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Abstract

Large language models (LLMs) have demon-
strated impressive capabilities in natural lan-
guage generation. However, their output qual-
ity can be inconsistent, posing challenges for
generating natural language from logical forms
(LFs). This task requires the generated outputs
to embody the exact semantics of LFs, without
missing any LF semantics or creating any hal-
lucinations. In this work, we tackle this issue
by proposing a novel generate-and-rerank ap-
proach. Our approach involves initially generat-
ing a set of candidate outputs by prompting an
LLM and subsequently reranking them using a
task-specific reranker model. In addition, we
curate a manually collected dataset to evaluate
the alignment between different ranking met-
rics and human judgements. The chosen rank-
ing metrics are utilized to enhance the training
and evaluation of the reranker model. By con-
ducting extensive experiments on three diverse
datasets, we demonstrate that the candidates
selected by our reranker outperform those se-
lected by baseline methods in terms of semantic
consistency and fluency, as measured by three
comprehensive metrics. Our findings provide
strong evidence for the effectiveness of our ap-
proach in improving the quality of generated
outputs.

1 Introduction

We consider the problem of natural language gener-
ation (NLG), which involves generating fluent and
faithful utterances from structured meaning repre-
sentations such as LFs (Wang et al., 2021a; Chen
et al., 2020a). This task has gained significant im-
portance, particularly for applications such as data
augmentation for semantic parsing (Wang et al.,
2021a) or question-answering systems (Ribeiro
et al., 2021b), as well as response generation for
dialogue systems (Yu et al., 2019). This task plays
a crucial role in enhancing the performance and
capabilities of these systems by providing them

with diverse and high-quality natural language ut-
terances aligned with their underlying logical rep-
resentations.

LLMs have shown impressive performance
across various NLG tasks (Chen et al., 2021;
Ouyang et al., 2022). However, the utterances gen-
erated based on LFs sometimes suffer from various
deficiencies, such as hallucinations or missing parts
of the input LF (Chen et al., 2020a). As depicted in
Figure 1, only 1 out of 4 candidates generated by
the generator accurately and fluently reflects the se-
mantic meaning of LF answer(density_1(m0)).
The remaining generated texts either introduce in-
accuracies (#4) or are awkwardly phrased (#1 and
#2).

To improve the quality and fidelity of natural lan-
guage generated from LFs, we take a generate-and-
rerank approach that combines a fixed LLM gener-
ator with a finetuned reranker that discriminatively
scores candidates given several pre-determined
metrics (Suzgun et al., 2022). As in Figure 1, our
reranker successfully assigns the sole accurate and
fluent candidate (#3) generated by the generator
a higher score than the other candidates. Further-
more, this method is very flexible: it can be applied
to any dataset that pairs LFs with natural language,
regardless of the formalism employed, and can be
trained to align with any numeric metric.

While implementing our method, it became ev-
ident that a reliable reference ranking metric was
necessary during both the training and evaluation
phases of the reranker. However, determining the
most suitable text quality evaluation measure for
our specific task remained unclear. To address this,
we manually curate an evaluation set, enabling us
to thoroughly assess the alignment between vari-
ous evaluation metrics and human judgement. By
measuring the extent to which evaluation metrics
accurately reflect human judgement, we are able to
identify the most effective metrics for ranking the
quality of generated texts and improve our generate-
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Figure 1: A high-level view of our approach. First, a
generator model is given a set of exemplars and the LF
of interest, from which it generates a set of candidates.
The reranker is given this output, along with the LF, to
produce a ranking of the candidates.

and-rerank approach.
Our contributions are:

• We introduce a novel generate-and-rerank ap-
proach for generating natural language text
from LFs using LLMs. This approach lever-
ages the strengths of LLMs in initial text gen-
eration, followed by a reranking process to
select the most fluent and semantically faith-
ful candidates. The experiments show that our
reranker significantly outperforms other can-
didate selection baselines across three datasets
in terms of three evaluation metrics.

• We conduct an in-depth analysis of various
pre-trained metrics by utilizing a carefully cu-
rated dataset. This analysis allows us to iden-
tify and select the metrics that effectively pro-
duce rankings of natural language candidates,
prioritizing fluency and semantic fidelity.

• Through extensive experimentation, we pro-
vide valuable insights and recommend strate-
gies for developing the optimal training data
for a reranker, considering limitations on the
generation budget. These strategies aim to
maximize the performance and effectiveness
of the reranking process.

2 Related Work

NLG. There is a large body of work concern-
ing NLG from logical forms and/or structured data
(Gardent et al., 2017; Chen et al., 2020a; Parikh

et al., 2020; Gehrmann et al., 2021; Shiri et al.,
2022). Chen et al. (2020a) argues that NLG is
best formulated as the task of generating text from
LFs, as opposed to generating directly from struc-
tured data. This is the task of interest in our work,
similar to others’ work in SparQL-to-text (Ngomo
et al., 2013), SQL-to-text (Xu et al., 2018; Ma et al.,
2021), and AMR-to-text (Song et al., 2018; Zhu
et al., 2019; Ribeiro et al., 2021a, 2019).

Recent work considers the use of LLMs for few-
shot NLG (Chen et al., 2020b; Heidari et al., 2021)
and semantic parsing (Drozdov et al., 2022; Shin
et al., 2021; Shin and Van Durme, 2022; Zhuo
et al., 2023) via in-context learning. Few-shot ap-
proaches to these tasks generally involve construct-
ing a prompt containing a handful of training ex-
amples and sampling responses from an LLM with-
out any training or fine-tuning beyond the LLM’s
pre-training. This method produces state-of-the-art
results despite in some cases using only a fraction
of the data required by other methods. Follow-
ing these works, and specifically, the suggestion in
Shin and Van Durme (2022) that LLMs trained on
code are suited to the task of semantic parsing be-
cause LFs are similar to code, we use Codex (Chen
et al., 2021) as our generation model.

