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Abstract

In neural code search, a Transformers-based
pre-trained language model (such as Code-
BERT) is used to embed both the query (NL)
and the code snippet (PL) into a joint represen-
tation space; which is used to retrieve the rel-
evant PLs satisfying the query. These models
often make mistakes such as retrieving snip-
pets with incorrect data types, and incorrect
method names or signatures. The generaliza-
tion ability beyond training data is also lim-
ited (as the code retrieval datasets vary in the
ways NL-PL pairs are collected). In this work,
we propose a novel contrastive learning tech-
nique (SYNC) that enables efficient finetun-
ing of code LMs with soft and hard negatives,
where the hard negatives are constructed using
a set of structure-aware AST-based perturba-
tions; targeted towards possible syntactic and
semantic variations. Our method achieves sig-
nificant improvements in retrieval performance
for three code LMs (CodeBERT, GraphCode-
BERT, UniXCoder) over four Python code re-
trieval datasets. We also open source our code
for reproducibility1.

1 Introduction

Learning dense representations for programming
languages using NLP techniques has proven ef-
fective for various downstream tasks. Akin to
the evolution of NLP models, contextualized
Transformers-based representations such as Code-
BERT (Feng et al., 2020), and GraphCodeBERT
(Guo et al., 2020), universal cross-modal models
such as UniXCoder (Guo et al., 2022) and genera-
tive models such as AlphaCode (Li et al., 2022b)
have achieved state-of-the-art in public bench-
marks. Unlike natural language tasks, (ideally)
the output programming language is expected to
be consumed by compilers (or interpreters) which
expect the code to follow well-defined syntax and
semantics. In this work, we explore whether such

1https://github.com/atharva-naik/SYNC

information about syntax and semantics expressed
in natural languages is preserved while retrieving
corresponding code snippets in the code retrieval
task (primarily for Python). Our initial exploration
shows that the Transformers-based code embed-
ding models consistently make mistakes such as
retrieving snippets with wrong data types (sets in-
stead of lists), wrong method names or signatures
and wrong arguments; indicating a loss of struc-
tural information. For example in a python code
retrieval dataset, for the query “sorting a list of lists
in python”, the top retrieved snippet using Code-
BERT is sorted(list_of_strings,key=lambda
s: s.split(’,’)[1]), which sorts a list of
strings instead (more examples in appendix).

To preserve such structural information, we
adopt contrastive learning using dynamic structure-
aware negative sampling. Recently, researchers
(Robinson et al., 2021; Ahrabian et al., 2020) have
shown how synthesized hard negative sampling
can be used along with a contrastive loss objec-
tive to learn efficient representations. We utilize a
mix of random negative samples along with hard
negatives (Xuan et al., 2020) generated using per-
turbations of the Abstract Syntax Tree (AST) for
the positive NL-PL pair. To balance the hardness
and the learning state of the model, we use a mas-
tering rate-based curriculum approach (Willems
et al., 2020) to sample a mix of soft and hard nega-
tives, while hard negatives are further sampled us-
ing a parameterized distribution over model scores
(Robinson et al., 2021). We observe that our ap-
proach helps boost learning efficiency for three
code embedding models across four code retrieval
datasets (CoNaLa, PyDocs, CodeSearchNet, and
WebQuery). Our experiments show that the pro-
posed contrastive learning approach (SYNC) using
an AST-based curriculum can be used to effectively
integrate structure information of programming lan-
guages during the fine-tuning stage for SOTA code
embedding models, including ones such as UniX-

