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Abstract

Abduction has long been seen as crucial for
narrative comprehension and reasoning about
everyday situations. The abductive natural
language inference (αNLI) task has been pro-
posed, and this narrative text-based task aims
to infer the most plausible hypothesis from
the candidates given two observations. How-
ever, the inter-sentential coherence and the
model consistency have not been well exploited
in the previous works on this task. In this
work, we propose a prompt tuning model α-
PACE1, which takes self-consistency and inter-
sentential coherence into consideration. Be-
sides, we propose a general self-consistent
framework that considers various narrative
sequences (e.g., linear narrative and reverse
chronology) for guiding the pre-trained lan-
guage model in understanding the narrative
context of input. We conduct extensive ex-
periments and thorough ablation studies to il-
lustrate the necessity and effectiveness of α-
PACE. The performance of our method shows
significant improvement against extensive com-
petitive baselines.

1 Introduction

Abductive reasoning aims to find the most plau-
sible explanation based on incomplete observa-
tions (Peirce, 1974). Abduction has long been seen
to be essential for understanding narratives (Hobbs
et al., 1993) and reasoning about everyday situa-
tions (Andersen, 1973). Bhagavatula et al. (2020)
investigated the language-based abduction in nar-
rative texts and introduced the abductive natural
language inference (αNLI) benchmark, which is a
multiple-choice question answering task for iden-
tifying the most likely explanation among two hy-
potheses based on two observations. One example
is illustrated in Figure 1, where “O1” and “O2” are

1The source code is available at https://github.com/
HKUST-KnowComp/Alpha-PACE
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Figure 1: A data example from αNLI and its correspond-
ing narrative sequences, including linear narrative and
reverse chronology. Two sequences explain the same
narrative example seamlessly by utilizing the discourse
connectives (i.e., “ in fact,” “ then,” “ as a result,”).

two observations. Abductive reasoning is identify-
ing a possible hypothesis (either H1 or H2) that can
best explain the consequences by evaluating and
comparing the plausibility of these two hypotheses.

Traditional works on the αNLI task focus
on ranking the hypotheses among “H1” and
“H2” (Zhu et al., 2020; Li et al., 2021a) or incor-
porating the knowledge from various sources into
pre-trained language models, such as general com-
monsense knowledge (Mitra et al., 2019; Du et al.,
2021) and social commonsense knowledge (Paul
et al., 2020). However, one crucial piece of infor-
mation, i.e., the inter-sentential coherence and the
consistency of the model, has yet to be investigated
and explored.

These prior studies often concatenate the obser-
vations and hypotheses as the model input, ignoring
the coherence between sentences and their inter-
sentential relations in this narrative-based task. Nar-

https://github.com/HKUST-KnowComp/Alpha-PACE
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rative, as a semiotic representation of a sequence
of events meaningfully connected in a temporal
and causal way (Ryan et al., 2007; Onega and
Landa, 2014), intrinsically encodes the informa-
tion required for abductive reasoning that makes it
logical, sensible, and coherent. For instance, Fig-
ure 1 illustrates that the relation connected from
“H2” to “O2” is a causal relation emphasized by a
discourse connective “as a result” and provides the
extra causal information needed for pre-trained lan-
guage models (PLMs) to comprehend these obser-
vations and hypotheses in depth. Furthermore, the
consistency of a model, a highly desirable charac-
teristic for a model in natural language processing,
refers to the invariant in behavior despite meaning-
preserving alterations in its input. Prior research
has highlighted the significance of mode consis-
tency and revealed that language models could ex-
hibit inconsistencies in various contexts, including
conversation, explanation generation, and factual
knowledge extraction (Adiwardana et al., 2020;
Camburu et al., 2020; Elazar et al., 2021). These
inconsistencies may result in output variability and
local optimality. Since the prompt tuning-based
method reduces the model variability by freezing
the pre-trained model without altering the represen-
tations, we propose a self-consistent prompt tuning
model that considers the inter-sentential coherence
in the αNLI task.

We have noticed that Wang et al. (2022) pro-
posed a self-consistent framework (i.e., sample-
and-marginalize method) that focuses on the an-
swer consistency among diverse reasoning paths.
It relies on an individual prompt to sample vari-
ous outputs and perform majority voting to address
the inconsistency issue that language models suf-
fer. However, this method may not be an optimal
method for the αNLI task as it does not take the
narrative sequences into account. A narrative usu-
ally describes the sequence of events in various
narrative orders, utilizing different inter-sentential
relations. In particular, people can understand the
same narrative context by utilizing alternative nar-
rative sequences instead of linear narrative, such
as nonlinear narrative and reverse chronology. For
example, Figure 1 shows that both linear narrative
and reverse chronology can explain the same nar-
rative seamlessly by employing discourse connec-
tives. In this linguistic phenomenon, two narrative
sequences with different description orders empha-
size different partial information about these events,

while expressing the same narrative context. When
applying machine learning for abductive reasoning,
with context sequences being different, the perfor-
mance of models can vary as pre-trained language
models interpret the context information from di-
verse perspectives and extents.

In this paper, we attempt to imitate the cognitive
process of narrative understanding, and propose
a general self-consistent framework to facilitate a
PLM understanding of the narrative context based
on the above linguistic phenomenon considering
different narrative sequences. For each narrative
sequence, we design a specific prompt template to
distinguish the difference in narrative order while
still incorporating inter-sentential coherence and
self-consistency.

Our contributions are summarized as follows:
1. This work is the first to consider inter-sentential
coherence and self-consistency through the prompt
tuning method in the task.
2. We propose a general self-consistent framework
based on the linguistic phenomenon that allows var-
ious narrative sequences for undertaking abductive
reasoning.
3. We conduct extensive experiments and thorough
ablation studies to illustrate the necessity and effec-
tiveness of the specific prompt template and general
self-consistent framework. The results support our
claims and the success of our proposed model.

2 Related Work

Abductive Reasoning Abduction has long been
thought necessary for comprehending narrative
(Hobbs et al., 1993) and reasoning about every-
day events (Andersen, 1973). Most earlier research
has concentrated on formal logic-based abductive
reasoning (Levesque, 1989; Ng and Mooney, 1990;
Paul, 1993). However, the rigidity of formal logic
restricts its application in the field of NLP. Hence,
Bhagavatula et al. (2020) developed a language-
based abductive reasoning task to help with this,
and they developed baselines that adopt the pre-
trained language models (i.e., BERT (Devlin et al.,
2019)) under their probabilistic framework. To
solve this task, Paul et al. (2020) proposed a multi-
head knowledge attention approach to enhance
RoBERTa (Liu et al., 2019) by incorporating the
structured social commonsense knowledge gener-
ated from COMET (Bosselut et al., 2019). Du
et al. (2021) employed a latent variable to acquire
commonsense knowledge from the event graph and



1042

Input

… O1 HjO2 ……

… O1 Hj O2……

… O1Hj O2……

… O1Hj O2 ……

… O1 HjO2 ……

O1Hj… O2 ……

PLM

choice1

choice2

Label       Tokens

H1 choice1

H2 choice2

VerbalizerNarrative Sequence Patterns

Prompt Pattern

O1

O2

H1

H2

choice1

choice2

choice1

choice2

choice1

choice2

choice1

choice2

choice1

choice2

choice1

choice2

Voting

Overall,[MASK] is plausible.P1 O2 P2 H1 P3 O1 O2 P6 H2 P7 O1P0 choice1: choice2: P5P4It is [MASK]. It is [MASK].