Re-ranking. This work is influenced by discrimi-
native reranking approaches in machine translation
(Lee et al., 2021; Bhattacharyya et al., 2021), se-
mantic parsing (Arcadinho et al., 2022), abstractive
summarization (Liu and Liu, 2021), text genera-
tion (Langkilde-Geary, 2002; Deng et al., 2020; Li
et al., 2022), data-to-text (Harkous et al., 2020),
textual style transfer (Suzgun et al., 2022), and
mathematical reasoning (Cobbe et al., 2021).

Lee et al. (2021) introduces a discriminative
reranking approach (DrNMT) for neural machine
translation, utilizing a pre-trained language model
to predict the BLEU score of a candidate translation
given the source sentence. Unlike our approach,
which employs a margin ranking loss function, they
train DrNMT by minimizing the Kullback–Leibler
divergence (Kullback and Leibler, 1951) of the can-
didate and target scores. Meanwhile, Arcadinho
et al. (2022) employ a similar reranking approach
in semantic parsing. Their T5QL model incorpo-
rates a ranking model (fine-tuned CodeBERT) to
predict the correctness of a generated candidate
parse from a given natural language question. In
contrast, our model uses a similar architecture but
works in reverse, generating text from LFs. Liu and
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Liu (2021) present a contrastive learning method,
SimCLS, for ranking abstractive summarization
candidates. The authors finetune a RoBERTa en-
coder to measure the alignment of a summary with
the text it originates from: the embedding of a
higher quality summary will be more similar to the
embedding of the original text than the embedding
of a lower quality summary. Similar to our work,
they train their model by minimizing a ranking loss
function.

3 Reranking Approach

In this section, we present details of our methods,
including our choice of generator model, reranker
architecture, and evaluation metric.

3.1 Problem Formulation

Given a pool of LFs paired with their natural lan-
guage utterances, our task is to generate a natural
language utterance y corresponding to an LF x. In
this work, we first generate a set of n-best candi-
dates Ŷx := {ŷ1, ŷ2, ..., ŷn}, and then rerank them
using a reranker based on a quality score. We as-
sume that with access to one ground truth utterance
y corresponding to the input LF x, we would be
able to calculate the quality score for each candi-
date using a function Q(ŷi|x, y). In our setting,
Q is an automatic metric to score the quality of a
generated candidate text against the ground-truth
text, such as BLEU (Papineni et al., 2002). These
quality scores would determine the relative ranking
of the n-best candidates, and would allow us to
choose the optimal text output.

Our goal is to train a reranker model to predict
the relative order of the values assigned by Q given
only x; that is, without access to the gold reference
y. This is achieved by training the parameters θ of
the scoring function Rθ(ŷi|x).

3.2 Generator

We prompt Codex (Chen et al., 2021) in a few-shot
setting to generate natural language candidates for
a given LF. Each prompt includes a number of
exemplars1 randomly drawn from the training set,
presented as simple input/output pairs. An example
prompt is given in Appendix C.1.

To create training data for the reranker model,
we generate natural language candidates for LFs

1It is 15 in our experiments.

in the training set by repeatedly prompting Codex2

until there are n unique candidates per logical form.
At inference time, we construct prompts for each
LF in the test set in much the same manner. The
score G(ŷ|x) denotes the log-probability of ŷ given
the input x by Codex.

3.3 Reranker

Our reranker model is composed of CodeBERT
(Feng et al., 2020) as the base model and a feed-
forward regression head over the [CLS] token.

For each forward pass, the input to the reranker
consists of a LF concatenated with a natural lan-
guage candidate, separated with an EOS token. The
output is a single real-valued number that repre-
sents the relative quality of the candidate.

We finetune the model using the Hug-
gingface library3. We also use the pub-
licly available checkpoint for CodeBERT
(microsoft/codebert-base)4, which has
approximately 110M parameters.

Loss Function The training objective for our
reranker is to minimize a weighted margin ranking
loss across pairs of natural language candidates.
For each set of candidates corresponding to one LF,
the loss is,

L(θ) =

∑n
i,j;i ̸=j max[0,−zi,j(ẑi,j + γ)]

n(n− 1)

where n is the number of candidates, and γ repre-
sents a margin. The value of zi,j := Q(ŷi|x, y)−
Q(ŷj |x, y) is the difference between the gold qual-
ity scores of candidates i and j. Its magnitude
reflects the relative importance of obtaining the
correct ranking for the pair. The score ẑi,j :=
Rθ(ŷi|x)−Rθ(ŷj |x) represents the predicted dif-
ference between candidates i and j.

3.4 Scoring of the Candidates

At test time, we use either the re-ranker score or its
combination with the generator probability score
to select the winning candidate in the n-best list.
The combined score is

λRθ(ŷi|x) + (1− λ)G(ŷi|x) (1)

2We use the code-davinci-002 model of Codex, which
has around 175B parameters, with a temperature of 0.7 in our
experiments.

3huggingface.co
4github.com/microsoft/CodeBERT

https://huggingface.co/
https://github.com/microsoft/CodeBERT
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where λ is a hyperparameter that is tuned on the
development set. In practice, we found that the
value of λ did not generalize well across datasets
or even across seeds; a separate λ value was thus
tuned for each model run.

4 Evaluation of Text Generation Metrics
for Reranking

Automatic evaluation of (generated) text quality is
not an easy task, and poses challenges for build-
ing the reference rankings for candidate sets in the
training set and fairly evaluating the generation
ability of generators. Therefore, we curate an eval-
uation set to evaluate the effectiveness of several
text generation metrics.