https://github.com/atharva-naik/SYNC
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coder, which is exposed to ASTs in the pre-training
stage. Specifically, our contributions are the fol-
lowing. We propose 1) a novel contrastive fine-
tuning approach based on (mastering rate-based)
curriculum to learn from both hard and soft neg-
atives, where hard negatives are created through
structure-aware AST perturbation rules. Through
ablations, we observe proposed set of rules work
better than existing ones (such as in DISCO). 2)
Our comprehensive evaluation shows our approach
achieves best OOD performance (with comparable
or better ID results) for 3 SOTA models across 4
retrieval datasets; against varying curriculum and
3) strong contrastive learning baselines (DISCO,
CodeRetriever). We evaluate the representation fur-
ther through analogy testing & analyzing qualita-
tive examples. 4) We will make the code available,
including the contrastive baselines.
Observations. More specifically: 1) SYNC
achieves best OOD performance for 3 models, 3
datasets across 4 metrics (Tab. 2); 2) several base-
line variations and strong contrastive baselines,
show an ID-OOD tradeoff where these methods
reach comparable or better performance (as ours)
for CoNaLa test set (NL/PL: 365/490), but failing
to generalize for other 3 datasets (NL/PL: 365/416,
523/803, 21k/22k; Tabs. 9,12). 3) For CoNaLa ex-
amples (ID), where SYNC performs poorly (com-
pared to CodeRetriever), CodeBLEU scores sug-
gest the top retrieved codes are more lexically and
structurally similar to the gold code snippet (§5).
4) We show the effect of curriculum by comparing
against varying curricula (Tab. 10) and plotting the
effect on validation recall as soft-to-hard negative
sampling ratio changes for CodeBERT (Fig. 8). We
also perform hyperparameter ablations, ablations
over the chosen set of rules in Appendix.

2 Related Work

Neural Code Search. For neural code search,
both encoder-only and encoder-decoder pretrained
architectures (Kanade et al., 2019; Feng et al.,
2020) perform well, with decoder-only models
(Svyatkovskiy et al., 2020; Lu et al., 2021) being
more successful for generative tasks (Guo et al.,
2022). CodeBERT (Feng et al., 2020) is an encoder-
only model trained using replaced token detection
(RTD) and masked language modeling (MLM) ob-
jectives. GraphCodeBERT (Guo et al., 2020) in-
corporates dataflow information and additional pre-
training objectives of edge prediction and node

alignment. SYNCOBERT(Wang et al., 2021), Ast-
BERT (Liang et al., 2022), and TreeBERT (Jiang
et al., 2021) utilize abstract syntax tree (AST) rep-
resentation during pre-training.
Contrastive Learning for Code Representa-
tions. Several contrastive learning methods have
been proposed for code representation learning. Li
et al. (2022a) proposed a contrastive objective com-
bining unimodal and bimodal text-code losses to
improve code search. Ding et al. (2021) used AST
and dataflow-guided perturbations to create nega-
tive and positive examples for data augmentation
and achieve improvements in code clone detection
and vulnerability detection. Wang et al. (2022)
proposed a hierarchical contrastive learning objec-
tive to improve code clustering, classification, and
clone detection. Shi et al. (2022) propose soft data
augmentation by masking random tokens to create
positive samples to improve code search. These ap-
proaches do not address training stability issues en-
countered when using hard negatives in contrastive
learning.
Contrastive Learning with Hard Negatives. Min-
ing hard negatives for efficient contrastive learning
is popular in image processing. Xuan et al. (2020)
shows that hard negatives lead to unstable training
behavior but can be useful with some simple fixes.
Robinson et al. (2021) proposes a parametrized
distribution that uses hardness scoring to sample
suitable hard negatives that can maximally bene-
fit the learning process. Hard negatives are diffi-
cult to learn in the early stages of training, which
prompted researchers to explore curriculum learn-
ing strategies (Chu et al., 2021). However, Chu
et al. (2021) proposes a static curriculum where
negative samples are scored, sorted from easy-to-
hard, and batched. We employ a mastering rate-
based curriculum (Willems et al., 2020) that guides
the model (dynamically) to learn from both soft
(randomly sampled) and hard AST-guided nega-
tives while considering the model learning state.
Inducing Bugs in Software. Our AST-guided
perturbations for generating hard negatives draw
upon literature to induce bugs in software. Pradel
and Sen (2018) use simple code transformations
to create artificially induced bugs with swapped ar-
guments, incorrect binary operators, and operands
for JavaScript code. Allamanis et al. (2021) pro-
pose PyBugLab, a code rewriting-based approach
for Python to induce bugs such as function argu-
ment swapping, operator substitution, etc. Ding
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Figure 1: SYNC: Various stages of the proposed AST-guided curriculum.

et al. (2021) propose AST and dataflow-guided per-
turbation to create positive and negative examples.
Their rules mainly target C++ and Java and are not
directly applicable to Python.