Figure 2: The general self-consistent narrative prompt framework for considering varying narrative sequences.
Two observations (O1, O2) and a pair of hypotheses (H1, H2) are permuted as six different sequence patterns,
where the corresponding task-specific self-consistent prompt pattern includes two prefix prompts P 0, P 4, six cloze
prompts P 1, P 2, P 3, P 5, P 6, P 7, and the manual template “It is [MASK].” and “Overall, [MASK] is plausible.”
The majority voting results align to label predictions finally.

enhance the pre-trained language model RoBERTa.
Apart from incorporating commonsense knowledge
to tackle this task, Zhu et al. (2020) reformulated
the αNLI task as a ranking task using a learning-to-
ranking framework to rank candidate hypotheses.
Li et al. (2021a) proposed an interactive language
model that groups the correct and incorrect hy-
potheses instead of ranking these hypotheses and
adopts joint softmax focal loss for this αNLI task.
However, prior works did not exploit model consis-
tency and various narrative sequences in this task.

Prompt Tuning By relaxing the constraint that
prompts token embedding to be the natural lan-
guage, Li and Liang (2021) and Hambardzumyan
et al. (2021) proposed combining a PLM’s input to-
ken embeddings with additional continuous vectors.
Some studies (Lester et al., 2021; Qin and Eisner,
2021; Li and Liang, 2021) proposed only tuning
continuous prompts, while some works (Han et al.,
2021; Zhong et al., 2021; Liu et al., 2021b; Chan
et al., 2023b) explore combining discrete prompts
and continuous prompts. They tune the embedding
of these additional continuous vectors, and the pa-
rameters of PLMs are frozen in their task. In our
work, we also adopt this strategy, but we focus on
utilizing this approach to investigate the model con-
sistency and the narrative coherence information
underlying various observations and hypotheses in
this task.

3 α-PACE

In order to explore the inter-sentential coherence
and model consistency for the abductive natural
language inference (αNLI) task, we propose the
abductive self-consistent Prompt tuning model on
nAtural language inferenCE task (α-PACE).

3.1 Problem Definition

Abduction is to infer the most reasonable expla-
nation for incomplete observations (Peirce, 1974).
In the αNLI task (Bhagavatula et al., 2020), given
two observations O1

i and O2
i , we choose the most

plausible hypothesis among H1
i and H2

i :

H∗
i = argmax

Hj
i

P
(
Hi = Hj

i | O1
i , O

2
i

)
, (1)

where H∗
i is the most reasonable hy-

pothesis, and i indicates i-th instance
of the dataset D = {(xi, yi)}|D|

i=1 where
xi =

{
O1

i , O
2
i , H

1
i , H

2
i

}
. We will omit the

index i without causing ambiguity in the following
part.

3.2 T5 Foundation Model

T5 (Raffel et al., 2020), an encoder-decoder model,
has been pre-trained on a multi-task mixture of
unsupervised and supervised tasks. The unsuper-
vised denoising training task focused on training
this model to predict consecutive masked spans of
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tokens. For instance, the input “She had the best
sleep she had in a long time.” was corrupted as
“She <X> the best sleep she had in a <Y>.” The
target output was “<X> had <Y> long time </s>”
</s> is the eos_token. The supervised pre-trained
task required the model to perform a sequence-to-
sequence input-output mapping with the instruction
of a task prefix (e.g., “translate German to English:”
or “summarize:”). However, discovering the spe-
cific textual prefix token was arduous and required
enormous human effort. To overcome this issue,
prefix tuning (Li and Liang, 2021) and prompt tun-
ing (Lester et al., 2021) methods were proposed,
which relaxed the constraint of discrete textual to-
kens to continuous and tunable ones.

3.3 Self-Consistent Prompt Tuning Model

To predict the hypothesis H∗
i for each instance

xi, we employed a human-tailored template T (·)
transforming the data instances xi to the prompt
input x̃i = T (xi), and a verbalizer V(·) is utilized
to map a set of words to class labels. Figure 2
illustrates the architecture of α-PACE.

3.3.1 Task-Specific Self-Consistent Prompt
The meticulously devised template, crafted to
investigate inter-sentential coherence and self-
consistency, comprises essential discrete tokens,
masked tokens, and learnable continuous tokens.

Inter-Sentential Coherence For the inter-
sentential coherence, we concatenate the O1

i , H1
i ,

O2
i and O1

i , H2
i , O2

i as two sentence sequences
S1
i and S2

i , instead of directly connect the O1
i , O2

i ,
H1

i , and H2
i together as the model input. These

two sequences are to help PLMs easily capture
the coherence information inherently in various
sequences. Moreover, Chatman (1980) explains
that the story is the context of narrative (the what
of the narrative), and the discourse is the form of
narrative (the how). Specifically, the discourse
is the means by which the narrative content is
expressed (Chatman, 1980; Tomaščíková, 2009).
Therefore, by adding discourse connectives
between two events, the pre-trained language
model can understand the narrative context more
easily and enhance the inter-sentential coherence.
Nevertheless, employing diverse discourse connec-
tives for each data instance presents a formidable
challenge. Hence, we insert the continuous
tunable prompt tokens to represent the discourse
connectives between each sentence (i.e.,O1

i , H1
i ,

Class Label First [MASK] Second [MASK] Third [MASK]

H1 plausible not plausible choice1
H2 not plausible plausible choice2

Table 1: The label word set on αNLI task.

O2
i and O1

i ) to learn the coherence information
between these sentences. Since some discourse
connectives naturally start before the first sentence
(such as “since” and “although”), we assign the
continuous tunable prompt tokens before the first
sentence of the sentence sequence. We follow Liu
et al. (2021a) to name the continuous prompts in
our method. The continuous prompts are denoted
as {Pk ∈ Rpk×d|k = 0, 1, · · · , 7}, where the
P0 and P4 serve as the prefix prompt to learn
the instruction guiding the model to perform the
αNLI task by following Lester et al. (2021). Other
prompt tokens correspond to the cloze prompt
between two different sentences (or before the
first sentence) utilized to represent the discourse
connectives to learn the coherence information
between sentences. pk is the length of the k-th
prompt.

Self-Consistent Prompt For the self-consistency
of model output, three [MASK] tokens are in-
cluded: a [MASK] combined with the discrete to-
ken “is plausible.” forming the manual template
“Overall, [MASK] is plausible.” for facilitating
model inference, and each of another two [MASK]
merges with the discrete token “, it is” to consti-
tute “, it is [MASK]” append after each sentence se-
quence. Furthermore, the discrete tokens “choice1:”
and “choice2:” are placed before sequences S1

i

and S2
i respectively for splitting two sequences.

