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Abstract

Given an image depicting multiple individuals,
humans are capable of inferring each individ-
ual’s emotions, intentions, and social norms
based on commonsense understanding. How-
ever, a machine’s ability of commonsense rea-
soning about distinct individuals in images re-
mains underexplored. In this study, we examine
the consistency of visual commonsense reason-
ing based on person grounding. We introduce a
novel test dataset called Visual Commonsense
Reasoning-Contrast Sets (VCR-CS) to evalu-
ate whether models can reason about individual
people in an image by changing the person tags
in the questions and answers. We benchmark
various vision-language models on VCR-CS
and observe that they fail in consistent common-
sense reasoning about different people in one
image, showing a performance decrease of up
to 31.5%. To mitigate such failures, we propose
a multi-task learning framework called Person-
centric groundIng eNhanced Tuning (PINT).
Our framework enhances a model’s ability to
perform person-grounded commonsense rea-
soning by leveraging two novel person-centric
pretraining tasks: Image Person-based Text
Matching and Person-Masked Language Mod-
eling. The experimental results revealed the
effectiveness of PINT by showing the lowest
performance degradation on VCR-CS and the
improvements in consistency and sensitivity
metrics. Our dataset and code are publicly
available 1.

1 Introduction

Commonsense reasoning from visual scenes in-
volves inferring about people’s emotions, inten-
tions, and social norms based on a commonsense
understanding of the given image (Zellers et al.,
2019). It plays a crucial role when machines are re-
quired to operate in person-centric scenarios by

1https://github.com/Haena0320/consistency-pg

 Do you think [PERSON5] will sit down on chair ?

Do you think [PERSON1] will sit down on chair ?

A3 : No , she won ' t .

Original
Question
Person

Perturbation

A2

A2

A1 : No , she would walk around it .
A2 : Yes , if she doesn ' t dance , she will sit soon.

A4 : Yes , [PERSON5] will put her glove back on,
        it is on the bench near [PERSON2] 

A2

A3

Original Label

Perturbed Label

[PERSON1]

[PERSON2]

[PERSON5]

Figure 1: Examples of questions about perturbed person
tags with different labels. Existing models face chal-
lenges in commonsense reasoning about a person when
person tags are perturbed.

leveraging commonsense knowledge about peo-
ple’s thoughts, behaviors, and interactions in dy-
namic situations (You et al., 2022). Such an abil-
ity should be consistently applied, even though
commonsense reasoning processes may differ for
different individuals in different situations. For
example, Figure 1 depicts the different situations
for [PERSON1] and [PERSON5], which leads to
varying reasoning processes for individuals. This
type of person-grounded commonsense reasoning
often shapes the inferences about people in a given
situation.

In the fields of vision and language, several
datasets (Zellers et al., 2019; Park et al., 2020; Lei
et al., 2020; Dong et al., 2022; You et al., 2022) that
focus on the reasoning about individuals using vi-
sual commonsense knowledge have been proposed.
In one of the notable datasets, VCR (Zellers et al.,
2019), the models are required to provide answers
with justifications for commonsense questions re-
lated to the individuals in the given images. In such
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scenarios, the ability of vision-language (VL) mod-
els to leverage accurate person grounding is a sig-
nificant factor in commonsense reasoning (Zellers
et al., 2019, 2021, 2022), however, this has not
received enough research attention.

A recently released dataset called HumanCog
(You et al., 2022) focuses on person-centric vi-
sual grounding, which requires reasoning regard-
ing which person in an image is being referred to
in the commonsensical description. However, we
argue that in general situations where such com-
monsense explanations are not explicitly provided,
appropriate commonsense reasoning about individ-
uals should be performed. Moreover, evaluating the
consistent commonsense reasoning abilities of var-
ious individuals depicted in images remains chal-
lenging. Interestingly, in our pilot experiment, we
observed that various Transformer-based VL mod-
els (Lu et al., 2019; Gan et al., 2020; Chen et al.,
2020b; Zellers et al., 2022; Cho et al., 2021) trained
on VCR achieved an accuracy greater than 40% on
VCR subsets where person-grounding information
was not provided.

In this study, we propose a novel test dataset
called Visual Commonsense Reasoning-Contrast
Sets (VCR-CS) to investigate the consistent com-
monsense reasoning abilities of individuals de-
picted in images. VCR-CS is a challenging dataset
that leads the model to predict incorrect answers
when the model ignores the person referred to in
the text description. The dataset comprises original
VCR validation examples and manually edited con-
trast examples in which the person mentioned in
the original question is changed to another person
in such a manner that the gold label changes. We
then benchmark six visual commonsense reason-
ing models on VCR-CS and observed a significant
performance decrease (∼31.5%) on the suggested
hard-negative examples. We then evaluate the mod-
els on VCR-CS using three metrics: accuracy, con-
sistency, and sensitivity. Consistency estimates the
model’s ability to predict correct answers across
the original and contrast examples, and sensitivity
measures whether predictions change after pertur-
bations in the person tags.