3 Method

For code search, transformer-based pre-trained
models are fine-tuned on annotated NL-PL pairs.
Our method (Figure 1) targets improving the
learned representation during this fine-tuning stage,
by utilizing carefully synthesized hard negative
samples. We follow the triplet network architecture
(Hoffer and Ailon, 2015), where a textual query (x),
a positive PL snippet (y+), and a negative PL (y−)
snippet are sampled, and fed to a network individu-
ally. Generally, this network is a unified represen-
tation learner trained to embed text and code into a
joint embedding space. We use transformer-based
code LMs as encoders. After encoding the triplet,
we use the contrastive loss to minimize the relative
distances between the positive pair (⟨x, y+⟩) and
negative pair (⟨x, y−⟩). Negative sampling is the
core of our method. We propose an improvement
on the regular contrastive learning, by additionally
fine-tuning the network with synthesized hard nega-
tives (negative PL snippets) through well-specified
AST-based perturbation rules. The set of rules is
inspired by generic code constructs and the syn-
tactic and semantic errors the SOTA models are
observed to make. These perturbation rules are tar-
geted to infuse the representation learners with tar-
geted structural information. As these synthesized
hard negatives are harder to distinguish (i.e., not
easy to learn from) in the initial phases of learning,
we further adopt the mastering rate-based curricu-

lum learning (Willems et al., 2020) approach to
learn from both soft and hard negatives.

3.1 Negative samples with AST perturbation

Most errors made by Transformers-based SOTA
methods in code retrieval can be attributed to spe-
cific code structure violations with respect to the
intent. We group such violations into three broad
categories: Type-1 (Data type mismatch): incorrect
data types or data structures used (e.g. list com-
prehension instead of set comprehension) Type-2
(Function call errors): Incorrect function is called
or correct function is called with incorrect argu-
ments. Type-3 (Incorrect conditional checks): In-
correct branching, comparison (“==" instead of
“!="), or logical operators (and, or). These er-
rors motivate forcing transformer-based models
to learn structural aspects, for which we use con-
trastive learning with synthesized hard negatives
(Ding et al., 2021) and improve it using curriculum
learning. We first generate a set of candidate hard
negatives and sample the final hard negatives using
the underlying code search model dynamically. We
explain the two steps below.
Generation of Candidate Hard Negatives. We
use AST-perturbation rules to generate hard nega-
tives, as outlined in Table 1. We carefully design
these rules to capture potential syntactic and seman-
tic violations, inspired by previous works (Allama-
nis et al., 2021; Wen et al., 2019). AST-perturbation
rules replace one type of AST node with another
producing negative examples with similar forms
but different semantics. Next, we will explain how
the rules directly address the above violations.

Rule-1 addresses Type-2 violations, by replacing
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standard library functions with the closest library
function based on function name and signature. To
find the closest library functions, we retrieve k(=10)
functions from a list of 5.9k function specifications
gathered from standard python modules and some
well-known data science libraries (like NumPy,
pandas, etc. present in the dataset) by scoring their
similarity based on lexical and function signature
overlap (detailed in Appendix A.2). Rule-4 ad-
dresses violations of Type-1 by replacing integer or
floating point constants with quoted string versions
of them (e.g. x+3 to x+"3") and replacing string
constants with integer or float constants equal to the
string lengths (e.g. "hi"*n to 2*n). Finally rules 5,
6, 7, and 9 address violations of Type-3 by remov-
ing branching (rule 9), flipping conditional expres-
sions (rule 5, 6), or altering composite conditions
(rule 7). We do not chain the application of multi-
ple rules, as it can lead to a code snippet that ends
up satisfying the original intent. For example, if x
== True:print("Hello") would be semantically
equivalent to if x != False:print("Hello"),
which can be obtained from the original code snip-
pet by chained application of rules 5 and 6.