Generation Metrics. We consider the following
pre-existing metrics5:

• BLEU6 (Papineni et al., 2002), which explic-
itly measures the lexical overlap between ref-
erence and hypothesis.

• BERTScore (Zhang et al., 2019) and BLEURT
(Sellam et al., 2020; Pu et al., 2021), which
frame evaluation as a regression task.

• PRISM (Thompson and Post, 2020) and
BARTScore (Yuan et al., 2021), which frame
evaluation as a generation task.

We also use probability scores from a semantic
parser as an additional metric. For each dataset,
we train a semantic parser by finetuning CodeT5
(Wang et al., 2021c) to generate LFs from natu-
ral language utterances. Then, we use the trained
parser to calculate the probability that a generated
candidate is parsed to the original LF. This score
measures the faithfulness of the candidate to the
original semantics of the LF. Unlike other metrics
above, the parser probability is calculated based on
the generated candidate and the LF, as opposed to
the generated candidate and the reference text.

In addition to evaluating individual metrics, we
also evaluate their combinations. When combin-
ing metrics, we first normalize the scores for each
metric so that the mean score is 0 and the standard
deviation is 1, and then we sum the normalized
scores across possible metrics. We normalize the
scores in order to ensure that each metric is given
the same weight in relation to the others.

5We do not finetune or otherwise modify these metrics.
6We use the NLTK implementation of BLEU; nltk.org

Curation of Evaluation Data. To determine the
alignment of each metric with human preferences,
we constructed a small, manually-crafted evalua-
tion set. We randomly selected 200 LFs from the
train split of CFQ-MCD1 (Keysers et al., 2019),
each with eight generated candidates. Each candi-
date is labelled either ‘correct’ or ‘incorrect’; rather
than producing a strict ranking in this evaluation
set, we instead opted for binary classes to allow
for the fact that multiple candidates can be equally
acceptable.

We developed a set of criteria to account for both
semantic accuracy and fluency, presented below:

(i) If a candidate omits a piece of information
that appears in the reference, it is incorrect.

(ii) If a candidate inserts or substitutes a piece
of information that does not appear in the
reference, it is incorrect.

(iii) If a candidate is markedly less fluent (e.g. con-
tains unnatural constructions) compared to
other candidates in the set, it is incorrect.

(iv) If a candidate contains terms that appear in
the LF (e.g. ?x0) but should not appear in the
utterance, it is incorrect.

(v) Otherwise, the candidate is correct.

Using these criteria, a human annotator assigned
binary labels to the candidates in the evaluation set.

Evaluation Measures. To assess the alignment
between the chosen metrics and human judgements,
we calculated (i) top-1 accuracy, or the probability
that the highest-scoring candidate in a set belongs
to the ‘correct’ class; and (ii) ranking accuracy,
or the probability that any ‘correct’ candidate is
ranked above any ‘incorrect’ candidate. In the cal-
culation of these values, the sets of candidates in
the evaluation set that are comprised of only one
class (i.e., either all are incorrect or all are correct)
are excluded.

Results. Table 1 provides the results of our evalu-
ation for each metric, as well as for the combination
of all metrics and the best-performing combination
(BLEURT + PRISM + Parser).

Our findings support the conclusion by Freitag
et al. (2022) that trained metrics outperform BLEU,
and the suggestion by Amrhein et al. (2022) and
Moghe et al. (2022) that a combination of different
families of metrics is likely to be stronger than any

https://www.nltk.org/
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Metric Top-1 Ranking
BARTScore 70.62 75.57
BERTScore 73.45 78.11
BLEU 66.67 73.40
BLEURT 71.75 81.96
PRISM 76.27 81.19
Parser 76.27 79.41
Combination of above metrics 79.10 82.59
BLEURT + PRISM + Parser 81.36 84.22

Table 1: Top-1 accuracies and ranking accuracies (rep-
resented as percentages) across the evaluation dataset.

one metric alone. Each of the three metrics in our
best-performing combination work in very different
ways: BLEURT is an encoder-only model that is
trained to predict direct assessment scores assigned
to machine translation outputs by human evalua-
tors (Pu et al., 2021), PRISM is an encoder-decoder
model trained for NMT and deployed as a zero-shot
paraphraser (Thompson and Post, 2020), while our
parser is an encoder-decoder model trained to con-
vert text into LFs. We suspect that the differences
between these models contribute to their strength
in combination. Furthermore, we speculate that
parser probability scores reflect the semantic con-
sistency between a candidate and the reference LF,
while BLEURT and PRISM scores more strongly
reflect a candidate’s surface-level similarity to the
reference text and its overall fluency.

Following these results, we use the combination
of scores assigned by BLEURT, PRISM, and the
task-specific semantic parser to determine refer-
ence rankings for training the reranker.

5 Experiments

5.1 Datasets
We conducted experiments using three datasets:

• GeoQuery: This dataset consists of 880 En-
glish questions focusing on the geography of
the United States (Zelle and Mooney, 1996).
We report results for both the standard split
and the query split (Finegan-Dollak et al.,
2018). The train and test sets in the query
split contain distinct sets of LFs.

• Jobs: The Jobs dataset comprises 640 En-
glish queries that correspond to LFs in a jobs
database (Califf and Mooney, 1999). We
present results based on the standard split of
this database.

• CFQ: CFQ contains approximately 239,000
synthetic English questions paired with

SPARQL queries (Keysers et al., 2019), with
three different data splits designed to maxi-
mize compound divergence between training
and test sets. Our study focuses on the MCD1
split, which consists of 96,000 training pairs
and 12,000 test pairs.