We further present Person-centric groundIng
eNhanced Tuning (PINT), which is a novel multi-
task learning framework that enhances the model’s
ability in commonsense reasoning about differ-
ent individuals within an image. PINT com-
prises two person-centric pre-training tasks: (i)

Image Person-based Text Matching (IPTM) and
(ii) Person-Masked Language Modeling (PMLM).
IPTM task guides the model to learn the alignment
between images and text queries by focusing on
person links in the text. In PMLM task, the model
is trained to reconstruct masked person links us-
ing a cross-modal context. Extensive experiments
revealed that PINT achieved the best performance
for most metrics on VCR-CS. Specifically, our ex-
perimental results show that PINT improved the
consistency by more than 25%, and sensitivity by
15% on VCR-CS dataset. To summarize, our con-
tributions are as follows:

• In this study, we examine the consistency of
visual commonsense reasoning (VCR) sys-
tems based on person grounding.

• We propose a test dataset called VCR-CS,
to evaluate whether VCR models can rea-
son about individual people in an image. We
benchmark six VL models and observe a per-
formance decrease (up to 31.5%).

• Furthermore, we introduce PINT, which is an
effective multi-task learning framework, to
enhance a model’s ability in person-grounded
commonsense reasoning.

2 Preliminaries

2.1 Vision-Language Model

Transformer-based VL models (Chen et al., 2020b;
Gan et al., 2020; Lu et al., 2019; Li et al., 2019; Yu
et al., 2021) benefit from multimodal pre-training
to learn universal image-text representation. Given
a single image-text pair (I, T ) in a pre-training
dataset, the model first encodes the image and
text inputs as feature vectors, and the vectors pass
through the multilayer transformer to learn cross-
modal representations. To learn rich multimodal
representations, previous studies (Gan et al., 2020;
Lu et al., 2019; Chen et al., 2020b; Zellers et al.,
2021, 2022; Cho et al., 2021) mainly employed two
representative multimodal pre-training tasks: (i)
Image-Text Matching (ITM) task and (ii) Masked
Language Modeling (MLM) task. ITM task learns
to predict whether I and T are aligned, and MLM
task learns to reconstruct the corrupted text inputs
with [MASK] tokens given the multimodal context
inputs.
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Mode Original example Masked example

Q Did [PERSON1] cause all Did [MASK] cause all
this destruction? this destruction?

GT No, [PERSON1] appears No, [MASK] appears
to have had no role. to have had no role.

DT Yes It was [PERSON1] Yes It was [MASK]
who started it. who started it.

Table 1: Example of person-masked modification. The
original example is changed into a masked version
(Masked example). In this modification, we replaced all
references of persons with [MASK] tokens in question
(Q), ground truth answer (GT), and distractors (DT).
Here, we report on one of the distractors for reference.

2.2 Visual Commonsense Reasoning

Task Given an image, I, VCR task can be decom-
posed into two subtasks: (1) q→a: Given question
Q, choose the correct answer, A+, out of the four
candidate answers. (2) qa→r: Given question Q
with the correct answer, A+, select the correct ra-
tionale, R+, to justify A+ from the four rationale
candidates. By integrating these two subtasks, the
q→ar metric measures whether the model chooses
the correct answer with the proper rationale.

Fine-tuning Strategy Following recent studies
(Chen et al., 2020b; Gan et al., 2020; Zellers et al.,
2022, 2021), we fine-tuned the model to both sub-
tasks simultaneously by decomposing the multi-
choice settings into binary classification problems.
Mathematically, the objective function for a single
VCR example is:

Lq→a(θ) = −logPθ(ai|I,Q,Ai) (1)

Lqa→r(θ) = −logPθ(ri|I,Q,A+, Ri) (2)

where Ai and Ri denote the i-th answer and ra-
tionale candidate and ai ∈ {0, 1} and ri ∈ {0, 1}
are binary labels representing whether Ai and Ri

are correct. θ represents a VL model with a softmax
classifier that outputs a predicted probability distri-
bution. Finally, the model is trained to minimize
the objective function, LV CR, as follows:

LV CR(θ) = Lq→a(θ) + Lqa→r(θ) (3)

3 Pilot Experiments

We conducted a pilot experiment to investigate
whether models trained on VCR can predict correct
answers without seeing the person referred to in
the queries.

Figure 2: The existing VCR model’s performance on
original (Origin.) subset and masked modification
(Masked.) settings.

Person-Masked Modification As shown in Ta-
ble 1, we conduct an experiment employing person-
masked modifications. In this setting, we replaced
the person links with [MASK] tokens. Intuitively,
if the model cannot predict an answer without see-
ing the person about whom the question is being
asked, the accuracy is similar to that of random
settings. From Figure 2, it is evident that the en-
tire model could predict the correct answers with
a probability greater than 40%, without seeing any
individual.

