+SC+DA. All
models fine-tune albert-xxlarge-v2 (Lan et al.,
2019). We describe the model and components in
detail in the Appendix B. Model hyperparameters
are available in the Appendix C.

5.3 Experimental Setup

We trained each model on the training set and used
the development set to select the best model with
the highest F1 score at the end of each epoch. Sub-
sequently, this best model was used to predict the
test set.

5.4 Evaluation Metrics

For CSC, we evaluate using Accuracy (Acc), stan-
dard Precision (P), Recall (R) and F1 per class, and
Matthews Correlation Coefficient (MCC).

For CES-SD, we evaluate using token-wise
Macro Precision (P), Recall (R) and F1 metrics.
We used the FairEval implementation5 of seqeval
(Nakayama, 2018; Ramshaw and Marcus, 1995)

4https://github.com/Gzhang-umich/
1CademyTeamOfCASE

5https://huggingface.co/spaces/hpi-dhc/
FairEval

Eval PTM R P F1 Acc MCC

Dev
base 88.65 84.10 86.32 84.71 69.13
large 84.86 85.79 85.33 84.12 68.02

Test
base 89.02 75.86 81.91 80.68 62.37
large 88.44 78.46 83.15 82.39 65.35

Table 7: Performance Metrics for Causal Sentence Clas-
sification. All scores are reported in percentages (%).
Highest score per dataset and metric is in bold.

that prevents double penalties of close-to-correct
predictions (Ortmann, 2022). We evaluate at the
relation level: each relation contributed equally to
the final score. For sentences with multiple causal
relations, as in Tan et al. (2022a), we returned the
highest F1 score out of every possible way to match
the predicted and true causal relations to each other.
We only compare predictions with the number of
true causal relations available. Conversely, any
missing predictions were interpreted to predict the
Other (O) label for all tokens.

5.5 Baseline Scores

From Table 7, for the CSC task, the base BERT
variant achieved an F1 score of 86.32% for the de-
velopment set. Although the large BERT variant
performed worse than base for the development
set, it performed much better than base for the test
set, achieving an F1 score of 83.15%.

From Table 8, for the CES-SD task, the best
model is Baseline+BSS+SC, with a score of
70.51% for the development set and 67.69% for
the test set. For Chen et al. (2022), Base-
line+BSS+SC+DA was the best performing model.
DA might have been useful for them because their
training data size was small, with only 264 sen-
tences. For us, incorporating artificially augmented
data did not improve performance. This might be
because there is limited linguistic diversity in the
augmented data, since the DA approach fixed the
signals and only paraphrased the Cause and Effect
arguments. Furthermore, upon investigation, many
of the sentences are grammatically unsound. For
more analyses about the Subtask 2 model variants,
please refer to Appendix B.

All in all, we report scores that will serve as
initial baselines for future researchers to beat. Cou-
pled with strong CSC and CES-SD models, re-
searchers can perform end-to-end extraction of
causal relations from text.

https://github.com/Gzhang-umich/1CademyTeamOfCASE
https://github.com/Gzhang-umich/1CademyTeamOfCASE
https://huggingface.co/spaces/hpi-dhc/FairEval
https://huggingface.co/spaces/hpi-dhc/FairEval
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Eval Model
Overall

R P F1

Dev

Baseline 66.32 59.48 62.71
+BSS 71.39 64.43 67.73
+BSS+SC 71.22 69.81 70.51
+BSS+SC+DA 70.89 69.25 70.06

Test

Baseline 61.49 61.89 61.69
+BSS 67.30 66.98 67.14
+BSS+SC 66.56 68.86 67.69
+BSS+SC+DA 64.43 67.56 65.96

Table 8: Performance Metrics for Cause-Effect-Signal
Span Detection. All scores are reported in percentages
(%). Highest score per dataset and metric is in bold.
Detailed results available at Appendix Table 12.

6 Investigations

In this section, we explore research questions about
causal relations in text using RECESS’ training and
development set. We intend to keep the test set as
an unseen, hold-out set to be used for future shared
tasks, and thus, do not perform analyses on it.