These three [MASK] tokens are used for achieving
the purpose of model self-consistency by ensuring
three model outputs consistently. By considering
the mentioned sentence sequences and the exam-
ple in Figure 1, humans are able to recognize that
H2

i is more plausible, resulting from the sentence
sequence S1

i is not plausible or less plausible than
S2
i . In this case, the pre-trained language model

guided to predict “not plausible” for S1
i , “plausi-

ble” for S2
i , and “choice2” in the third mask in the

learning process. Throughout this learning process,
the model will learn the output consistency ability.
Therefore, we introduce three masks in our model
to predict the plausibility of S1

i and S2
i , and the last

mask for final determined labels (i.e., “choice1” or
“choice2” representing the H1

i and H2
i ).
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Self-Consistent Verbalizer A typical verbalizer
usually maps a label y to a single answer token z
or a series of spans z1, z2, · · · greedily (Schick
and Schütze, 2021; Liu et al., 2021a). We extend
it by mapping two class labels (i.e., H1

i and H2
i )

to three tokens, i.e. {Hj} → Z × Z × Z , where
Z is the vocabulary and three [MASK] tokens
denoted as z1, z2, and z3. Using the tailored
prompt template featuring three [MASK]s and
the verbalizer, the probability distribution over
{Hj} can be formalized as the joint probabilities
of z1, z2, and z3, i.e. Pr(Hj | x̃i) = Pr(V(Hj) |
x̃i) = Pr(z1i = hj3, z

2
i = hj1, z

3
i = hj2 | x̃i), where

a hypothesis Hj consists of hj1 (the plausibility
of S1

i ), hj2 (the plausibility of S2
i ), and hj3 (the

probability of H1
i and H2

i ). Table 1 summarizes
the label words. Given that T5 is able to predict
masked tokens synchronously, the joint probability
can be written as

Pr(Hj | x̃i) =
3∏

k=1

Pr(zki = vk(Hj) | x̃i), (2)

where vk(·) : {Hj} → Z is the submap of V(·)
for the k-th [MASK]. And then the final learning
objective of α-PACE is to maximize

J =
1

|D|
∑

(xi,yi)∈D

log
3∑

k=1

Pr(zki = vk(Hj) | x̃i). (3)

The final prediction of H∗
i by choosing the maxi-

mum joint probability (i.e., self-consistency score)
as Eq. (2).

3.4 General Self-Consistent Narrative
framework

The self-consistent framework introduced by pre-
vious studies may not be the optimal approach
for the αNLI task due to its lack of considera-
tion for various narrative sequences (Wang et al.,
2022). Furthermore, Bhagavatula et al. (2020) and
their follow-up works (Du et al., 2021; Paul et al.,
2020) only form probabilistic models focusing on
the Linear Chain Model (Pr(O2|Hj)P (Hj |O1),
where Hj can be H1 or H2) and Fully Con-
nected Model (Pr(O2|Hj , O1)P (Hj |O1)). This
means their framework primarily considers the
given fixed time sequence, i.e., O1, Hj , and O2,
and may not align with the representation of the
pre-trained language model. Therefore, we per-
mute {O1, O2, (H1, H2)} and design six narrative
sequence patterns for this task according to the or-

Train Dev Test Leaderboard

169,654 1,532 3,059 3,040

Table 2: Statistics of ART and αNLI leaderboard data.

ders of observations and the pair of hypotheses.
The six patterns are illustrated in the overall frame-
work in Figure 2. For example, the O2HO1 se-
quence pattern means that we put Hj in the mid-
dle of O2 and O1 and try to utilize the possible
inter-sentential coherence information among them
in this order. After receiving the joint generation
probabilities from each pattern, we normalize the
probability distribution between “H1” and “H2 ”
to make it more contrastive. Then, we perform the
majority voting over six narrative sequence pattern
distributions and map token predictions to the label
prediction.

4 Experimental Setup

4.1 αNLI Dataset

The experiments are conducted on the ART dataset,
aimed at assessing the performance of our model on
the αNLI task (Bhagavatula et al., 2020). The ob-
servations of ART data were collected from a story
corpus known as ROCstory (Mostafazadeh et al.,
2016), while the corresponding hypotheses were
generated by crowdsourcing. Moreover, αNLI has
a dedicated leaderboard with 3,040 test instances
to measure the generalizability of the models. The
detailed data statistics can be found in Table 2. By
following previous work (Bhagavatula et al., 2020;
Du et al., 2021; Zhu et al., 2020), we employ accu-
racy as an evaluation metric to evaluate the empiri-
cal performance of our method in experiments and
ablation studies.

4.2 Baselines

The implementation detail of α-PACE is displayed
in Appendix A.2, and we compare α-PACE with
two categories of competitive baselines. The first
category is the previous state-of-the-art (SOTA)
baselines, such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), DeBERTa (He et al.,
2021), McQueen (Mitra et al., 2019), MHKA
(Paul et al., 2020), ege-RoBERTa-large (Du et al.,
2021), L2R2 (Zhu et al., 2020), IMSL (Li et al.,
2021a), UNIMO (Li et al., 2021b), and UNICORN
(T5) (Lourie et al., 2021). Another category of
baselines is T5-based models, and we include the
fine-tuned T5 model to illustrate the performance
gain of our model. Furthermore, the prompt-based
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Model Dev (%) Test (%)

Random - 50.40
BERT (Devlin et al., 2019) 69.10 68.90
RoBERTa (Liu et al., 2019) 85.76 84.48
McQueen (Mitra et al., 2019) 86.68 -
MHKA (Paul et al., 2020) 87.44 87.12
ege-RoBERTa (Du et al., 2021) - 87.50
L2R2 (Zhu et al., 2020) 88.44 86.11
RoBERTa-L+IMSL (Li et al., 2021a) 89.20 -
Prefix-Tuning (T5) (Lester et al., 2021) 84.20 83.88
Prompt-Tuning (T5) (Li and Liang, 2021) 86.23 85.98
Fine-Tuning (T5) (Raffel et al., 2020) 87.07 87.68
Fine-TuningGeneral Consistency(T5) 87.54 88.05
α-PACEO1HO2 & w/o Consistency(T5) 90.60 89.93
α-PACEHO1O2 & Task Consistency(T5) 92.43 91.83
α-PACEGeneral & Task Consistency(T5) 93.15 92.54
Human Performance - 91.40

Table 3: The accuracy (%) is evaluated on the αNLI
task. The approximation of learnable parameters for
all models is displayed in Table 10 in Appendix A.5.
Fine-TuningGeneral Consistency(T5) means the fine-tuned
T5 model with our general narrative self-consistent
framework, which considers six narrative sequences.
α-PACEO1HO2 & w/o Consistency means this model with a
single mask to predict the "choice1" or "choice2" and
the O1HO2 pattern is the best model among all patterns.

methods such as Prefix-Tuning (T5) (Li and Liang,
2021) and Prompt-Tuning (T5) (Lester et al., 2021)
are included as baselines for exhibiting the exact
contribution of our proposed method. The imple-
mentation details of the T5 fine-tuning model are
described in Appendix A.3, while Prefix-Tuning
and Prompt-Tuning methods are appended in Ap-
pendix A.4. More details of the baselines are in
Appendix A.1.