4 Dataset Construction

To examine the grounded commonsense reason-
ing of VL models, we proposed a new evaluation
dataset called VCR-CS, which is built on top of
VCR dataset. VCR-CS comprises pairs of “origi-
nal” and “contrast” examples, which are denoted by
{I, q1, a, g1} and {I, q2, a, g2}, respectively. Each
example includes an image, a question, multiple-
choice answers, and a gold label. The two examples
within a pair are distinguished from each other in a
simple yet carefully designed manner to investigate
person-grounded reasoning.

Instance candidate selection The creation pro-
cess begins by selecting the original examples
from VCR validation split. In the candidate se-
lection phrase, we excluded instances that either
non-person tags in the questions or belonged to the
“why” and “where” question types, because these
are deemed to inappropriate for generating contrast
examples. Moreover, we only consider the exam-
ples in which the number of individuals detected in
the image ranged from 2 to 15.

Perturbed instance generation In this phase,
the original question, q1, is manually selected from
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Q/m : Do you think [MASK] will sit [MASK] on chair? 
Agt /m : Yes, if she doesn't  [MASK], she will sit soon. 

Q : Do you think [PERSON1] will  sit down on chair? 
Agt : Yes, if she doesn't  dance, she will sit soon. 

Text & Im
age

 Encoder

Multimodal
Encoder 0 (Unmatch)

[PERSON5], 
down, dance

1 (Correct)

IPTM

PMLM

PERSON1

PERSON5 LIPTM 

LVCR 

LPMLM 
Person-Centric

Masking

VCR

Q : Do you think [PERSON5] will sit down on chair ? 
Agt : Yes, if she doesn't dance, she will sit soon.

Person
Perturbation

PERSON2

~
~

Figure 3: PINT, the proposed multi-task learning framework for the person-grounded VCR model. In PINT, models
are trained by sharing global parameters in three tasks (VCR, IPTM, and PMLM).

the candidates. The two authors then manually
substitute the person reference in q1 with another
person observed in an image to create a contrast
question, q2. The people queried in each contrast
instance are deliberately selected to have differ-
ent intentions or actions compared to the people
described in the original question. Therefore, the
expected gold label, which is denoted by g1, for the
original instance is different from the gold label,
which is denoted by g2, for the contrast instance
(g1 ̸= g2). For example, as shown in Figure 1, if
[PERSON5] in the question of the original example
is changed to [PERSON1] in the question of the
contrast example, the gold label for the contrast
example is changed from A2 in the original exam-
ple to A3. Therefore, we can expect VCR models
to predict A2 as the correct answer when the per-
son mentioned in the question is [PERSON5] and
predict A3 when [PERSON1].

Validation To ensure high quality, annotators
from Amazon Mechanical Turk (AMT) verify the
labels of the instance pairs. Each instance is evalu-
ated by five annotators, and the final label for the
example is determined by a majority vote. If the
label of the original instance, provided in advance
by VCR, does not match the result of the majority
vote, the latter is adopted as the final gold label.
The agreement score between the annotators mea-
sured using Fleiss’s kappa (Fleiss, 1971) is 0.64
(the indicating “Substantial agreement” degree of
agreement). Consequently, VCR-CS dataset con-
tains 159 instance pairs2. We offer various analyses
and distributions of VCR-CS in Appendix A.

2We experimentally determine the evaluation scale by ob-
serving the convergence of the performance of models (see
Appendix C).

5 The Person-Grounded VCR Model

To enhance person-grounded reasoning ability, we
present a new framework, PINT, which improves
the model’s ability to perform reasoning about dif-
ferent individuals within an image. PINT is a
multi-task learning framework consisting of two
pre-training tasks: i) IPTM and ii) PMLM. In PINT,
the model learns from both suggested tasks and
VCR at the same time. Figure 3 depicts our sug-
gested framework.

5.1 Image Person-based Text Matching

IPTM task aims to determine whether a given ques-
tion is relevant to the image context by focusing
on the person mentioned in the question. We de-
sign this task as an image-text matching task that
includes hard negatives, where the person links
mentioned in the questions are perturbed.

The training set for our IPTM task is built by
reconstructing VCR training set and employing
this person-perturbation strategy to obtain hard-
negative examples. For each epoch, we randomly
select 50% of VCR training examples and apply
the following algorithm to the question of these ex-
amples to generate hard negatives. First, we create
a set of {[PERSON#]}81#=1 person links. We con-
sider the person links mentioned in each question
as the target links that need to be perturbed. If the
image of the example depicts two or more people,
the target link is swapped for a person link referring
to another person in the image. If only one person
appears in the image, the target link is changed to
another person link, randomly selected from the set
of person links. If the above conditions were not
satisfied, the question is replaced by a question of
randomly selected example.