For each dataset, we generate natural language
candidates for LFs in the training set as described
in section 3.2, with n = 8 natural language candi-
dates per logical form. The candidate generation
process requires repeated calls to Codex, which is
a significant bottleneck. Consequently, only 30k
training pairs (240k total candidates) are used for
experiments on CFQ-MCD1. Following Drozdov
et al. (2022), we map Freebase identifiers to simpler
keywords. See Appendix D for the full mapping.

5.2 Baselines
We compare the performance of our model against
three different baselines and one ORACLE method.

• Random selection: A candidate is selected
randomly from the set of unique candidates
generated for each LF. This method serves as
a lower bound.

• Self-consistency: The most frequently ap-
pearing candidate is selected. Ties are broken
randomly. This method is proposed in Wang
et al. (2022) for use with chain-of-thought
style prompting and is extended for use with
simpler prompting styles in Drozdov et al.
(2022).

• Highest generator probability: For each can-
didate, the token log probabilities given by the
generator are averaged. The selected candi-
date is the one with the highest score.

• Oracle: Scores for each of the three metrics
(BLEURT, PRISM, and parser probability)
are normalized and summed for each candi-
date. The candidate with the highest com-
bined score is selected. The performance of
this method serves as an upper bound.

5.3 Training Details
At the beginning of training, the base model of the
reranker is frozen, and loss is only backpropagated
through the regression head. After 10 epochs, the
final layer of the base model is unfrozen, and loss
is backpropagated through both the regression head
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Method Jobs GeoQuery (standard) GeoQuery (query) CFQ-MCD1
bleurt parser prism bleurt parser prism bleurt parser prism bleurt parser prism

Oracle 70.7 95.0 6.9 86.0 93.6 40.3 86.1 89.3 40.3 71.5 64.3 22.2
Random 59.4 84.7 3.0 74.2 77.6 23.1 74.4 85.2 22.7 61.1 44.7 13.0
Self-cons. 60.7 89.1 3.4 77.5 79.7 26.5 78.3 85.2 27.2 62.7 47.1 14.3
Generator 61.3 93.0 3.7 77.8 81.8 28.1 79.0 85.7 29.0 64.6 49.0 15.8
Reranker 62.7 93.5 4.4 81.0 90.9 32.5 79.9 89.8 28.9 66.3 61.9 17.2
Combined 62.7 93.7 4.3 81.2 91.1 32.9 80.0 89.7 29.1 66.5 61.9 17.4

Table 2: BLEURT, parser, and PRISM scores for re-ranker and baselines. The oracle method selects the candidate
with the highest combined BLEURT, PRISM, and parser score; the random method selects a candidate at random;
the self-consistency method selects the most frequently generated candidate; the generator method selects the
candidate with the highest probability from the generator (conditioned on the prompt); the reranker method selects
the candidate with the highest score from the trained reranker; and the combined method selects candidates based
on a linear combination of generator and reranker scores. Parser and PRISM scores are probabilities represented as
percentages. Bold values represent the highest (non-oracle) score in the column, and underlined scores represent a
statistically significant improvement from generator scores (p < 0.01).

and this final layer of CodeBERT for the remainder
of the training. The optimization details are given
in Appendix A.

5.4 Main Results

Our experiment results can be seen in Table 2,
depicting the performance of our reranker model.
Training of the reranker is performed five times
with different seeds, and we report the mean score.

Importantly, the reranker significantly outper-
forms the generator baseline regarding parser prob-
ability. Specifically, there is an impressive abso-
lute difference of up to 12.9 percentage points (for
CFQ-MCD1). The reranker also shows modest
gains over the generator baseline in PRISM and
BLEURT scores. These metrics suggest that the
reranker’s selected candidates have both greater se-
mantic consistency and slightly enhanced fluency
than those chosen without reranking.

It is worth noting that the performance gap be-
tween the reranker and the highest probability base-
line is most prominent in the GeoQuery standard
split. In contrast, the other three datasets were
deliberately designed to assess models’ compo-
sitional generalization capabilities. For instance,
both the query splits of GeoQuery and the Jobs
datasets have no LF overlap among their train and
test sets, and CFQ-MCD1 was split to maximize the
compound divergence between the two sets. The
smaller performance gap between the generator and
the reranker on these three datasets suggests that
the generator model, Codex, has stronger compo-
sitional generalization abilities than the finetuned
reranker.

Additionally, we observed that the self-
consistency method performs poorly compared to

other baselines, such as candidate selection based
on generator probability. This finding indicates that
self-consistency is not a helpful selection method
for this particular task.

5.5 Influence of the Size of the n-Best List

In this experiment, we examine the effect of differ-
ent sizes of candidate lists seen during train and test
time. We use a subset of the CFQ-MCD1 dataset in
these experiments due to time constraints; specifi-
cally, we randomly select 3,000 data pairs from the
train split (further divided into 2,700 train pairs and
300 dev pairs) and report our results on 1,200 ran-
domly selected data pairs from the test split. The
results of this experiment are shown in Figure 2.

While scores for all metrics improve as the train-
time n-best list grows, the most significant gains
are observed in parser probability. This suggests
that increasing the number of candidates per LF
that the reranker sees at training time is an effective
way to increase the semantic consistency of candi-
dates chosen by the reranker. The performance on
BLEURT and PRISM increases more slowly as the
number of candidates seen at train time increases,
with the largest increase happening in the jump
from 16 candidates to 32, suggesting that it may be
necessary to generate many more candidates per
LF in order to substantially improve the fluency
of selected candidates. Additionally, increasing
the number of candidates seen at test time appears
to have a negligible effect on the semantic consis-
tency of candidates selected, but a notable effect
on the BLEURT and PRISM scores. Scores for
these metrics increase steadily for the first three
sizes of candidate lists at test time, regardless of
the number of candidates seen at train time.
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Figure 2: BLEURT, parser probability, and PRISM
scores across different sizes of candidate lists seen at
training and test time.