6.1 When is causality easy/hard to detect?
First, we investigate the identification of causality
in text by humans. We categorize sentence classifi-
cation instances into two types: (1) Annotators all
agree with one another, and (2) At least one anno-
tator disagrees with another. From Figure 1a, it is
more likely for annotators to all agree that a sen-
tence is Causal compared to when it is Non-causal.
The average observed agreement score of Causal
sentences is 87.10%, but only 78.23% for Non-
causal sentences. From Figure 1b, causal relations
are easier for humans to detect if there are causal
markers present in the text. For Causal examples
with explicit or AltLex signals, annotators fully
agree with each other around 69% of the time. For
implicit Causal examples, annotators fully agree
with each other less frequently – around 55% of
the time.

Next, we perform error analysis on the base
CSC model. For the Causal examples of the de-
velopment set, 122 had explicit/AltLex markers
while 63 were implicitly expressed. The model
failed to identify 10/122 ≈ 8% explicit/AltLex
and 11/63 ≈ 17% implicit examples. Similar to
humans, the model finds it harder to identify causal-
ity if relations are expressed implicitly.

We analyse CES-SD using the best model, Base-
line+BSS+SC. While it managed to score 70.51%
for Overall F1, when we focus only on exam-

ples with multiple causal relations, the F1 falls
to 53.97%. This is because the current model is
not properly designed to detect multiple causal re-
lations in a sentence. The models by (Chen et al.,
2022) can only predict one Signal span per causal
relation, and the multiple Cause and Effect spans
obtained from BSS are still with reference to the
same Signal. Therefore, the variation in Cause and
Effect arises from having only slightly different
word boundaries, instead of having different se-
mantic arguments. We hope future researchers will
improve on this aspect.

Out of the 249 causal relations in the develop-
ment set, the model managed to predict 98 se-
quences exactly as the gold label. Of these, 62
contain explicit/AltLex markers, while the remain-
ing 36 were implicitly expressed. Consistent with
earlier findings, it is easier for models to detect
causality if explicit/AltLex markers are present.

Models perform well for cases where the Cause
and Effect spans are located near to each other. Out
of the 62 explicit/AltLex marked examples, 35 had
their causal signals located between the Cause and
Effect arguments. The remaining examples either
had the arguments following one another, if not,
separated only by a comma. Likewise, for the 36
implicitly expressed examples, 26 had one-worded
discourse markers lying between the Cause and
Effect spans. The markers are non-causal ones,
like “after”, “when” and “in”. Again, the remain-
ing 10 had sequential arguments, or at most, had
arguments separated by a comma.

6.2 Do signals matter?
In the investigations above, the presence of causal
signals helps indicate the presence of causality. In
this subsection, we perform a qualitative study by
using the CSC and CES-SD models to predict on
six examples in Table 9. We notice that the models
are very sensitive to explicit causal markers (E.g.

“because”) and non-causal markers (E.g. “but”) to
the extent where the content of the sentence no
longer matters. For the examples without linguistic
markers (E.g. S/N 2 and 3), the content of the
sentence matters.

6.3 How does the presence of causality
correlate with the number of events?

The Event Extraction Shared Task (Hürriyetoğlu
et al., 2021) provides annotations of event spans
with seven labels: <target>, <place>, <etime>,
<organizer>, <participant>, <trigger> and
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S/N Text
Predictions

Remarks
Label Span

1 The protest was becoming overheated,
thus, the police rushed down onsite.

Causal <cause>The protest was becoming over-
heated,</cause><signal>thus,</signal><ef
fect>the police rushed down onsite.</effect>

Explicit causal

2 The protest was becoming overheated,
the police rushed down onsite.

Causal <cause>The protest was becoming over-
heated,</cause><effect>the police rushed down
onsite.</effect>

Implicit causal

3 The protest was becoming overheated,
the police said they were aware.

Non-
causal

- Non-causal

4 The protest was becoming overheated,
but the police rushed down onsite.

Non-
causal

- Illogical - With explicit
non-causal marker “but”

5 The protest was becoming overheated,
thus, the protestors were calm.

Causal <cause>The protest was becoming over-
heated,</cause><signal>thus,</signal><ef
fect>the protestors were calm.</effect>

Illogical - With explicit
causal marker “thus”

6 Because fire extinguishes water, pigs
can fly.

Causal <signal>Because</signal> <cause>fire extinguishes
water,</cause><effect>pigs can fly.</effect>

Illogical - With explicit
causal marker “because”

Table 9: Ablation study: End-to-end predictions on example sentences. "Illogical” reflects Cause and Effect pairs
that are not realistic according to world knowledge and commonsense.