The person perturbation strategy uses the ques-
tion Q, the ground truth answer A, the ground truth
rationale R in each example of VCR to generate
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a perturbed question, Q̃, a perturbed ground truth
answer Ã, and a perturbed ground truth rationale R̃.
The text sequence S ∈ {Sqa, Sqar} is produced by
either concatenating {Q, A} or {Q, A, R} and is
assumed to align with image V . The text sequence
S̃ ∈ {S̃qa, ˜Sqar} is then generated by concatenat-
ing either {Q̃, Ã} or {Q̃, Ã, R̃}, and is considered
unaligned with image V . The model performs bi-
nary classification on both the aligned pair (S, V )
and the misaligned pair (S̃, V ), where it is trained
to minimize the objective function described be-
low:

LIPTM =− E(S,V )∼D[ylogfθ(S, V )

+ (1− y)log(1− fθ(S̃, V ))]
(4)

where fθ is a vision-language model with a sigmoid
classifier that outputs a normalized probability vec-
tor indicating whether S or S̃ and V are aligned.

5.2 Person-Masked Language Modeling
The goal of PMLM task is to recover corrupted
tokens (mainly person links) based on observations
of their surrounding tokens and visual regions. This
task forces the model to learn the fine-grained con-
nections between the person links and the location
of the persons in the image during training.

This strategy aims to construct a corrupted input
sequence by masking the person links. Given the
text sequence S, the object-region links mentioned
in the descriptions are replaced with their object
names. This preprocessing results in two types of
tokens for the input sequence: person links and
common words. Then, we apply the two mask-
ing strategies to this sequence. First, person links
in a given sequence are randomly selected with a
probability of 50%. All selected person links are
replaced with [MASK] tokens. This masking strat-
egy increases the sensitivity to person links and
guides the model to capture different personal in-
formation from distinct tokens. Secondly, if we
have 15% of the remaining masking budget, we
select common words and decompose this masking
budget into 10% random, 10% unconverted, and
80% [MASK] tokens.

The objective function of PMLM is defined as
follows:

LPMLM (θ) = −E(S,V )∼DlogPθ(Sm|S/m, V )) (5)

where S/m is the corrupted token sequence ob-
tained by masking S; m is the set of masked token
indices; and Sm is the masked token sequence.

5.3 Overall Training Objectives
Finally, we train the model with three tasks using
an overall loss function defined as follows:

Ltotal = LV CR + LIPTM + LPMLM (6)

6 Experiments and Results

Human Evaluation To measure the difficulty of
our tests, we sampled 50% of the contrast set pairs
(79 pairs) and conducted an evaluation per question
by five AMT annotators. If the workers failed to
achieve majority voting or answered the question
incorrectly, the question was considered incorrect.

Baseline We evaluated six re-implemented
Transformer-based VL models on VCR-CS. The
characteristics of the models differ according to
their image encoding choices and Transformer ar-
chitectures: UNITER (Chen et al., 2020b), VILLA
(Gan et al., 2020), ViLBERT (Lu et al., 2019), VL-
BART (Cho et al., 2021), VL-T5 (Cho et al., 2021),
and MERLOT-Reserve (Zellers et al., 2022). Fur-
ther details of the model architecture are provided
in Appendix B.1

Implementation Details The models were
trained on a VCR training set (using the published
code and hyper-parameters reported in the original
papers; see Appendix B.2). In our experiment, we
reported the performance of all base-sized models,
except for ViLBERT. We evaluated the six trained
models on VCR-CS and VCR validation sets. We
fine-tuned VILLA model using PINT scheme on
VCR training set. We adopted an additional train-
ing schedule based on a previous study (Chen et al.,
2020a). Specifically, in the early training process,
we focused on training IPTM and PMLM and then
shifted to training VCR towards the end of the pro-
cess (see Appendix B.3).

Evaluation Metrics We introduce two metrics
to evaluate the person-grounded commonsense rea-
soning ability: Consistency and Sensitivity. Follow-
ing (Gardner et al., 2020), Consistency is defined
as whether all the elements of the contrast set pair
are accurately predicted. Mathematically, this is
expressed as:

Consistency =
1

N

N∑
i=1

1[(yio = gio) ∧ (yip = gip)]

where the model-predicted labels yio, y
i
p on ith orig-

inal and perturbed questions are matched to the
gold labels, gio and gip, respectively.
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VCR-CS

Methods Model-size Original Acc. Contrast Acc. Consistency Sensitivity

ViLBERT (Lu et al., 2019) 245M 62.89 41.50 (-21.39) 21.38 50.75
UNITER (Chen et al., 2020b) 86M 61.84 43.42 (-18.42) 19.74 46.88
VILLA (Gan et al., 2020) 86M 61.18 42.76 (-18.42) 20.39 47.69
VL-BART (Cho et al., 2021) 220M 70.44 38.99 (-31.45) 24.52 59.09
VL-T5 (Cho et al., 2021) 400M 69.18 42.13 (-27.05) 23.89 49.35
MERLOT-Reserve (Zellers et al., 2022) 200M 69.18 39.62 (-29.56) 24.52 38.36

PINT (ours.) 86M 61.84 46.71 (-15.13) 25.66 58.21

Human - 91.64 92.40 (+0.75) 87.84 93.78

Table 2: Evaluation results of the existing VCR models and the effectiveness of our proposed model, PINT. Boldface
text denotes the best scores and the underlined text denotes the second-best scores. In VCR-CS dataset, Original
Acc. and Contrast Acc. represent the accuracies of the original and contrast examples, respectively. In the bracket
under Contrast Acc., we show a decrease in accuracy from the original to the contrast examples

Figure 4: (a) depicts the image in original (top) and contrast examples (bottom); (b) and (c) visualize the person’s
grounding without and with applying PINT by applying Grad-CAM for each original and contrast example.