Our AST perturbation Algorithm 1 (in Ap-
pendix) applies the appropriate rules to create a
set of corrupted code candidates. We use Python’s
AST parser (Foundation, 2023a) to parse the code
snippets into ASTs. Following the node-level sub-
stitutions, we unparse the AST using unparser
(Foundation, 2023b) to get the corresponding code.
Sampling of Hard Negatives. After generating
a set of candidate hard negatives ci through AST
perturbation, we use the current model weights to
score them against the NL intent or query q and
sample hard negatives by using the probability dis-
tribution given by the softmax over the scores, as
eβq

T ci∑
i e

βqT ci
similar to Robinson et al. (2021) (equiv-

alent to von Mises-Fisher distribution with uniform
prior over candidates). The concentration param-
eter β controls the hardness of the sample hard
negatives. A high beta leads to a distribution that
picks candidates that the model thinks are most
similar to the intent, leading to harder negatives,
while a low beta is close to a uniform distribution,
making each hard negative candidate equally likely,
leading to softer negatives.

3.2 Training Curriculum

To carefully learn from both soft and hard neg-
atives (Zhan et al., 2021), we use a mastering-

rate (Willems et al., 2020) based curriculum ap-
proach. Willems et al. (2020) defines curriculum
learning by 1) a curriculum i.e. a set of tasks
C = {c1, . . . , cn}, where a task is set of exam-
ples of similar type with a sampling distribution,
and 2) a program which for each training step de-
fines the tasks to train the learner given its learning
state and the curriculum. Formally, the program
d : N → DC , is a sequence of distributions over C.
To learn tasks that are learnable but not learnt yet,
the mastering-rate based algorithm requires as in-
put a directed graph over tasks in C. An edge from
A to B indicates that learning task A before B is
preferable. The learnability for each task depends
on mastering rate (Mc(t)) estimated from the nor-
malized mean accuracy for that task at time-step
t. To estimate the distribution over examples, at
each time-step, the algorithm computes attention
(a : N → AC) over the tasks (ac(t)) from mas-
tering rates of its ancestors and successors (in the
DAG). Finally, it uses an attention-to-distribution
converter (∆ : AC → DC) which converts the at-
tention to a distribution over C, which is used to
sample minibatches during training.

For our curriculum, we consider two sub-tasks,
i.e., hard negative and soft negative learning, where
learning from soft negatives is preferable before
hard negatives. We generate a distribution over
these two tasks as a function of the current mas-
tering rate (windowed triplet accuracy) for each
learning task. We compute the mastering rate for a

task L at the tth step usingM(t)
L =

∑k
i=0(Ta)

(t−i)
L

k ,

where (Ta)(t−i)
L is the triplet accuracy at the (t −

i)th step for L, and k is the window size. The
mastering rates are used to determine the attention
over the hard (a(t)h ) and soft negative (a(t)s ) learning
tasks at the tth step as follows:

a(t)s = (δ · (1−M(t)
s ) + (1− δ) · γ̂linregs (t))

· (1−M(t)
h )

a
(t)
h = (M(t)

s )p · (δ · (1−M(t)
h )

+ (1− δ) · γ̂linregs (t))

Here γ̂linregs is the slope of the linear regression
over the values of the triplet accuracy for the last
k steps (window size), while δ is a coefficient
that weighs the contribution of the mastering rates
M(t)

s andM(t)
h , and γ̂linregs . Finally, we compute

∆(a(t)), the probability distribution over the two
learning tasks at the tth step, as shown in Eqn. 1
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Rule Input Pattern Perturbed Output Description

1 Library function substitution f(exp1, exp2, . . . expn) f ′(exp1, exp2, . . . expn)
Replace standard library functions
with closest library function based
on function name and signature

2
List comprehension to
set comprehension

[exp1, exp2, ...expn]
[x for x in exp1 if exp2]

{exp1, exp2, . . . expn}
{x for x in exp1 if exp2}

Replace list comprehension with
set comprehension (Box brackets
to curly brackets)

4
Convert integer/float constants to
strings and vice versa

dig1 . . . dign
dig1 . . . dign.dig′1 . . . dig

′
m

“char1 . . . charn"
“char1 . . . charn"

“dig1 . . . dign"
“dig1 . . . dign.dig′1 . . . dig

′
m"

n
n.0

Substitute integer constant with
string (enclose in quotation
marks) and replace string with
integer or floating value equal
to the length of the string