(a) No. of causal relations. (b) Signal type. (c) No. of events.

Figure 1: Count plots of train + development set.

SQuAD Dev
All (n=10,655) Why (n=335)Model
EM F1 EM F1

No Pre-training 66.11 72.02 53.43 63.21
Pre-training w/ RECESS 66.59 72.51 55.52 65.16

Table 10: QA Performance.

<fname>. An example event sentence annota-
tion is: “<target>KSRTC</target> buses were
<trigger>attacked</trigger> at ten places .”
Only events under the scope of contentious pol-
itics were annotated. In other words, they do not
follow the definition of events that we use in Sec-
tion 3.3 based on Pustejovsky et al.. The scripts to
add the event annotations to RECESS’ examples
are provided in our repository.

Based on Figure 1c, sentences are more likely to
be Causal if they contain more contentious events.
On average, Causal sentences contain 4.58 con-
tentious events while Non-causal sentences contain
3.96 contentious events. Since Causal sentences
have to contain at least a pair of Cause and Effect
event, while Non-causal sentences have no such
restriction, it makes sense that Causal sentences,
on average, contain more events. This could also
explain why Causal sentences tend to be longer in

Table 3, since Causal sentences need to describe
at least two events. However, better event anno-
tations are needed for better analyses of causality
correlating with events.

6.4 How are causal relations related to causal
question answering (QA)?

In extractive QA, given a question and the context
document, the aim is to find the words that form
the answer. SQuAD (Rajpurkar et al., 2016, 2018)
is a popular benchmark for QA. A natural way to
convert causal relations to suit QA is to form a
question using the Cause or Effect, then create the
answer using the corresponding argument. This
can be done by using templates, such as asking

“Why did <effect>?” and using the Cause span
as the answer. Each causal relation in the train set
returned two QA examples, created by randomly
selecting two out of six templates. Therefore, we
obtained 4,514 Why-Questions. The templates and
conversion scripts are available in our repository.

Our baseline model is the t5-small (Raffel
et al., 2020) model trained on the train set and
evaluated on the development set of SQuAD. The
improved version first pre-trains on our Why-
questions before following the same training sched-
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ule. In evaluation, we identify 335 questions that
contain the words ‘reason’, ‘why’, ‘cause’, or ‘re-
sulted’ and refer to them as Why-Questions. The
results are available in Table 10. While the original
model achieved 53.42 EM and 63.21 F1, the model
with additional pre-training on RECESS achieved
a superior score of 55.52 EM and 65.61 F1 for
Why-Questions. This exercise shows that RECESS
has potential applications for QA too, especially
surrounding Why-Questions.

6.5 How are causal relations related to
natural language inference (NLI)?

Benchmarks like SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018) and ANLI (Nie et al.,
2020) classify a premise and hypothesis to one of
the three class labels: neutral, entailment or
contradict. One way of using RECESS for an
NLI task is to rephrase either the Cause or Effect
span as the premise, while the corresponding span
will be the hypothesis. The label will certainly not
be contradict. Typically, NLI treats causal re-
lations as neutral events. For example, in “The
farmworkers’ demands were not met. The farm-
workers’ strike resumed on Tuesday.”, a competi-
tive model by Nie et al.6 classifies this as neutral
with 99.6% probability. Many possible outcomes
can arise when farmworkers’ demands were not
met. For example, they could have initiated an
online campaign, or stormed the capital. Since
entailment requires that the hypothesis is “ def-
initely correct about the situation or event” in the
premise (Williams et al., 2018), most of the time,
causal relations are considered neutral in NLI.

7 Conclusion

Our paper introduces RECESS, a corpus consisting
of 3,767 sentences, among which 1,982 are causal
sentences containing a total of 2,754 causal rela-
tions. We detail the guidelines and process we used
to annotate the Cause, Effect, and Signal spans,
covering a broad range of linguistic, semantic, and
syntactic structures. Additionally, we benchmarked
our baseline models, which achieved competitive
scores, with F1 scores of 83.15% and 67.69% on
test sets for the CSC and CES-SD tasks, respec-
tively. Our work also investigated causal relations
in text and explored the relevance of causal rela-
tions to QA and NLI applications.