Sensitivity is the average percentage when the
examples of the contrast set pair were correctly
predicted, in cases where the model predictions are
different between the examples. It can be written
as:

Sensitivity =
N∑
i=1

1
[(yio = gio) ∧ (yip = gip)]

[(yio ̸= yip)]

Furthermore, we report the model accuracy of the
original and contrast examples as an additional
evaluation metric for VCR-CS.

Challenges faced by VCR models on VCR-CS
We evaluated the state-of-the-art models on VCR
benchmarks on VCR-CS. Table 2 presents the eval-
uation results for the model. The baseline models
exhibited a low performance. Consistency changes
the ranking between existing VCR models, as the
models with significant accuracy gap on VCR val-
idation set (e.g., VILLA and MERLOT-Reserve)
have small performance gap in Consistency and
Sensitivity. The accuracy of MERLOT-Reserve,

which achieved the highest performance in VCR
test and validation sets, decreased significantly
from 69.18% to 39.62% after [PERSON#] pertur-
bation, thereby showing a tendency similar to that
of the other baseline models.

Effortless Success of Humans on VCR-CS To
ensure that the contrast examples are not more dif-
ficult or noisy than the original examples, we evalu-
ate whether humans will fail at them. We selected a
set of 40 pairs from VCR-CS and measured human
performance for the examples with AMT workers.
Table 2 shows that the human performance on the
contrast examples was similar to that on the orig-
inal examples. Furthermore, unlike the baseline
models, the human performance was 1.3% higher
in the contrast examples and achieved 93.1% at Sen-
sitivity. This indicates that humans usually make
decisions based on the person links mentioned in a
question.

PINT improves person-grounded reasoning
The central part of Table 2 presents the effective-
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VCR-CS VCR

Tasks Consistency Sensitivity Q→A QA→R Q→AR

VCR + ITM + MLM 19.08 46.03 73.72 76.64 56.68

VCR + IPTM + PMLM 24.34 57.81 73.53 76.51 56.49
VCR + IPTM + MLM 18.42 45.9 73.87 76.54 56.94

VCR + IPTM + PMLM (ours.) 25.66 58.21 73.97 76.71 56.82

Table 3: Effect of the suggested person-centric pre-training tasks, IPTM and PMLM, compared to the original tasks,
ITM and MLM. Performance in consistency and sensitivity metrics is enhanced by both IPTM and PMLM.

VCR-CS

Methods Consistency Sensitivity

VILLA 20.39 47.69

w / Add person embeddings 21.71 54.1
w / Draw person boxes 22.37 51.52

w / PINT (ours.) 25.66 58.21

Table 4: Effect of the different grounding methods on
VCR-CS dataset. While the two methods that inject
grounding information into the model input show a
slight performance improvement, PINT that learns to
focus on the grounding information achieved the highest
performance gain.

ness of the proposed scheme (PINT). PINT shows
the lowest performance degradation from the origi-
nal to contrast examples in VCR-CS. It gains the
performance by up to 5.27% and 10.52% on the
two metrics: Consistency and Sensitivity. These
results indicate that PINT, as a training strategy,
improves the model’s reasoning ability based on
person grounding. However, compared to human
performance, there is still room for improvement.

Effectiveness of the person-centric tasks IPTM
and PMLM are more challenging and enhanced
versions of ITM and MLM, respectively. They gen-
erate training examples by focusing on person refer-
ences, thereby allowing the model to learn person-
grounded reasoning. In contrast, ITM and MLM
randomly generate training instances. Specifically,
we train the model by replacing IPTM with ITM
or PMLM with MLM. In Table 3, we show that
IPTM-ITM and PMLM-MLM variants performed
inferiorly in terms of both Consistency and Sen-
sitivity than PINT. This suggests that training on
both ITM and PMLM tasks is effective for reason-
ing tasks that rely on person grounding. The re-
sults reveal the importance of training sophisticated
person-centric tasks to improve a model’s ability
in consistent person-grounded commonsense rea-

soning.

Attribution Visualization of PINT training
Training using PINT enhanced the models’ abil-
ity to reason about different individuals on a sin-
gle image. Figure 4 presents a visualization of
the Grad-CAM (Selvaraju et al., 2017) weights
for VILLA trained without PINT (w/o PINT), and
VILLA trained using PINT (w/ PINT). The brighter
the area of the image, the more the model referred
to the region when reasoning. For the given origi-
nal question in the first row, “What is [PERSON3]
doing?,” a model trained without PINT focuses
more on irrelevant visual reasons, such as the [PER-
SON6]. In contrast, given the person-perturbed
question in the second row, “What is [PERSON6]
doing?,” a model trained with PINT focuses highly
on the [PERSON6]-relevant regions and less on
other objects. The visualization shows that PINT,
when applied as a training strategy, effectively al-
lows the model to focus more on the person de-
scribed in the question.