5 Experimental Results

5.1 Main Results

Table 3 and Table 4 report the main experimen-
tal results on the αNLI task, from which we de-
rive the following conclusions. First, our model
significantly outperforms all competitive baselines
on the αNLI task. Specifically, our method (i.e.,
α-PACEHO1O2) achieved a considerable improve-
ment of 5.36% on the development set, 4.15% on
the test set over the fine-tuning of the T5 model
in the αNLI task. It demonstrates that our model
effectively utilizes a task-specific self-consistent
method to validate the model’s output and final-
ize a consistent answer. Second, α-PACEHO1O2
excels the prompt-based baselines (e.g., Prefix-
Tuning and Prompt-Tuning) with at least 5.85%
test accuracy. This result exhibits the exact contri-
bution of the task-specific self-consistent tailored
prompt tuning-based model. Third, by adopt-
ing the general self-consistent narrative prompts,
α-PACEGeneral & Task Consistency obtains 92.54% test

Model Leaderboard (%)

Random 50.41
BERT (Devlin et al., 2019) 66.75
RoBERTa (Liu et al., 2019) 83.91
McQueen (Mitra et al., 2019) 84.18
ege-RoBERTa (Du et al., 2021) 85.95
L2R2 (Zhu et al., 2020) 86.81
UNICORN (T5)(Lourie et al., 2021) 87.34
RoBERTa-L+IMSL (Li et al., 2021a) 87.83
DeBERTa (He et al., 2021) 89.70
DeBERTa(Ensemble) (He et al., 2021) 90.00
UNIMO (Li et al., 2021b) 91.18
α-PACEO1HO2 & w/o Consistency (T5) 89.51
α-PACEHO1O2 & Task Consistency(T5) 91.61
α-PACEGeneral & Task Consistency(T5) 92.01
Human Performance 92.90

Table 4: The accuracy (%) is evaluated on the test
dataset from the αNLI task leaderboard. The approxima-
tion of learnable parameters for all models is displayed
in Table 10 in Appendix A.5.

accuracy and 92.01% accuracy on the leaderboard
test set. This result demonstrates that eliciting the
inter-sentential coherence from the pre-trained lan-
guage model and utilizing a general self-consistent
framework considering six narrative sequences can
partially solve this abductive reasoning task.

5.2 Ablation Study
To better study the factors of the α-PACE model,
we have devised numerous ablations on the joint
probability for self-consistency, general narrative
self-consistency, continuous prompt length, prompt
engineering, and model size.

Joint Probability for Task-Specific Self-
Consistency In our method, by estimating
the likelihood of three masks to achieve self-
consistency purposes, the dependencies of these
three masks are exploited to enhance the ability
of the pre-trained language model on this αNLI
task. According to the experimental results in
Table 5, we can conclude that 1) The performance
of our task-specific self-consistent prompt model
incorporating the signals from all three masks
surpasses other models (e.g., α-PACEFirst & Second),
emphasizing the significance of dependencies and
effectiveness of self-consistency; 2) The model
with a single mask (e.g., α-PACEFirst), without
integrating information from the other two masks,
exhibits the worst performance; 3) The model with
the third mask (e.g., α-PACESecond & Third), which
selects the best hypothesis, performs better than
other models that lack the third mask. This finding
highlights the importance and necessity of the
third mask, summarizing the overall plausibility of
two narrative sequences.
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Model Dev (%) Test (%)
α-PACEFirst 87.41 86.94
α-PACESecond 88.98 88.09
α-PACEThird 90.60 89.93
α-PACEFirst & Second 88.78 89.03
α-PACEFirst & Third 90.24 89.48
α-PACESecond & Third 91.05 90.38
α-PACESM 91.20 90.13
α-PACEGeneral Consistency 91.78 90.64
α-PACESM & Task Consistency 92.43 92.06
α-PACEGeneral & Task Consistency 93.15 92.54

Table 5: Ablation study in the joint probability for
task-specific self-consistency and general narrative
self-consistency on our model with HO1O2 patterns.
α-PACESM means adopting the sample-and-marginalize
method proposed by Wang et al. (2022) on our prompt
model without the task-specific discrete prompt tokens.

General Narrative Self-Consistency The prior
research on the self-consistent prompt-based
method (i.e., sample-and-marginalize method) re-
lied on an individual prompt to sample various out-
puts and perform majority voting to resolve the
inconsistency issue that language models suf-
fered (Wang et al., 2022). Therefore, we con-
ducted experiments to compare the performance
of both this method and our proposed general
self-consistent method on our model, and the re-
sult is displayed in Table 5. By combining the
likelihood of various outputs, the performance of
sample-and-marginalize is slightly improving over
the original single pattern-based model. Simulta-
neously, our general self-consistent approach sur-
passes this sample-and-marginalize method in two
settings, with or without considering task consis-
tency. Therefore, the results evidence the signif-
icance of our linguistic phenomenon-based self-
consistent prompt, which considers various narra-
tive sequences.

Prompt Length & Prompt Engineering & Model
Size Furthermore, we conduct the ablation study
on the continuous prompt length, prompt engineer-
ing, and the model size of our model in both few-
shot and full training configurations. The details
we described are in Appendix B.1. The vital infor-
mation worth mentioning is that without inserting
prefix prompt and cloze prompt into our prompt
template, the performance will significantly drop,
and it illustrates the necessity of these two parts of
learnable prompt tokens in our model.

5.3 Few-Shot Setting

Few-Shot Setting Comparing with Prompt-
based methods With the sampled 100 training in-

Model Dev (%) Test (%)

BERT-large 49.96±0.73 50.79±0.60

RoBERTa-large 58.20±2.78 58.68±2.80

McQueen 60.38±3.23 58.71±2.25

ege-RoBERTa-large 65.80±4.30 65.18±3.27

L2R2 64.81±2.40 65.68±3.33

Fine-Tuning(T5) 69.57±2.01 71.18±2.06

Prefix-Tuning(T5) 73.96±5.36 72.29±5.10

Prompt-Tuning(T5) 76.34±1.70 75.38±1.83

α-PACEO1HO2(T5) 82.25±1.09 81.90±1.22

α-PACEGeneral Consistency(T5) 83.48±0.93 83.15±0.93

Table 6: Model accuracy (%) using 100 training in-
stances compared with prompt-based models. We re-
port the mean and standard deviation of five runs with
different random seeds.