6https://huggingface.co/ynie/
roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli

RECESS is an large data that offers opportuni-
ties to design specialized models that can extract
multiple causal relations. To encourage research
in this direction, we are organizing a shared task
using RECESS.

Finally, RECESS is a valuable resource for
studying NLP topics related to storyline and causal
event chains. Researchers can use the contentious
political event span annotations marked by earlier
works (Hürriyetoğlu et al., 2021) to investigate
events in the text. With its extensive coverage of
causal relations, we also demonstrated that RE-
CESS can be adapted into a causal QA dataset.
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A Dataset

A.1 Guidelines
The Annotation Manual provides definitions, exam-
ples, and exclusions in better detail. This Section
merely highlights important elements of the Man-
ual and does not serve to be an exhaustive outline
of the Manual.

A.1.1 Exclusions
Sentences described by any of the following condi-
tions were excluded from RECESS:

1. No causal relation: Although all examples
faced during annotation were already filtered
to contain causal relations, this exclusion
condition holds as a general rule.

2. Correlation relation: Some relationship ex-
ists, but it is unclear what the direction of
the relationship is. (E.g. “Smoking is linked
to cancer.”).

3. The Cause or Effect span does not contain
an event. (E.g. “John caused the fire.”)

4. The Cause or Effect span requires discontin-
uous spans.

5. The Cause and Effect spans must overlap.

A.1.2 Multi-relation Annotation
In RECESS, each sentence may have multiple
causal relations, which will all be annotated. The
annotation tool and evaluation scheme were de-
signed to support such scenarios.

A consequence of annotating multiple causal re-
lations per sentence is that we are able to detect
consecutive events, if any. In cases where a span
could be split into subparts that describe a series
of Cause and Effect events, annotators were in-
structed to annotate them as separate spans. This
is because we are interested to recreate a storyline,
and such examples are important to test if mod-
els can truly understand narratives, and identify a
series of events where one event leads to another.

In Example 1., there is a series of causal
events, where → represents causation: “an alter-
cation” <EventA> → “a youth . . . was allegedly
severely injured in a thrashing ..." <EventB> →
“the clashes erupted ” <EventC>. Instead of com-
bining <EventA> and <EventB> into a single Cause
span for 1.(a), we asked annotators to mark only
the most recent event as the Cause span.

1. (a) <effect>The clashes erupted</effect>
after <cause>a youth belonging to a mi-
nority Muslim sect was allegedly severely
injured in a thrashing by a youth from the
majority sect</cause> following an alter-
cation.

(b) The clashes erupted after <effect>a
youth belonging to a minority Muslim
sect was allegedly severely injured in a
thrashing by a youth from the majority
sect</effect> <signal>following</sig
nal> <cause>an altercation</cause>.

One interesting observation is that for
consecutive events where one causes the
other (E.g. <EventA> → <EventB> and
<EventB> → <EventC>), it is also possible
to claim that the union of two previous events
(<EventA>+<EventB>) causes the third event:
<EventA>+<EventB> → <EventC>. This is
consistent with Lewis (Lewis, 1974)’s claims
that causation is a transitive relation. Take for
example the second sentence shown in Table
1: If asked “Why were several patients left in
agony EventA?”, notice that we can answer this
question with either “Because of the lack of
medical services <EventB>." or “Because of the
lack of medical services <EventB> because of the
strike <EventA>.". A similar exercise can be done
for Example 1. by asking “Why did the clashes
erupt?". Annotators used this transitive property
to check if spans contained sub-events that can be
broken down to form consecutive causal events.

A.2 Annotation Tool
Annotation and curation were conducted on We-
bAnno (Eckart de Castilho et al., 2016).