Comparison with other relevant methods In
Table 4, we present an experiment comparing the
person grounding method used for the person-
centric visual commonsense task with our method.
The first method follows the method in (Park et al.,
2020), adds text embedding to the visual embed-
ding corresponding to the person, and uses it as
the input value for the model. We call this “add
person embeddings.” The second method follows
a previous study (Zellers et al., 2021, 2022) and
displays the corresponding image area in color re-
lated to each person designation. We refer to this
“Draw person boxes.” Both methods insert person-
grounding information at the input stage, and our
experiments confirmed that these methods failed to
maximize the grounding-based reasoning ability in
VCR-CS. Moreover, PINT was shown to be more
effective than the existing ground-based methods.
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Overall Loss VCR-CS VCR

LVCR LIPTM LPMLM Original Acc. Contrast Acc. Consistency Sensitivity Q→A QA→R Q→AR

! 61.18 42.76 (-18.42) 20.39 47.69 74.84 77.55 58.25

! ! 59.21 40.13 (-19.08) 19.14 54.55 73.50 76.03 56.15
! ! 61.84 44.08 (-17.76) 22.37 53.97 74.07 76.03 56.89

! ! ! 61.84 46.71 (-15.13) 25.66 58.21 73.97 76.71 56.82

Table 5: Main ablative experiments of PINT on VCR-CS and original VCR validation sets. The performances in all
VCR-CS metrics are improved by both IPTM and PMLM, with a slight decrease in VCR validation set.

[PERSON9]

Question: Why is [PERSON9] looking at [PERSON8]?

A1. [PERSON9] is waiting for [PERSON8] to hand him some money
A2. He is curious about what he's writing down
A3. [PERSON8] has said something that has caught his interest
A4. [PERSON1] is waiting on [PERSON8] to replace the tire on his truck

[PERSON1]
[PERSON2][PERSON2]

Question: Why is a light on in the warhouse near [PERSON1]?

A1. They are waiting for it to light up so [PERSON2] can play the game.
A2. It is dark outside.
A3. The candle they had went out.
A4. Criminals are hiding in the warehouse, and [PERSON1] is going to
       confront them.

[PERSON9]
[PERSON8]

Figure 5: Qualitative case analysis of VCR validation
example where the base model (VILLA) succeeded, but
PINT failed. Incorrect PINT predictions are marked
with a red “X” and correct answers are in bold.

Ablation Study Reasoning based on person
grounding is integrally learned from our suggested
pre-training tasks and VCR task, which is essential
for improving person-centric visual commonsense.
To verify this, ablation studies were conducted us-
ing three objective function variants of PINT. Ta-
ble 5 shows the performance improvement for train-
ing VILLA for each objective function that com-
prises PINT. LIPTM and LPMLM trained together
with LVCR help maximize both consistency and
sensitivity, complementing each other to improve
the grounding-based reasoning ability.

In addition, we noticed a trade-off between con-
sistency, sensitivity, and accuracy while applying
PINT during VCR training. Although there was a
significant increase in the consistency and sensitiv-
ity on VCR-CS, we observed a slight decrease in
the accuracy on VCR validation set when applying
PINT strategy to VILLA. We suspect that this effect
occurs because the model relies on spurious corre-
lations (Ye and Kovashka, 2021) to achieve a high
performance. Enhancing person-centric reasoning
leads to improved consistency but a slight decline
in accuracy. This suggests that our consistency and
sensitivity metrics can effectively measure the abil-
ity of the model to reason about multiple people
described in the images.

Limitations of PINT We performed a detailed
qualitative analysis of the limits of PINT on VCR
validation set in Figure 5. We marked the incorrect
PINT prediction with a red "X" and the correct an-
swer with a bold. We observed that PINT suffers
in some examples in which the correct answer can
be predicted by word overlap between the question
and the answer. For example, in the example at
the bottom in Figure 5, given an image depicting
the outside of a faintly lit warehouse, PINT replies,
“It’s dark outside”. In night scenarios, such a predic-
tion may seem plausible, but it may fail if the over-
lap between the words used in the questions and
answers, “in the warehouse” and “[PERSON1]”,
can lead to the correct label.

7 Related Work

Person-Centric Vision-Language Task The
person-centric vision-language task (Zellers et al.,
2019; Dong et al., 2022; Cui et al., 2021; You et al.,
2022), is mainly based on grounding references to
a person; therefore, person-centric visual ground-
ing ability is a crucial component. VCR (Zellers
et al., 2019) is a task that answers commonsensical
questions about the people depicted in an image.
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The person-centric visual grounding task (Cui et al.,
2021) aims to predict a mentioned person, given
an image and a contextual textual description. The
person-centric commonsense grounding task (You
et al., 2022), which extends a person-centric vi-
sual grounding task to a commonsense domain, is
designed to identify the person mentioned in the
commonsense description in the image. However,
they consider grounding and high-level reasoning
as separate tasks and focus on each single task. Our
study differs from the above-mentioned studies in
that we address commonsense reasoning based on
person grounding, which can fill the gap between
the two tasks.