However, performance on these metrics drops
when the test size increases to 32 candidates for
rerankers trained with a candidate list size of 16 and
below. We hypothesize that these observations are
due to changes in the quality and diversity of the
test candidates. As the number of candidates per LF
increases, it is more likely that any given candidate
set will contain high-quality candidates. Increasing
the candidate set size also increases the diversity of
candidate sets. Improvements in test candidate set
quality appear to be helpful for sizes up to n = 16,
but models trained on smaller candidate sets may
not be able to generalize well to candidate set sizes
of n = 32 due to the larger degree of diversity.
However, the reranker trained with 32 candidates
per LF is able to take advantage of further quality
improvements in the largest test candidate list size
due to its exposure to diverse candidate sets.

5.6 Fixed Generation Budget

As generating large-sized n-best lists from Codex
is time-consuming, we consider a scenario in which
the time budget for training data generation is fixed.
When given limited time to generate training data,
is it better to prioritize coverage of as many LFs

as possible by considering small n-best lists, or is
it better to ensure that there is a large number of
candidates for each LF in the training set?

We generate natural language candidates for LFs
in the training set of CFQ-MCD1 over one 24-hour
period. We use Codex to generate 4, 8, 16, or 32
candidates per LF for 24 hours. We also generate a
dataset containing a variable number of candidates
per LF. To do this, we prompt Codex for 10 can-
didates per LF, then discard duplicates. Any LFs
with candidate sets of length 1 are also discarded.
This results in a dataset that pairs LFs with sets
of candidates with a minimum length of 2 and a
maximum length of 10. The average number of
candidates per LF in this dataset is 7.6 in our trial;
see Table 3.

A reranker is then trained for each dataset us-
ing the method described in Section 3.3.7 Each
reranker is evaluated on the full test split of CFQ-
MCD1, with eight candidates per LF.

The results are shown in Table 4. The reranker
trained on the dataset with a variable number of
candidates per LF has the best performance as mea-
sured by BLEURT and PRISM, and the second
best performance as measured by parser probabil-
ity. Its strong performance is likely due to the fact
that it is trained on the largest dataset (at 93k total
candidates) that also covers the largest number of
LFs (12k). This suggests that the best way to use a
limited budget for generating reranker training data
is to maximize the total quantity of generated candi-
dates; ensuring a large (or even consistent) number
of candidates per LF is less important. Using a
variable candidate set size is also more efficient in
a pay-per-token setting, as fewer duplicated candi-
dates will be discarded than there would be with a
fixed candidate set size.

5.7 Using Instruction-Following LLMs

We perform the next experiment in order to deter-
mine the effectiveness of a general-purpose lan-
guage model in the role of generator in place of
a language model optimized for code, or in the
role of reranker in place of a discriminative model.
We generate eight candidates per LF by prompt-
ing either Codex (as in previous experiments) or

7For the dataset with a variable number of candidates per
LF, the loss for each candidate set is multiplied by a weight
term, which is calculated as the size of the candidate set di-
vided by the average candidate set size. This is done in order
to normalize the magnitude of gradient updates across the
training set.
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Cands. per LF Total LFs Total cands.
4 11,395 45,580
8 8,147 65,156
16 4,076 65,216
32 1,935 61,920

Variable 12,253 93,226

Table 3: Resulting dataset sizes after generating a speci-
fied number of natural language candidates per LF.

Set size bleurt parser (%) prism (%)
4 66.1± 0.4 57.5± 1.1 17.0± 0.4
8 65.8± 0.2 60.4± 0.9 16.8± 0.1
16 65.7± 0.2 60.8± 1.1 16.8± 0.2
32 66.0± 0.3 59.7± 0.3 16.9± 0.2
Variable 66.2± 0.2 60.4± 0.6 17.1± 0.1

Oracle 71.5 64.3 22.2
Generator 64.6 49.0 15.8

Table 4: Scores for different candidate generation con-
figurations, given 24 hours of generation time with
Codex. Set size refers to the number of candidates
per LF in the training set. The oracle method selects the
candidate with the highest sum of normalized BLEURT,
parser, and PRISM scores. The generator method se-
lects the candidate with the highest probability assigned
by Codex.

ChatGPT. Then, we rerank the candidates either
using a finetuned reranker (as in previous exper-
iments), or by prompting ChatGPT. We replicate
our experiments on the GeoQuery dataset using
GPT-3.5-turbo (ChatGPT8) (Ouyang et al., 2022).
The details of generation from ChatGPT are given
in Appendix B.

The results9 are presented in Table 5. The best-
performing combination by a wide margin is Codex
as the generator, and fine-tuned CodeBERT as the
reranker. Using ChatGPT does not appear to add
benefits for either the candidate generation step
or the reranking step. We performed manual error
analysis to determine why the performance gap was
so wide, the results of which are presented below.

Problems with Generation. The style of candi-
dates generated by Codex tended to more closely
match the style of the gold natural language utter-
ances than did the candidates generated by Chat-
GPT. Namely, candidates generated by ChatGPT
tended to use sentence casing and end punctuation,
while Codex candidates tended to be all lowercase

8platform.openai.com/docs/model-index-for-researchers
9The scores reported for the two configurations using Code-

BERT as the reranker represent the mean score over five trials,
while the trials using GPT-3.5 report the score from one trial.

Generator Reranker bleurt parser prism
Codex CodeBERT 79.9 89.8 28.9
Codex GPT-3.5 76.9 86.9 25.3
GPT-3.5 CodeBERT 71.0 71.9 8.2
GPT-3.5 GPT-3.5 71.9 75.6 8.5

Table 5: Scores for different combinations of models
used as generators and rerankers. GPT-3.5 here refers
to OpenAI’s ChatGPT.