Model Test (%)
Random 50.40
ChatGPTPrompt 71.07
ChatGPTTask Consistency 72.57
ChatGPTSample-and-Marginalize 73.17
ChatGPTGeneral & Task Consistency 74.42

Table 7: The performance of ChatGPT performs on the
test set of αNLI task. ChatGPTTaskConsistency

means utilizing the concatenate the O1,O2,
and Hj as the HO1O2 narrative patterns, in-
stead of ChatGPTPrompt treat it as multi-choice
questions. ChatGPTSample-and-Marginalize means a
prompt template sampling six times while the
ChatGPTGeneral & Task Consistency means sampling with six
narrative patterns.

stances, we summarize our experimental results for
the αNLI task in Table 6. We report the mean accu-
racy and standard deviation for five random seeds.
As shown in Table 6, our proposed model consis-
tently outperforms other prompt-based models and
appears more beneficial in this few-shot setting.
Both our general consistency model and single nar-
rative pattern model provide a significant gain over
all stated baselines. With training on 100 instances,
we observe that our proposed model with a single
narrative sequence pattern significantly exceeds the
Fine-Tuning (T5) in accuracy on the dev and test
datasets by 12.68% and 10.72%, respectively. Fur-
thermore, compared with the prompt-based models,
our model still surpasses at least 6.52% test accu-
racy. The large gap between our model and other
T5-based models emphasizes the significance of the
task-specific self-consistent method by considering
the inter-sentential coherence information, proving
that our model can effectively elicit and utilize tem-
poral and causal information between observations
and hypotheses. Moreover, after considering six
narrative patterns, our α-PACEGeneral Consistency out-
performs all our single pattern models by at least
1.23% and 2.06% in validation and test accuracy,
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Figure 3: Performance comparison by adopting dis-
course connective in different settings. All models
are training with 100 training instances.

Patterns Discourse Connectives

O1O2H meanwhile, in fact, because
O1HO2 in fact, as, as a result
HO1O2 because, meantime, as a result
HO2O1 if, as a result, after
O2O1H meanwhile, if, as
O2HO1 in fact, as long as, because

Table 8: Top selected connectives for different pat-
terns based on the model performance in the few-
shot learning setting.

Pattern Example

O1O2H Meanwhile, Carl went to the store desperately searching for flour tortillas for a recipe. In fact,
Carl left the store very frustrated because the store had corn tortillas, but not flour ones.

O1HO2 In fact, Carl went to the store desperately searching for flour tortillas for a recipe. As the store
had corn tortillas, but not flour ones. As a result, Carl left the store very frustrated.

HO1O2 Because the store had corn tortillas, but not flour ones. Meantime, Carl went to the store des-
perately searching for flour tortillas for a recipe. As a result, Carl left the store very frustrated.

HO2O1 If the store had corn tortillas, but not flour ones. As a result, Carl left the store very frustrated
after Carl went to the store desperately searching for flour tortillas for a recipe.

O2O1H Meanwhile, Carl left the store very frustrated if Carl went to the store desperately searching
for flour tortillas for a recipe as the store had corn tortillas, but not flour ones.

O2HO1 In fact, Carl left the store very frustrated as long as the store had corn tortillas, but not flour
ones. Because Carl went to the store desperately searching for flour tortillas for a recipe.

Table 9: Case study for discourse connectives of different model patterns using the same case. The learned
connectives are indicated in boldface.

respectively. We also study the influence of various
training examples. We randomly subsample the en-
tire dataset to obtain smaller datasets of size {1, 5,
10, 20, 50}. More details for the performance are
shown in Figure 9 and Figure 10 in Appendix B.2.

5.4 Prompt Adaptation For ChatGPT
With the powerful ability of LLMs exhibited
on numerous tasks, we are curious about the
capability of ChatGPT on zero-shot abductive
commonsense reasoning tasks. Therefore, we
test the ability of ChatGPT with four designed
templates. The performance is shown in Ta-
ble 7. All the baselines can outperform random
prediction. ChatGPTTaskConsistency improves
the performance by 1.5% over ChatGPTPrompt

by utilizing the prompt template in the task-
specific consistency method. We also find
that the general self-consistent prompting
(ChatGPTGeneral & Task Consistency) demonstrates the

additional performance boost over other baselines.
Compared with ChatGPTSample-and-Marginal, instead
of an individual prompt template sampling six
times, our narrative framework, which considers
six sequences, performs better on the αNLI task.

5.5 Interpretability
An ideal interpretable prompt should be composed
of natural language that makes it obvious why
this prompt elicited such behavior from the model
(Lester et al., 2021). Since the prompt tuning
process only updates the prompt parameters and
freezes the pre-trained language model, the learned
prompt is expected to encode the inter-sentential
coherence information (e.g., temporal and causal
information) in our method. Therefore, the near-
est neighbors discourse connectives of our learned
cloze prompt (used to represent the discourse con-
nectives in each pattern) should reasonably and ap-
propriately describe the relationship between each
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sentence in various sentence sequences. The moti-
vation of the interpretability section is to provide a
view of the perspective of the significance of dis-
course connective and explore the possibility of
different narrative sequences on the αNLI task.

To obtain the nearest neighbors discourse con-
nectives of these continuous cloze prompts in our
method, we compute the cosine similarity between
the averaged representation of learned cloze prompt
tokens and the embedding vector of discourse con-
nectives. The top selected connectives for each
sequence pattern are shown in Table 8, and more
details of discourse connectives can be found in
Appendix B.3. We use the data example utilized
to illustrate the full-connect model in Bhagavatula
et al. (2020) and insert the top selected connectives
in between the sentences to form a narrative text,
as shown in Table 9. We observe that the learned
discourse connectives can describe the same collec-
tion of sentences in various sentence sequences in
a rational and acceptable way. More case studies
are shown in Table 13 in Appendix B.3.

We further test the performance on three input
settings: (1) without continuous prompts inserted,
(2) with inserting the top selected connectives as
the discrete prompts, and (3) with the cloze con-
tinuous prompts. The results are shown in Fig-
ure 3, and we see that the discrete connective is
substantially superior to the without one. This find-
ing underscores the plausibility and effectiveness
of adopting the discourse marker to elicit coher-
ent information from PLM. Moreover, the overall
performance of our method with the continuous
prompts outperforms the other two settings except
for the O1HO2 pattern, where the discrete prompts
are slightly better than the continuous prompts. It
emphasizes the significance of utilizing continuous
prompts to represent the connectives.

6 Conclusion

We developed a model that considers inter-
sentential coherence and self-consistency through
prompt tuning for improving the narrative under-
standing on the αNLI task. Moreover, we propose
a general self-consistent framework based on lin-
guistic phenomena. The extensive experiments evi-
dence the effectiveness of our proposed method.

Limitations

Since all utilized information is only elicited from
pre-trained language models (PLMs), our method

relies on information or knowledge implicitly
stored in the PLMs and the task dataset. This
limitation restricts the capability owing to the re-
porting bias (Gordon and Durme, 2013) in the pre-
trained language models (PLMs). Moreover, our
method is limited to the information type that can
be elicited from PLMs. The future work for the
constraint is to incorporate more abundant and suf-
ficient knowledge to equip the model with more
vital abilities. A possible method is adopting the
grounding method (Lin et al., 2019) or retrieving
the relevant nodes in the knowledge graph for each
data instance, providing more contextual informa-
tion and enhancing the capability of the model on
this task.
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A Appendix for Experimental Settings