Consistency on Contrast Sets Language-based
adversarial examples were generated to investigate
the robustness of the models in the natural language
processing and vision-language fields (Zhou et al.,
2020; Wang et al., 2021; Jin et al., 2020; Akula
et al., 2020; Gardner et al., 2020; Jimenez et al.,
2022). In the natural language processing fields,
the language model’s commonsense reasoning abil-
ity is investigated by generating and evaluating dual
test samples (Zhou et al., 2020). In vision-language
fields, the grounding abilities of the visual referring
expression models were measured by manipulating
the word order of text descriptions and verifying
whether the grounding was performed correctly
(Akula et al., 2020). It is found that the model’s
performance on various tasks is significantly lower
on the contrast sets, which are created by manu-
ally changing words in a manner that changes the
gold labels (Gardner et al., 2020). Although they
focused on analyzing a model’s poor performance
using contrast sets, they did not consider strategies
for improving model performance. Our approach
suggests a novel training method, PINT, to improve
the model’s reasoning ability, even though we use
contrast sets that are similar to the previous meth-
ods.

Task-Specific Transfer Learning Although
large-scale pre-trained language models (PLM)
(Devlin et al., 2019; Liu et al., 2019; Clark et al.,
2020) are fine-tuned for various NLP tasks to
achieve competitive performance, this fine-tuning
approach has limitations in capturing the important
patterns of downstream tasks (Yuan et al., 2023;
Dodge et al., 2020; Gu et al., 2020). To mitigate
such a problem, continuous pre-training and fine-
tuning regularization techniques (Hua et al., 2021;

Qu et al., 2021; Gururangan et al., 2020; Gu et al.,
2020) are proposed. Continual pre-training of PLM
on given downstream domain data has proven ef-
fective for final target task performance (Gururan-
gan et al., 2020). Task-specific pre-training with a
selective masking strategy is suggested for learn-
ing task-specific expressions based on domain data
(Gu et al., 2020). We adopted target-specific tasks,
such as a person-centric masking strategy; however,
in contrast to the above studies, our framework
additionally focuses on person-centric image-text
matching in a self-supervised manner.

8 Conclusion

In this study, we examined the consistency of vi-
sual commonsense reasoning systems based on per-
son grounding. We proposed a novel test dataset
called VCR-CS to evaluate whether the models
can reason about individuals depicted in an image.
We demonstrated that the models trained on VCR
dataset exhibited a limited capacity for consistent
reasoning regarding different individuals depicted
in a given image. To mitigate this problem, we
designed a multitask learning framework, PINT,
which learns from two person-centric pre-training
tasks: IPTM and PMLM. Our experiments show
that PINT enhances a model’s ability in person-
grounded commonsense reasoning, as indicated by
the minimal performance decline in VCR-CS and
improvements in both consistency and sensitivity
metrics.
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Limitations

In this work, we proposed a test dataset and a train-
ing methodology to examine and improve the mod-
els’ ability for person-grounded commonsense rea-
soning. However, the performance gap with hu-
mans shown in experimental results suggests the
need for a training set to learn more granular and
person-grounded commonsense reasoning. In fu-
ture studies, we plan to construct a larger dataset for
training and extensive evaluation by incorporating
an automatic process into VCR-CS construction
pipeline.
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Appendix

A Dataset Analysis

In this section, we offer dataset statistics and an
analysis of question frequency, inference types, and
bounding boxes of persons depicted in VCR-CS
questions. The high-level dataset statistics are pre-
sented in Table 6. The average question length,
answer length, and number of objects mentioned
in VCR-CS and VCR validation sets are similar.
The question of the over-image ratio denotes how
different images are used for the questions. The re-
sults revealed that VCR-CS uses various questions
from different images. The cumulative distribution
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VCR-CS VCR val.
Number of questions 159 26534
Number of images 143 9929
Number of movies covered 16 244
Average question length 6.38 6.63
Average answer length 7.08 7.65
Average # of objects mentioned 1.88 1.85
Question versus Image ratio 1.11 2.67

Table 6: Dataset statistics for VCR-CS compared to
VCR validation set (VCR val.).
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Figure 6: CDF of questions ordered by frequency. Red
and black denote the questions from VCR-CS and VCR
validation sets, respectively. We considered the two
questions to be the same when they were equal after
tokenization, lemmatization, and stop word removal.

function (CDF) of a question, ordered by frequency,
is shown in Figure 6. The graph from VCR-CS is
closer to x = y, indicating that various questions
are contained compared with VCR validation set.
Figure 9 shows the inference types required for the
questions in VCR-CS. This indicates that VCR-CS
is an underlying dataset with diverse types of rea-
soning. Notably, each answer requires more than
one type of inference. We follow the type pattern
in (Zellers et al., 2019). The center of the bounding
box of the person objects obtained by normaliza-
tion is shown in Figure 7. The red dots represent
the original set, whereas the yellow dots represent
the contrast set. The person positions are more
widespread in the contrast set than in the original
set. Figure 8 shows box plots of the normalized
size of the bounding boxes of the person tags de-
picted in the questions. VCR-CS is collected to ask
for various sizes of bounding boxes for persons in
the images.