Codex Candidates
what states are in the usa
what are the names of the states
what state is this
what are all the states
what states are there
name all the states
what states exist
what are the states

ChatGPT Candidates
Which states are in the United States?
What are the names of all the states?
How many states are there in the country?
Which states are located in the Midwest?
What states make up New England?
What is the largest state in terms of land area?
Which states have coastline?
What is the capital of each state?
Logical Form: answer ( state )

Gold Utterance: list the states

Table 6: A comparison of candidates generated by
Codex and ChatGPT. While the candidates generated
by Codex are faithful to the style of the gold question
and are mostly semantically consistent with the given
LF, the candidates generated by ChatGPT include sub-
stantial hallucinations.

with no punctuation, as are the GeoQuery ques-
tions. Additionally, the ChatGPT candidates used
more varied language than the Codex candidates
did. While these surface-level differences may not
reflect a difference in candidate quality, it is pos-
sible that they are penalized by automatic metrics
such as the ones we use here. A more concerning
finding is that the candidates generated by Chat-
GPT tended to include more frequent and more se-
vere hallucinations than those generated by Codex;
see Table 6 for examples.

We speculate that these differences in generated
candidates are due to the fact that Codex is directly
optimized for tasks that involve code, which makes
it a better fit for the task of generating text from
structured meaning representations. While Chat-
GPT’s training does include tasks involving code,
many of its training tasks do not concern code.

Problems with Reranking. When using Chat-
GPT as a reranker, we found that it returned a natu-

 https://platform.openai.com/docs/model-index-for-researchers


1075

ral language sequence that was not one of the given
candidates approximately 14% of the time. Most
commonly, these hallucinated candidates were in
the form of single noun phrases that were similar
to segments of one or more of the given candidates.

The reason for this is likely a task mismatch.
Decoder-only models such as ChatGPT are in-
tended to generate sequences of text, which does
not align well with the task of reranking.

6 Conclusion

We have introduced a novel generate-and-rerank ap-
proach for generating high-quality natural language
utterances from LFs using LLMs. Our approach is
flexible and can be easily applied to diverse datasets
and tasks. In addition, we have performed an anal-
ysis of the current popular evaluation metrics for
NLG and selected the best metrics for the train-
ing and evaluation of our reranker. Our extensive
experiments show that our reranker, which uses a
loss function that compares individual candidates
against one another, improves the quality of gener-
ated natural language in both fluency and semantic
faithfulness in terms of the selected metrics on dif-
ferent evaluation datasets.

Limitations

The results presented in Section 5.4 demonstrate
that our reranker improves the quality of natural
language text generated from LFs. However, the
applicability of our method is somewhat limited by
the choice of Codex as the generator model.

Firstly, Codex requires a lot of computation re-
sources due to its size of 175 billion parameters
(Chen et al., 2021), and a lot of time to gener-
ate candidates. A smaller model would be able
to generate candidates much more efficiently, al-
though those candidates would likely be lower qual-
ity. Further experimentation is required to deter-
mine whether the reranker’s performance can make
up for a weaker generator.

Secondly, it seems likely that the majority of the
natural language data that appears in Codex’s pre-
training is in English, so our approach probably
does not transfer well to other languages without
modification. It may be beneficial to further ex-
plore this problem using a generator model with
multilingual pre-training.

Another issue is that the reranker we introduce
in this work, as we have formulated, may suffer
from a lack of composition generalization abilities,

as we note in Section 5.4. The performance of a
reranker in this setting may benefit from techniques
used to improve compositional generalization in se-
mantic parsers, such as the application of synthetic
data (Wang et al., 2015; Herzig and Berant, 2019;
Yu et al., 2021; Wang et al., 2021b; Akyurek and
Andreas, 2023; Li et al., 2023, inter alia) or the use
of supervised attention (Yin et al., 2021).

This approach could further be improved with
the use of more reliable automated metrics. Our
evaluation in Section 4 found that the best perform-
ing combination of metrics had a top-1 accuracy of
81.4% and a ranking accuracy of 84.22%, which
indicates that a fair number of the ranking deci-
sions made by this combined metric were incorrect.
However, due to time constraints, this study in-
cludes only one human annotator for our metric
evaluation set, which hampers the reliability of our
analysis of automatic metrics. Further exploration
is needed to assess the alignment between different
(combinations of) automatic metrics and human
judgement of semantic consistency and fluency in
this task. Additionally, there is much ongoing re-
search in the creation and evaluation of automated
metrics, and advances in this work would likely to
translate to stronger performance of the method we
have presented here.

Acknowledgements

We express our deepest gratitude to David McGee,
whose feedback has been critical in the develop-
ment of this work. We are also grateful to the
anonymous reviewers for their thoughtful com-
ments.

References

Ekin Akyurek and Jacob Andreas. 2023. LexSym: Com-
positionality as lexical symmetry. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 639–657, Toronto, Canada. Association for
Computational Linguistics.

Chantal Amrhein, Nikita Moghe, and Liane Guillou.
2022. Aces: Translation accuracy challenge sets
for evaluating machine translation metrics. ArXiv,
abs/2210.15615.

Samuel Arcadinho, David Oliveira Aparício, Hugo
Veiga, and António Alegria. 2022. T5ql: Tam-
ing language models for sql generation. ArXiv,
abs/2209.10254.

https://doi.org/10.18653/v1/2023.acl-long.38
https://doi.org/10.18653/v1/2023.acl-long.38


1076

Sumanta Bhattacharyya, Amirmohammad Rooshenas,
Subhajit Naskar, Simeng Sun, Mohit Iyyer, and An-
drew McCallum. 2021. Energy-based reranking:
Improving neural machine translation using energy-
based models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 4528–4537, Online. Association for
Computational Linguistics.