A.1 Baselines
We compare α-PACE with the following competi-
tive baselines :
(a) BERT (Devlin et al., 2019) is a language model
trained with masked-language modeling and the
next sentence prediction objective.
(b) RoBERTa (Liu et al., 2019) is a powerful en-
coder that has the same architecture as BERT with
robust optimization and more pre-training data.
(c) McQueen (Mitra et al., 2019) is a method to
integrate external knowledge (e.g., commonsense
knowledge) into a pre-trained language model (i.e.,
RoBERTa) to address the αNLI task.
(d) MHKA (Paul et al., 2020) enhances RoBERTa
by incorporating the social commonsense knowl-
edge for the αNLI task.
(e) ege-RoBERTa-large (Du et al., 2021) is a vari-
ational autoencoder-based model that learns com-
monsense knowledge by utilizing a latent variable
for guiding the abductive reasoning task.
(f) L2R2 (Zhu et al., 2020) reformulates the αNLI
task as a ranking problem using the learning-to-
ranking framework to rank candidate hypotheses.
(g) IMSL (Li et al., 2021a) is an interactive lan-
guage model that groups the correct/wrong hy-
potheses instead of ranking the hypotheses and
adopts joint softmax focal loss for this αNLI task.
(h) Fine-tuning (T5) (Raffel et al., 2020) is an
encoder-decoder model pre-trained on a multi-task
mixture, where each task is converted into a text-
to-text format. T5 performs well out of the box on
many tasks by prepending a different prefix to the
inputs.
(i) Prefix-Tuning (T5) (Li and Liang, 2021): a
method concatenates the tunable prefix tokens be-
fore the discrete input text, keeps language model
parameters frozen, and optimizes these continuous
task-specific prefix tokens. The implementation
details of the Prefix-Tuning methods are appended
in Appendix A.4.
(j) Prompt-Tuning (T5) (Lester et al., 2021): a
vanilla Prompt Tuning-based model conditioning
on a frozen model, releasing the constraints of
the prompt templates from discrete to learnable
prompts. The implementation details of the prompt
tuning methods are appended in Appendix A.4.
(k) UNICORN (T5) (Lourie et al., 2021) is a univer-
sal commonsense reasoning model with multi-task
pre-training based on T5-11b.
(l) DeBERTa (He et al., 2021) improves RoBERTa

with disentangled attention and enhanced mask de-
coder training. It is only trained with half of the
data used in RoBERTa.

A.2 α-PACE Implementation Details
Our method is built upon the FLAN-T5 (Chung
et al., 2022) model was an enhanced version of
the T5 model (Raffel et al., 2020) that has been
finetuned in a mixture of tasks. We primarily use
the 11B version but also experiment with various
sizes (Small, Base, Large, and 3B versions) for
the ablations. All the T5-based baselines are built
upon the same FLAN-T5 model size (e.g., Fine-
Tuning, Prompt-Tuning, and Prefix-Tuning). The
general configuration follows the setting in Lester
et al. (2021). For the full-data training setting, the
batch size and maximum sequence length are 1 and
350. We set the prefix length p0, p4 as 30, and all
remaining cloze prompt lengths as 3. We adopt an
Adafactor optimizer by selecting a learning rate in
{8e-4, 8e-5, 6e-5, 5e-5, 3e-5}, which yields the best
performance on the dev set. The training is per-
formed using cross-entropy loss, and the training
steps are 30,000.

For the few-shot learning, we follow the full
dataset setting except for the batch size and training
steps being 3 and 5,000. Furthermore, we primarily
use training set size K = 100 but explore K = {1,
5, 10, 20, 50} in the ablations. We sample the K
examples from the full training data with five fixed
seeds {55, 58, 68, 72, 1,000}. In this setting, we
report the performance by averaging results along
with the variance obtained for five different seeds.
Prompt tuning is conducted on two NVIDIA RTX
A6000 GPUs, and it takes around 52 hours for full-
data training and 3 hours for few-shot training.

A.3 Implementation Details of T5 Model
Fine-Tuning

All the fine-tuning experiments are run on a server
with 4 V100-32GB GPUs. When fine-tuning the
11b version, we use DeepSpeed (Rajbhandari et al.,
2020) with ZeRO stage 3 to offload parameters to
memory.
Model Input and Output The T5-based model
serves as a competitive baseline in the main
experiment by adopting the same model and
model size. We use the template “Observation
1: {}\nHypothesis 1: {}\nHypothesis 2:
{}\nObservation 2: {}” to transform a dataset
instance into an input string. The model is asked to
generate either Hypothesis 1 or Hypothesis 2 as
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hypothesis1
hypothesis2

Prediction

O2H1 H2O1 [MASK]P0

hypothesis1
hypothesis2

Prediction

P1 O2P2H1 P3O1 H2 [MASK]P0 P4

hypothesis1
hypothesis2

Prediction

O2H1 H2O1 [MASK]

Fine-Tuning

Prefix-Tuning

Prompt-Tuning

Figure 4: Fine-Tuning, Prefix-Tuning, and Prompt Tuning Templates. Two prompt tuning-based templates perform
best among all designed templates in the template searching process for these baselines. The order of observations
and hypotheses following the fully connected model proposed by Bhagavatula et al. (2020).

the predicted label. The order of two observations
and two hypotheses following the fully connected
model proposed by Bhagavatula et al. (2020) and
shown in Figure 4 in Appendix.
Hyperparameter Search We first conduct a pre-
liminary experiment to determine the range of
hyper-parameters. For base and large model sizes,
we set the per-device train and validation batch size
as 16 and 64, respectively. For the 11b version, they
are set as 8 and 32. Then, we search for the optimal
learning rate within {3e-5, 1e-4, 3e-4}. The test
performance of the model with the best validation
accuracy is reported.

A.4 Implementation Details of the
Prefix-Tuning and Prompt Tuning

The prefix tuning (Li and Liang, 2021) and prompt
tuning (Lester et al., 2021) methods have been im-
plemented as the baseline in full data learning and
few-shot setting for comparison with our model.
For a fair comparison, we count all the discrete
textual tokens (non-tunable tokens) and the tunable
tokens in our prompt template. There are 55 to-
kens, including 46 tunable tokens and nine textual
tokens. In these two baselines, we will insert 55
tunable tokens into the respective prompt template.
Moreover, we also adopt the same scale of T5 for
these two baselines.

Prefix-Tuning The overall configuration of this
model follows the settings of prefix tuning (Li and
Liang, 2021). The batch size and maximum se-

quence length of this model are 8 and 350. The
training is performed using cross-entropy loss with
an Adafactor optimizer (Shazeer and Stern, 2018).
A learning rate selecting in {3e-1, 5e-1, 8e-1}
yields the best performance on the validation set,
and the training steps are 30,000. We insert 55 pre-
fix tunable tokens into the prefix part of the input
template. Since Bhagavatula et al. (2020) stated
that the given fixed time sequence (i.e., O1, Hi,
O2) perform best among all the sequence, the order
of two observations and two hypotheses is shown
in Figure 4.

Prompt-Tuning The overall configuration of this
model follows the settings of prompt tuning (Lester
et al., 2021). The batch size and maximum se-
quence length of this model are 8 and 350. The
training is performed using cross-entropy loss, an
Adafactor optimizer (Shazeer and Stern, 2018), and
a learning rate selecting in {3e-1, 5e-1, 8e-1} yields
the best performance on the validation set, with
30,000 training steps. We insert 55 tunable tokens
evenly into inter-sentences or between sentences
and mask tokens in the input template of this model.
The order of two observations and two hypotheses
is the same as the above method shown in Figure 4.