Figure 2 shows the annotation interface used by
annotators. On WebAnno, annotators first high-
lighted the words corresponding to a span, then
indicated if the span is a Cause, Effect or Signal.
Subsequently, to reflect the causal relations, anno-
tators linked the spans together by directing the
Cause to its Effect span, and if present, the Signal
to the same Effect span. Annotations were then
downloaded as JSON files and automatically vali-
dated for avoidable human errors, such as invalid
links (E.g. An Effect points to another Effect) or
missing links (E.g. An Effect has no Cause). If
such errors were present, an error report was pro-
duced and sent to annotators to consider correcting
their annotations. Finally, the curator assesses all
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Figure 2: Screenshot of the annotation page used to mark Cause-Effect-Signal spans.

Figure 3: Screenshot of the curation page used to mark
Cause-Effect-Signal spans.

the annotations proposed and makes the final selec-
tion.

Figure 3 shows the curation interface used by
curators. Curators have access to all annotators’
annotations, and decide the final annotations.

A.3 Inter-annotator Agreement

Calculating Agreement Scores Given two pro-
posed annotations for a causal relation, we first
computed agreement scores for the Cause, Effect
and Signal spans individually. On top of the Krip-
pendorf’s Alpha (K-Alpha) (Krippendorff, 2011)
score described in Section 3.5, we also computed
three other agreement metrics as follows:

• Exact Match (EM): 1 if two annotations are
exactly the same, 0 otherwise

• One-Side Bound (OSB): 1 if either boundary
of the span is the same between two annota-
tions, 0 otherwise

• Token Overlap (TO): 1 if two annotations have
at least one overlapped token, 0 otherwise

Since annotators can propose multiple causal
relations per example, we considered all possible
combination of ways to match the proposed re-
lations. After which, we retained the match that
returned the highest possible sum of EM, OSB
and TO scores. For example, if one annotator pro-
posed two relations (A,B) while the next annota-
tor proposed three relations (C), then we assessed

the scores for (A-C, B-None) and (A-None, B-C)
matches, and finally only kept the match that gives
the highest sum of scores. If one annotator identi-
fied more causal relations than the other, then EM,
OSB and TO scores for that relation is automati-
cally zero.

To compute the Total score for each relation, EM,
OSB, and TO was marked with 1 if and only if the
Cause, Effect and Signal all had 1s, otherwise, the
example would have an Total score of 0.

Finally, we aggregated the scores across exam-
ples to obtain the dataset level scores presented in
Table 11. For the overall EM, OSB and TO scores,
we take the average score across the dataset by
weighting each example equally.

In Figure 4, we illustrate one sentence with pro-
posed annotations by three annotators. Since every
annotator identified the same Effect span, all four
metrics have the score of 1, suggesting full agree-
ment. Meanwhile, since every annotator had a
different Signal span, the score for EM, OSB and
TO is 0. K-Alpha is negative, suggesting there is
less agreement than one would expect by chance.
Two annotators had the same proposed Cause span,
therefore, EM is equivalent to 1/3, representing 1
out of the 3 possible annotator pairs have exactly
matched spans. The Cause span has a score of 1
for OSB and TO, because all three annotators are
aligned on the “banners" being the last word and
part of Cause.

Evaluating Agreement Annotating causal argu-
ments is very challenging. When comparing anno-
tations across two annotators, the statistic is that
they will only agree exactly with one another 6.03%
of the time. Nevertheless, they will agree with each
other 32.51% of the time based on having at least
one same token in all three Cause, Effect and Signal
arguments. In fact, they do agree with each other’s
Cause and Effect spans around 57-58% of the time
based on having at least one same token. To sum-
marize our annotation experience, it is hard for
annotators to agree on both boundaries of a span,
perhaps due to the subjectivity of what information
is relevant to the event. However, they typically
can identify the main event and do include them in
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Figure 4: Example with three annotators, and its corre-
sponding agreement scores reported in percentages (%).

the annotations. Through our discussions, we also
found it challenging to create clear definitions of
how to identify a boundary. We made do with the
general rule of including words that are: (1) suffi-
cient for interpreting the causal relation, (2) does
not change the intended causal relation meaning
and (3) up to natural stopping points represented
by punctuation marks.