Mary Elaine Califf and Raymond J. Mooney. 1999. Re-
lational learning of pattern-match rules for informa-
tion extraction. In Conference on Computational
Natural Language Learning.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-
wards, Yura Burda, Nicholas Joseph, Greg Brockman,
Alex Ray, Raul Puri, Gretchen Krueger, Michael
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Moham-
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, David W. Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel
Herbert-Voss, William H. Guss, Alex Nichol, Igor
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew M. Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. ArXiv,
abs/2107.03374.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020a. Logic2Text: High-fidelity natural lan-
guage generation from logical forms. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 2096–2111, Online. Association
for Computational Linguistics.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020b. Few-shot NLG
with pre-trained language model. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 183–190, Online.
Association for Computational Linguistics.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Yuntian Deng, Anton Bakhtin, Myle Ott, Arthur Szlam,
and Marc’Aurelio Ranzato. 2020. Residual energy-
based models for text generation. In International
Conference on Learning Representations.

Andrew Drozdov, Nathanael Scharli, Ekin Akyuurek,
Nathan Scales, Xinying Song, Xinyun Chen, Olivier

Bousquet, and Denny Zhou. 2022. Compositional
semantic parsing with large language models. ArXiv,
abs/2209.15003.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
1536–1547, Online. Association for Computational
Linguistics.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-sql evaluation methodology. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
351–360.

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi kiu Lo,
Craig Stewart, Eleftherios Avramidis, Tom Kocmi,
George Foster, Alon Lavie, and André Martins. 2022.
Results of wmt22 metrics shared task: Stop using
bleu - neural metrics are better and more robust. In
Proceedings of the Seventh Conference on Machine
Translation, pages 46–68, Abu Dhabi.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on
Natural Language Generation, pages 124–133, San-
tiago de Compostela, Spain. Association for Compu-
tational Linguistics.

Sebastian Gehrmann, Tosin Adewumi, Karmanya
Aggarwal, Pawan Sasanka Ammanamanchi,
Anuoluwapo Aremu, Antoine Bosselut, Khy-
athi Raghavi Chandu, Miruna-Adriana Clinciu,
Dipanjan Das, Kaustubh Dhole, Wanyu Du, Esin
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A Reranker Training Details

The reranker model is trained for a maximum of
100 epochs with early stopping if the loss on the
development set does not decrease after 10 epochs.
Each batch comprises all of the candidates corre-
sponding to a single logical form, so the batch size
is equal to the size of the candidate list. We uti-
lized Adam (Kingma and Ba, 2014) to optimize the
model, with a learning rate of 1× 10−4. The best
model is determined as the one that produces the
smallest loss on a held-out development set.

Hyperparameter tuning was conducted to deter-
mine the learning rate and the optimal epoch count
for unfreezing the base model’s final layer. The
learning rates explored during this process were
[1×10−5, 5×10−5, 1×10−4, 5×10−4, 1×10−3],
while the numbers of epochs before unfreezing con-
sidered were [1, 5, 10, 20]. The model’s training
was conducted on a single NVIDIA Tesla V100
GPU. The duration of training varied significantly
depending on the size of the training dataset, rang-
ing from a minimum of approximately 20 minutes
to a maximum of around 35 hours.

B Generation from ChatGPT

To account for the fact that ChatGPT is optimized
for chat functionality while Codex is not, we mod-
ify our generation prompt slightly. We use the same
number of in-context examples (15) for both gener-
ators, but for ChatGPT we incorporate more natural
language instruction to contextualize the examples
and specifically prompt the model to generate eight
unique candidates. The full prompt can be found
in Appendix C.2. To complete the task of rerank-
ing using in-context learning, we use a prompt that
provides exemplars from the training set in order
to condition the model on correct pairings of LFs
and natural language. We present the prompt used
for the reranking task in Appendix C.3.

C Sample Prompts

C.1 Codex generation prompt
Below is an example that illustrates the format of
our prompts to Codex.

# geo_query Dataset:

Query: answer ( longest ( intersection (
river , traverse_2 ( intersection ( state
, next_to_2 ( m0 ) ) ) ) ) )



1080

Question: what is the longest river that
flows through a state that borders m0

Query: answer ( intersection ( state ,
next_to_2 ( largest_one ( population_1 ,
state ) ) ) )
Question: what are the states that border
the state with the greatest population

Query: answer ( intersection ( river ,
traverse_2 ( m0 ) ) )
Question: what rivers run through m0

Query: answer ( count ( intersection
( state , low_point_2 ( lower_2 (
low_point_1 ( m0 ) ) ) ) ) )
Question: count the states which have
elevations lower than what m0 has

Query: answer ( highest ( intersection
( place , loc_2 ( smallest_one (
population_1 , state ) ) ) ) )
Question: what is the highest point in
the state with the smallest population

Query: answer ( intersection ( state ,
next_to_2 ( m0 ) ) )
Question: which states border m0

Query: answer ( density_1 ( intersection
( state , traverse_1 ( longest (
intersection ( river , loc_2 ( m0 ) )
) ) ) ) )
Question: which is the density of the
state that the largest river in the m0
runs through

Query: answer ( elevation_1 ( highest (
intersection ( place , loc_2 ( state ) )
) ) )
Question: how high are the highest points
of all the states

Query: answer ( count ( intersection (
state , loc_2 ( m0 ) ) ) )
Question: how many states are in the m0

Query: answer ( loc_1 ( m0 ) )
Question: where is m0

Query: answer ( intersection ( state ,

next_to_2 ( m0 ) ) )
Question: what state borders m0

Query: answer ( intersection ( state ,
loc_1 ( highest ( place ) ) ) )
Question: which state has the highest
elevation

Query: answer ( intersection ( state ,
capital_2 ( m0 ) ) )
Question: what states capital is m0

Query: answer ( intersection ( state ,
next_to_2 ( m0 ) ) )
Question: what states surround m0

Query: answer ( count ( intersection (
river , loc_2 ( m0 ) ) ) )
Question: how many rivers are found in m0

Query: answer ( largest ( intersection (
state , loc_2 ( m0 ) ) ) )
Question:

C.2 ChatGPT generation prompt

Below is an example that illustrates the format of
our prompts to ChatGPT for generating natural
language candidates. Most of the exemplars are
elided here for brevity. This prompt uses the same
number of exemplars as the prompt in Appendix
C.1, using the slightly modified form shown below.