A.5 The Approximation of Learnable
Parameters

To demonstrate the efficiency of our method, we
attach the approximation of the learnable param-
eters for all models, including our model and the
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Model Parameters
BERT-large (Devlin et al., 2019) 340M
RoBERTa-large (Liu et al., 2019) 355M
McQueen (Mitra et al., 2019) 355M
MHKA (Paul et al., 2020) 355M
ege-RoBERTa-large (Du et al., 2021) 355M
L2R2 (Zhu et al., 2020) 355M
IMSL (Li et al., 2021a) 355M
DeBERTa-large (He et al., 2021) 304M
UNICORN (T5) (Lourie et al., 2021) 11,000M
Prompt Tuning (Lester et al., 2021) 1M
Prefix Tuning (Li and Liang, 2021) 1M
Fine-Tuning (Raffel et al., 2020) 11,000 M
α-PACEHO2O1 34 M

Table 10: The approximation of tunable parameters
for models. Most baselines use RoBERTa-large as the
backbone model, and their tunable parameters are ap-
proximated to be similar.
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Figure 5: Performance of our method with dif-
ferent numbers of prefix continuous prompt tokens
(p0, p4) on the test dataset using 100 training in-
stances. The red line indicates the performance of
α-PACEGeneral & Task Consistency.

baselines. The approximation of the learnable pa-
rameters is displayed in Table 10 in the Appendix.

B Appendix for Evaluation Result and
Analysis

B.1 Ablation study on the α-PACE

Prompt Length Within our designed prompt
template, two parts of continuous prompts are con-
catenated with the input sentences. The first part is
two prefix prompts with p0 and p4 tokens inserted
before template tokens “choice1” and “choice2”.
The other part is the cloze prompts inserted to two
positions: p1 (or p5) tokens between “choice1” (or
“choice2”) and the first input sentence, and p2, p3

(or p6, p7) tokens between input sentences (obser-
vations or hypotheses).

For the prefix prompt, we train prompts for our
model on 100 training instances by varying the
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Figure 6: Performance of our method with dif-
ferent numbers of cloze continuous prompt tokens
(p1, p2, p3, p5, p6, p7) on the test dataset using 100 train-
ing instances. The red line indicates the performance of
α-PACEGeneral & Task Consistency.
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Figure 7: Performance (test accuracy %) comparison on
various T5 model sizes in the few-shot and full training
settings on the test set.

prefix prompt length in {None, 20, 30, 40, 80}
while keeping the other setting unchanged. Figure
5 shows that the performance of most models with
continuous prefix prompts exceeds the “None” one.
Inserting the prefix prompt is critical to achieving
good performance. After increasing beyond 30
prefix prompt tokens, the performance for different
patterns becomes unstable, and some patterns yield
low performance, which hurts the performance of
the voting method.

For the cloze prompt, we tune our model on
100 training instances by varying the cloze prompt
length in {None, 2, 3, 4} while fixing other settings.
The result is given in Figure 6, and the overall per-
formance of our model with the cloze prompt is
better than the “None” one. Hence, inserting the
cloze prompt is another essential factor in obtaining
good performance. With the cloze prompt excess
of three prompt tokens, the performance of each
pattern does not improve significantly, and the per-
formance of the voting method falls.



1055

P1 O2 P2 H1 P3 O1 Overall, [MASK] is plausible.P0 choice1: P4It is [MASK]. P5 O2 P6 H2 P7 O1choice2: It is [MASK].Optimal

P1 O2 P2 H1 P3 O1 Overall, [MASK] is plausible.P0 choice1: P4[MASK]. P5 O2 P6 H2 P7 O1choice2: [MASK].Template1

P1 O2 P2 H1 P3 O1 Overall, [MASK] is plausible.P0 P4It is [MASK]. P5 O2 P6 H2 P7 O1 It is [MASK].Template2

P1 O2 P2 H1 P3 O1 [MASK]P0 choice1: P4It is [MASK]. P5 O2 P6 H2 P7 O1choice2: It is [MASK].

P1 O2 P2 H1 P3 O1 [MASK]P0 P4[MASK]. P5 O2 P6 H2 P7 O1 [MASK].

Template3

Template4

Figure 8: α-PACE prompt template searching. The “Optimal Templates” is the finalized optimal template for
implementing experiments to compare with extensive baselines. The red rectangle highlights the modified parts.

Models Dev Test
Optimal Template 82.25±1.09 81.90±1.22

Template 1 81.81±0.59 80.69±1.19

Template 2 81.78±0.34 81.59±1.90

Template 3 81.98±1.09 81.26±1.22

Template 4 80.61±0.91 80.48±0.95

Table 11: Ablation study on the discrete textual prompt
tokens of α-PACE on αNLI task in few-shot (100 in-
stances) setting.

Prompt Engineering Apart from the continuous
prompt in our designed prompt template, there are
some tokens in natural textual form and discrete
non-tunable tokens. As shown in Figure 8, we grad-
ually remove different portions of these discrete
textual tokens and evaluate their importance. The
performance shown in Table 11 demonstrates that
all discrete textual prompts are essential for achiev-
ing satisfactory performance compared with those
without manual tips (i.e., Template 4). Among all
discrete prompt tokens, the portion "It is <mask>"
significantly affects the performance of our model
as this discrete part facilitates eliciting the evalua-
tion of PLMs on the plausibility of two hypotheses.

Model Size We compare the performance of var-
ious T5 model sizes in both few-shot and full train-
ing configurations. As demonstrated in Figure 7,
increasing the model size from T5-Large to T5-11B
results in an average accuracy increase of around
10% for the few-shot setting and 6% for the full
data learning setting. The results imply that a larger
model encodes richer narrative knowledge and is
advantageous for effectively eliciting more narra-
tive knowledge, which is also our motivation for
experimenting with pre-trained models as large as
feasible.

B.2 Training Instances
To further study the influence of various training ex-
amples. We randomly subsample the entire dataset

to obtain smaller datasets of size {1, 5, 10, 20, 50}.
More training examples means more narrative con-
text information our model can learn. Figure 9
shows that the average performance of six patterns
of α-PACE increases as the number of training in-
stances increases and consistently keeps a large
gap against other baselines (e.g., RoBERTa). In-
terestingly, with a single training instance, the per-
formance of the HO1O2 pattern (from Figure 10)
achieves 57.37% test accuracy, much greater than
the other five patterns in our model. Therefore,
employing an instance-specific narrative sequence
pattern may give the pre-trained model a better
outcome on limited training instances. This again
verifies the motivation for why we involve six narra-
tive sequence patterns in our method. Furthermore,
all prompt-based methods received excellent per-
formance in this few-shot setting, consistent with
previous works (Lester et al., 2021; Li and Liang,
2021). Furthermore, when baselines train with ten
times more data than our method, our single model
still outperforms most of these baselines. For exam-
ple, in Figure 9, the performance of α-PACEO1HO2
training with five instances significantly exceeds
almost all baseline training with 50 instances.