B Implementation Details

B.1 Baseline Details
We adopt six Transformer-based vision-language
models as baselines. All the baseline models, ex-
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Figure 7: Normalized center position of the bounding
box for the person depicted in the question. Red and
yellow dots denote samples in the original and contrast
examples on VCR-CS.

VCR-CS original VCR-CS contrast VCR val

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 s

iz
e

Figure 8: Comparison of the normalized bounding box
sizes for the individuals depicted in the question of
examples from both VCR-CS and VCR validation sets

cept for MERLOT-Reserve, use image features ex-
tracted from the Faster R-CNN (Ren et al., 2015)
on images. In contrast, MERLOT-Reserve utilizes
the object features extracted from ViT (Dosovit-
skiy et al., 2021). ViLBERT comprises two paral-
lel Transformer (Vaswani et al., 2017) structures,
whereas VILLA, UNITER, and MERLOT-Reserve
adopt a single Transformer architecture to fuse
cross-modal information. VL-T5 and VL-BART
employ an encoder-decoder architecture.

B.2 Baseline Implementation Details

We followed the public code and hyperparameters
of the original paper on the baseline models. We
trained baseline models and PINT on VCR training
dataset with single NVIDIA Tesla V100 GPU with
32GB of VRAM. The detailed code can be found
at the following repositories:
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Figure 9: Overview of the inference types required by
questions in VCR-CS.

Modification Type Masked Example

Number of examples 22,245

Table 7: VCR subset statistics used in pilot experiment.

B.2.1 ViLBERT
https://github.com/jiasenlu/vilbert_beta

B.2.2 UNITER
https://github.com/ChenRocks/UNITER

B.2.3 VILLA
https://github.com/zhegan27/VILLA

B.2.4 VL-T5 | VL-BART
https://github.com/j-min/VL-T5

B.2.5 MERLOT-Reserve
https://github.com/rowanz/merlot_reserve

B.3 PINT Implementation Details
We set a batch size of 32 data points, and searched
learning rate between 6e-5, 5e-5 and 4e-5. We op-
timized the model employing the RecAdam (Chen
et al., 2020a) optimizer, with a setting of k = 0.1
and t0 = 1000. The training step was searched
between 8000, 12000, 16000 and 24000.

C Performance Convergence in VCR-CS

It is only necessary that the contrast evaluation
set be sufficiently large enough to verify the sub-
stantiated conclusions about the model behavior
(Gardner et al., 2020). Recent studies (Gardner
et al., 2020; Zhou et al., 2020) have used 70 to 646
contrast sets. Moreover, a study (Yin et al., 2021)
used 108 to 282 QA pairs for evaluating VCR mod-
els. Therefore, we drew the performances of the

Figure 10: Accuracy on original and contrasting exam-
ples of VCR-CS for UNITER and VILLA with varying
volumes of data. The x-axis represents the cumulative
number of VCR-CS pairs on a logarithmic scale.

two models, UNITER and VILLA, according to
the number of VCR-CS data points to validate their
significance for 159 data points. Figure 10 shows
that the overall performance of the models in VCR-
CS gradually converged from approximately 100
data points.

D VCR subset in pilot experiments

As a motivation for VCR-CS construction, we con-
ducted a pilot experiment. In the pilot experiment,
we investigated whether the models can predict
a correct answer without accurate notification of
whom the question is asking. We show the statis-
tics of the subset of VCR validation set used in our
pilot experiment. It took about 83% of the overall
validation dataset.

E Validation and Human Evaluation on
VCR-CS

Our VCR-CS dataset was validated and evaluated
with the help of 14 and 28 workers from AMT,
respectively. VCR-CS dataset was validated, and
human performance was assessed through AMT.
Our worker selection setting was inspired by that of
a previous study (Jimenez et al., 2022). A total of
14 and 28 workers participated in the validation and
evaluation, respectively, of HITs. The validation
instructions and human evaluation instructions can
be found in Figures 11 and 12, respectively. Each
HIT for data validation and evaluation comprised
ten contrast set pairs. The work of the annotators
was validated by in-house workers, who were paid
$2 per HIT if their work was accepted.

https://github.com/jiasenlu/vilbert_beta
https://github.com/ChenRocks/UNITER
https://github.com/zhegan27/VILLA
https://github.com/j-min/VL-T5
https://github.com/rowanz/merlot_reserve
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Figure 11: Instructions for VCR-CS data validation HIT

Figure 12: Instructions for VCR-CS human evaluation HIT