Here are some examples of query/question
pairs from the GeoQuery data set.

logical form: answer ( longest (
intersection ( river , traverse_2 (
intersection ( state , next_to_2 ( m0 ) )
) ) ) )
natural language: what is the longest
river that flows through a state that
borders m0

[...]

Please generate 8 natural language
candidates for following logical form.
Present your answer as a numbered list.
logical form: answer ( largest (
intersection ( state , loc_2 ( m0 ) )
) )
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C.3 ChatGPT reranking prompt

Below is an example that illustrates the format of
our prompts to ChatGPT for reranking natural lan-
guage candidates. Most of the exemplars are elided
here for brevity.

Here are some examples of query/question
pairs from the GeoQuery data set.

logical form: answer ( longest (
intersection ( river , traverse_2 (
intersection ( state , next_to_2 ( m0 ) )
) ) ) )
natural language: what is the longest
river that flows through a state that
borders m0

[...]

I would like for you to rank some natural
language candidates for the following
logical form.
logical form: answer ( largest (
intersection ( state , loc_2 ( m0 ) )
) )

Here are the candidates:

Which state in m0 has the largest area?
What is the largest state that lies within
m0?
Which state in m0 has the largest
population?
What is the largest state found in m0 by
area?
Which state in m0 is the largest in terms
of land area?
What state located in m0 has the largest
landmass?
What is the largest state located in m0
by size?
Which state in m0 has the highest number
of inhabitants?

Which of these candidates is the best?
Please return the text of the best
candidate in quotation marks.

D Freebase Identifier Mapping

Table 7 shows the mapping we use to shorten Free-
base IDs into strings that are easier to interpret.

Most of this mapping originates in Drozdov et al.
(2022).
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Freebase Identifier Mapped String
ns:organization.organization.companies_acquired/ns:business. acquired
ns:organization.organization.acquired_by/ns:business.acquisi acquired_by
ns:film.actor.film/ns:film.performance.film starred_in
ns:film.film_art_director.films_art_directed art_directed
ns:film.film.film_art_direction_by art_direction_by
ns:film.film.cinematography cinematography_by
ns:film.film_costumer_designer.costume_design_for_film costume_designed
ns:film.film.costume_design_by costume_designed_by
ns:film.director.film directed
ns:film.film.directed_by directed_by
ns:film.film.distributors/ns:film.film_film_distributor_rela distributed_by
ns:film.film_distributor.films_distributed/ns:film.film_film distributed
ns:film.editor.film edited
ns:film.film.edited_by edited_by
ns:business.employer.employees/ns:business.employment_tenure employed
ns:people.person.employment_history/ns:business.employment_t employed_by
ns:film.producer.films_executive_produced executive_produced
ns:film.film.executive_produced_by executive_produced_by
ns:organization.organization_founder.organizations_founded founded
ns:organization.organization.founders founded_by
ns:people.person.gender gender_is
n̂s:people.person.gender same_gender_as
ns:film.actor.film/ns:film.performance.character portrayed
ns:people.person.nationality nationality_is
ns:film.film.prequel sequel_of
ns:film.film.sequel prequel_of
ns:influence.influence_node.influenced influenced
ns:influence.influence_node.influenced_by influenced_by
ns:people.person.spouse_s/ns:people.marriage.spouse|ns:ficti married_to
n̂s:people.person.nationality same_nationality_as
ns:people.person.children|ns:fictional_universe.fictional_ch parent_of
ns:people.person.parents|ns:fictional_universe.fictional_cha child_of
ns:film.producer.film|ns:film.production_company.films produced
ns:film.film.produced_by|ns:film.film.production_companies produced_by
ns:people.person.sibling_s/ns:people.sibling_relationship.si sibling_of
ns:film.film.starring/ns:film.performance.actor starred
ns:film.film.written_by written_by
ns:film.writer.film wrote
ns:film.actor actor
ns:film.film_art_director art_director
ns:film.cinematographer cinematographer
ns:film.cinematographer.film cinematographer_of
ns:film.film_costumer_designer costume_designer
ns:film.director film_director
ns:film.editor film_editor
ns:business.employer employer
ns:fictional_universe.fictional_character fictional_character
ns:film.film film
ns:film.film_distributor film_distributor
ns:people.person person
ns:film.producer film_producer
ns:film.production_company production_company
ns:film.writer writer
ns:m.05zppz male
ns:m.02zsn female
ns:m.0f8l9c French
ns:m.06mkj Spanish
ns:m.0b90_r Mexican
ns:m.03rjj Italian
ns:m.0d0vqn Swedish
ns:m.09c7w0 American
ns:m.0d060g Canadian
ns:m.0345h German
ns:m.03_3d Japanese
ns:m.07ssc British
ns:m.059j2 Dutch
ns:m.0d05w3 Chinese

Table 7: Mapping from Freebase identifiers (truncated to first 60 characters) to shorter, more readable strings.