B.3 Discourse Connectives in Interpretability
Section

The Penn Discourse Treebank 2.0 (PDTB 2.0)
is a commonly used dataset in discourse parsing
tasks and is a large-scale corpus containing 2,312
Wall Street Journal (WSJ) articles annotated by
experts (Prasad et al., 2008). There are many dis-
course connectives in PDTB 2.0 that belong to var-
ious discourse relations. Discourse relations are of
utmost importance for achieving textual coherence
and are deemed an essential step for a multitude of
downstream tasks that involve more context, includ-
ing but not limited to question answering (Jansen
et al., 2014), text generation (Bosselut et al., 2018),
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Figure 9: Model performance comparison by using
various numbers of the training instances on the test set.
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Figure 10: Model performance comparison by using
various numbers of the training instances on the test set.

and argument mining (Liu et al., 2021c; Chan and
Chan, 2023).

To obtain the nearest neighbors discourse con-
nectives of these continuous cloze prompts in our
method, we compute the cosine similarity between
the averaged representation of learned cloze prompt
tokens and the embedding vector of discourse con-
nectives. We acquired these discourse connectives
from the Penn Discourse Treebank 2.0 (Prasad
et al., 2008), a commonly used dataset in discourse
analysis. These connectives are composed of two
main categories of discourse relations: Contin-
gency and Temporal. There are 23 connectives
in these two categories after removing duplicates.
The details of connectives can be found in Table 12
and Figure 11 in Appendix. The top selected con-
nectives for each sequence pattern are shown in
Table 8 in the few-shot setting. We use the data ex-
ample utilized to illustrate the full-connect model
in Bhagavatula et al. (2020) and insert the top se-
lected connectives in between the sentences to form
a narrative text, as shown in Table 9. We observe
that the learned discourse connectives can describe
the same collection of sentences in various sen-
tence sequences in a rational and acceptable way.
More case studies are shown in Table 13 in Ap-
pendix B.3.

B.4 ChatGPT Capability on Abductive
Commonsense Reasoning

The impressive ability of instruction-following
large language models (e.g., ChatGPT (OpenAI,
2022) and GPT-4 (OpenAI, 2023)) has been ex-
hibited by many studies (Bubeck et al., 2023;
Bang et al., 2023; Kocon et al., 2023; Chan et al.,
2023a; Taori et al., 2023; Chiang et al., 2023;
Jiang et al., 2023). There are some challenges
remain unresolved such as the associated ethi-

cal implications and privacy concerns (Li et al.,
2023; Susnjak, 2022; Lukas et al., 2023). In this
work, we are curious about the capability of Chat-
GPT on zero-shot abductive commonsense rea-
soning tasks. Hence, we test the ability of Chat-
GPT 2 with four designed templates on the test
set of αNLI task. ChatGPTprompt reformulate
the task as the multi-choice questions to predict
the class label by following Bang et al. (2023).
ChatGPTTaskConsistency concatenates the O1,O2,
and Hj as two narrative sentence sequences, which
is the same as the prompt template shown in
Figure 2. ChatGPTSample-and-Marginalize is to sam-
ple six times with an individual prompt template.
ChatGPTGeneral & Task Consistency utilizes six narra-
tive patterns as the input template and each time
only feeds only one narrative pattern. Further-
more, it is imperative to note that the input tem-
plate, which incorporates in-context learning, is
heavily dependent on the chosen training examples
that form the prefix demonstration of the prompt
template. The performance of in-context learning
is subject to high variance based on the specific
examples chosen, the quantity of examples, as well
as the order in which they are presented. Conse-
quently, this particular template has been excluded
from consideration in this particular section. The
performance of the random guess model is derived
via the averaging of the results obtained from five
distinct iterations.

2The evaluation is performed in February 2023 by calling
ChatGPT API.
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Relation Connectives

Contingency when (4), furthermore (1), indeed (1)
Contingency.Cause as (1)
Contingency.Cause.Reason because (2098), as (502), since (248)
Contingency.Cause.Result so (843), as a result (271), thus (220)
Contingency.Condition.Factual past if (5)
Contingency.Condition.Factual present if (48), if then (7), when (7)
Contingency.Condition.General if (145), when (124), as long as (6)
Contingency.Condition.Hypothetical if (563), when (22), if then (20)
Contingency.Condition.Unreal past if (47), if then (1)
Contingency.Condition.Unreal present if (87)
Contingency.Pragmatic cause.Justification because (30), as (13), in fact (7)
Contingency.Pragmatic condition.Implicit assertion if (23), when (11), because (2)
Contingency.Pragmatic condition.Relevance if (12), when (1), so (1)
Temporal when (6), meanwhile (1), while (1)
Temporal.Asynchronous before and after (1), meantime (1), in turn (1)
Temporal.Asynchronous.Precedence then (556), before (240), until (100)
Temporal.Asynchronous.Succession after (452), when (181), previously (124)
Temporal.Synchrony when (475), as (427), while (236)

Table 12: Penn Discourse Treebank 2.0 contingency and temporal connectives,
where frequencies are reported in brackets.

Figure 11: Penn Discourse Tree-
bank 2.0 top frequency discourse
markers.

Pattern Example

O1O2H Meanwhile, Jimmy had to get a root canal. In fact, He did not feel a thing and the procedure
went smoothly because Jimmy got plenty of novocaine for the procedure.

O1HO2 In fact, Jimmy had to get a root canal.As Jimmy got plenty of novocaine for the procedure. As
a result, He did not feel a thing and the procedure went smoothly.

HO1O2 Because Jimmy got plenty of novocaine for the procedure. Meantime, Jimmy had to get a root
canal. As a result, he did not feel a thing and the procedure went smoothly.

HO2O1 If Jimmy got plenty of novocaine for the procedure. As a result, he did not feel a thing and the
procedure went smoothly after Jimmy had to get a root canal.

O2O1H Meanwhile, he did not feel a thing and the procedure went smoothly if Jimmy had to get a root
canal as Jimmy got plenty of novocaine for the procedure.

O2HO1 In fact, he did not feel a thing and the procedure went smoothly as long as Jimmy got plenty
of novocaine for the procedure. Because Jimmy had to get a root canal.

O1O2H Meanwhile, Jane was a professor teaching piano to students. In fact, Jane spent the morning
sipping coffee and reading a book because none of Jane’s students had a lesson that day.

O1HO2 In fact, Jane was a professor teaching piano to students. As none of Jane’s students had a
lesson that day. As a result, Jane spent the morning sipping coffee and reading a book.

HO1O2 Because none of Jane’s students had a lesson that day. Meantime, Jane was a professor
teaching piano to students. As a result, Jane spent the morning sipping coffee and reading a
book.

HO2O1 If none of Jane’s students had a lesson that day. As a result, Jane spent the morning sipping
coffee and reading a book after Jane was a professor teaching piano to students.

O2O1H Meanwhile, Jane spent the morning sipping coffee and reading a book if Jane was a professor
teaching piano to students as none of Jane’s students had a lesson that day.

O2HO1 In fact, Jane spent the morning sipping coffee and reading a book as long as none of Jane’s
students had a lesson that day because Jane was a professor teaching piano to students.

Table 13: Case study for the discourse connectives of different model patterns using the same data example. The
learned connectives are highlighted in bold.