B CES-SD Model

We benchmark four different models based on the
winning solution (Chen et al., 2022)7 of the CASE
2022 CES-SD Shared Task (Tan et al., 2022a) by
training and testing them on RECESS. The models
frame the task as a reading comprehension task that
aims to predict the start and end token positions
of each Cause, Effect, and Signal span. All mod-
els fine-tune the albert-xxlarge-v2 (Lan et al.,
2019) PLM. More details about the model architec-
tures are described below.

Consider a sentence T with n tokens, such that
T = [t1, t2, ..., tn], where ti represents a token.

Baseline utilizes a BERT-based encoder to con-
vert T into a contextualized representation R =
[r1, r2, ..., rn]. Each ri has a depth d representing
the hidden size of the PLM, so R has a dimen-
sion of n × d. The sequence output R is then
fed through a dropout layer followed by a linear
layer plus a softmax layer that serves as a classi-
fier. The classifier returns a logit representation,

7https://github.com/Gzhang-umich/
1CademyTeamOfCASE

Metric Span Train+Dev Test Total

K-
Alpha

Cause 43.16 38.13 42.66
Effect 45.01 38.23 44.36
Signal 29.47 18.85 28.45
Total 43.55 37.44 42.96

Exact
Match

Cause 17.01 13.80 16.69
Effect 25.78 21.14 25.32
Signal 34.64 29.03 34.08
Total 6.03 6.07 6.03

One-
Side
Bound

Cause 47.68 37.89 46.71
Effect 50.69 44.17 50.05
Signal 38.76 34.11 38.30
Total 26.28 20.95 25.75

Token
Overlap

Cause 58.95 49.81 58.04
Effect 58.00 49.62 57.17
Signal 39.18 34.16 38.68
Total 33.07 27.46 32.51

Table 11: Inter-annotator Agreement Scores. Reported
in percentages (%).

P = [pcs, pce, pes, pee, pss, pse] with a dimension
of n× 6. Each pb vector reflects the probability of
each token being the span boundary position. Sub-
scripts cs, ce, es, ee, ss and se refer to Cause-Start,
Cause-End, Effect-Start, Effect-End, Signal-Start
and Signal-End, respectively. The position with
maximum probability was selected as the final pre-
diction using the following formula, where B rep-
resents the final position boundary predicted given
the logits in pb:

B = argmax
1≤i≤n

pb (2)

We incrementally incorporated three compo-
nents on top of Baseline as proposed in (Chen et al.,
2022), resulting in the three additional models in-
vestigated: Baseline+BSS, Baseline+BSS+SC and
Baseline+BSS+SC+DA. The components are de-
scribed below in the next three paragraphs:

BSS Beam-search span selector (BSS) is a post-
processing technique used to introduce constraints
suited to the task such that (1) the start position
is always before an end position, (2) the predicted
Cause and Effect spans do not overlap each other,
and (3) it is able to return multiple Cause and Effect
spans per input sentence. The detailed pseudo-
code is presented in the original paper (Chen et al.,
2022).

SC Signal classifier (SC) is a separate model that
fine-tunes the bert-base-uncased (Devlin et al.,

https://github.com/Gzhang-umich/1CademyTeamOfCASE
https://github.com/Gzhang-umich/1CademyTeamOfCASE
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2019) PLM on the binary classification task that
detects if a Signal exists in a sequence. If the signal
classifier model predicts that a sentence contains a
Signal, then the Signal predictions from the span
detection model will be retained.

DA Data augmentation (DA) was used to gener-
ate additional training examples. Cause and Effect
spans within each sentence were paraphrased us-
ing a PEGASUS model (Zhang et al., 2020). 2257
additional training examples were generated based
on the train set. This augmented data is available
in our repository.8

B.1 Results & Discussion

Due to space limitations in the main paper, we deep
dive into the performance for the different CES-SD
model variants in this section.

The findings suggest that BSS is a beneficial
component to have for CES-SD. Intuitively, BSS
constraints the predicted Cause and Effect spans
to the task. Therefore, it helps to return a higher
score relative to Cause and Effect span predictions.
Notice that Signal span predictions, and hence the
corresponding performance metrics, are the same
compared to the Baseline.

For both datasets, performance metrics of Base-
line+BSS and Baseline+BSS+SC have the same
scores for Cause and Effect spans. This observation
is expected since the SC only affects Signal span
predictions by removing them when the classifier
identifies the signal to be missing.

Baseline+BSS+SC+DA was the best perform-
ing model for (Chen et al., 2022). In their work,
the model performance improves when the model
is trained on a large set of training data. How-
ever, we could not replicate this finding. When we
trained the model with augmented data, F1 score
fell slightly (from 70.51% to 70.06%) on devel-
opment set. The test set also observed a drop in
performance. When we trained the model on even
more augmented data (9 augments per original ex-
ample), the development set F1 fell even further to
69.28%. Our hypothesis is that the artificially aug-
mented data does not add much linguistic diversity
to the training examples. This is because the DA
approach fixes the signals and only paraphrases the

8We also explored augmenting up to nine additional exam-
ples per original example. By obtaining three new phrases per
span, we could combine spans such that each causal relation
could return nine new examples for training. However, we
found poorer results with larger augments in our experiments.
The augmented datasets are available in our repository.

Cause and Effect arguments. Furthermore, many
of the generated sentences are grammatically un-
sound, for example: “<cause>There was a lot of vi-
olence there</cause> has <effect>fears of more
attacks and heightened tensions</effect>.” In
essence, DA corrupts the model by exposing the
model with examples that are repetitive and can
contain errors. DA might have been useful for
(Chen et al., 2022) because the training set back
then was extremely small.

C Hyper-parameters

In this Section, we provide the hyper-parameters
for each training set up.

For the CSC model, both bert-base-cased and
bert-large-cased variants had the following pa-
rameters:

per_device_train_batch_size=32
num_train_epochs=10
load_best_model_at_end=True
metric_for_best_model=eval_f1
learning_rate=5e-05

The base model took approximately 5 minutes,
while the large model took approximately 12 min-
utes to train.

For the CES-SD models, the parameters were:

dropout=0.3
learning_rate=2e-05
model_name_or_path=albert-xxlarge-v2
num_train_epochs=10
num_warmup_steps=200
per_device_train_batch_size=8
weight_decay=0.005

The models took an average of 2 hours to train. The
model trained on additional augmented data took
slightly longer, around 2.68 hours to train.

For the QA model, to pre-train the model on
RECESS, we used the following parameters:

model_name_or_path=t5-small
per_device_train_batch_size=12
learning_rate=3e-5
num_train_epochs=5
max_seq_length=512
doc_stride=128

For the actual training on SQuAD, we used the
following parameters:

model_name_or_path=t5-small
per_device_train_batch_size=128
learning_rate=0.001
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Eval Model
Overall Cause Effect Signal

R P F1 R P F1 R P F1 R P F1

Dev

Baseline 66.32 59.48 62.71 64.78 66.99 65.87 63.85 64.76 64.30 71.75 48.19 57.65
+BSS 71.39 64.43 67.73 72.60 74.30 73.44 70.67 73.38 72.00 70.70 47.44 56.78
+BSS+SC 71.22 69.81 70.51 72.60 74.30 73.44 70.67 73.38 72.00 70.06 60.44 64.90
+BSS+SC+DA 70.89 69.25 70.06 73.35 74.71 74.02 70.97 73.33 72.13 67.31 58.01 62.31

Test

Baseline 61.49 61.89 61.69 56.80 65.93 61.03 60.00 62.93 61.43 68.22 57.77 62.56
+BSS 67.30 66.98 67.14 68.36 73.82 70.98 67.58 72.91 70.14 65.80 55.70 60.33
+BSS+SC 66.56 68.86 67.69 68.36 73.82 70.98 67.73 72.73 70.14 63.21 60.10 61.62
+BSS+SC+DA 64.43 67.56 65.96 62.79 68.18 65.38 65.75 73.10 69.23 64.75 61.54 63.10

Table 12: Performance Metrics for Cause-Effect-Signal Span Detection. All scores are reported in percentages (%).
Highest score per dataset and metric is in bold.

num_train_epochs=20
max_seq_length=512
doc_stride=128

We change the model_name_or_path to the RE-
CESS’ pre-trained model’s directory for the up-
dated model. For each run to train and predict on
SQuAD, it takes around 1.10h.

All experiments were ran on NVIDIA Tesla
V100 SXM2 32 GB GPU, CUDA Version: 11.3.