5 Flip boolean constants
exp == True
exp != False

exp == False
exp != True

Replace ‘True‘ with ‘False‘ and
vice-versa

7 Flip boolean operators
exp1 or exp2
exp1 and exp2

exp1 and exp2
exp1 or exp2

Replace “and" with “or" and
vice-versa in composite
boolean expressions

9
Replace If-Else statement or
expression with its body

if exp: s1; else s2;
if exp1: s1; elif exp2: s2; . . . else: sn;
exp1 if exp2 else exp3

s1
s1
exp1

Remove branching in the form of
if-else statements, if-else if ladders
or inline if-else expressions with
the body of the if statement

Table 1: Representative AST perturbation rules and their corresponding grammars in Python’s Abstract Syntax
Description Language (ASDL). ASL has 4 inbuilt data types: identifier, int, string, constant. Full list in Tab. 3

as the weighted combination between the softmax
over the attention weights and a bias distribution
∆bias with epsilon being the weight of the bias dis-
tribution. (Willems et al., 2020) assume a uniform
distribution as the bias distribution, but we find a
weight of 0.8 for soft negatives and 0.2 for hard
negatives to be more suitable for our setting.

∆(a(t)) := (1− ϵ) · ea
(t)
c∑

c′ e
a
(t)

c′
+ ϵ ·∆Bias (1)

We compute the triplet accuracy Ta to estimate the
mastering ratesM(t)

S andM(t)
H using Eqn. 2:

Ta =

∑N
i=0 1∥xi−y+i ∥2<∥xi−y−i ∥2

N
, (2)

where xi, y+i , and y+i represent the anchor text,
positive code snippet and negative code snippet
representations respectively, while 1i is an indica-
tor variable which is 1 if i > 0 and 0 otherwise).
Loss function We use the following triplet loss
function: Lϕ(xi, y+i , y

−
i ) = max{∥xi − y+i ∥2 −

∥xi−y−i ∥2+1, 0}, where xi, y+i and y−i represent
the intent, positive code sample and negative code
sample respectively. We use default margin of 1.
Ablations with different margins for hard and soft
negatives don’t lead to better performance.

4 Experimental Setup

4.1 Datasets

We conduct our experiments on four Python code
retrieval datasets, namely CoNaLa, PyDocs, Web-
Query and CodeSearchNet.
CoNaLa. CoNaLa (Yin et al., 2018) has 600k au-
tomatically mined intent-snippet pairs from Stack-
Overflow, alongwith 2.9k manually annotated pairs
(2.4k/500 train/test). Due to its size, we utilize
CoNaLa as the pre-training corpus for our exper-
iments. Based on Xu et al. (2020) and our pilot
studies (see Tab. 6 in Appendix), we utilize a subset
of 100k most relevant NL-PL pairs to reduce noise
and achieve superior performance.
PyDocs. Xu et al. (2020) heuristically generated
function calls from the specifications and queries
from Python’s standard library API documentation.
They then resample the data to match the CoNaLa
NL-PL pair distribution, using a weighted distribu-
tion (with temperature) to balance between uniform
and CoNaLa-induced distribution. We use the data
corresponding to the lowest temperature (2, i.e.,
most similar to CoNaLa) and set aside 365 queries
and 416 documents as a test set. The remaining
training& validation data have 9.7k NL-PL pairs.
WebQuery. The WebQuery test set is a part of
the CoSQA corpus curated by Huang et al. (2021).
The text queries in this dataset are “web queries”
with a code search intent. The code candidates are
functions that are annotated as relevant to the query
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using the docstring, the function header, and the
body. WebQuery test set has 523 NL queries and
803 unique code candidates.
CodeSearchNet. The CodeSearchNet corpus (Hu-
sain et al., 2019) is collected from open-source
GitHub repositories for six programming languages
including Python. Authors extracted function-
documentation pairs from these code bases. We
utilize the Python test set which has 21.5k queries
and 22k documents. As the queries are function
documentation written by developers, they have a
different distribution than web search queries.

4.2 Experiments

Training. We train the models on both CoNaLa
and PyDocs to compare generalization perfor-
mance (Tab. 5) and proceed with CoNaLa mined
pairs based on the results. Additionally, we also
compare the effect of using the top 100k most rel-
evant NL-PL pairs instead of the whole dataset
(Tab. 6). We train the transformer models on the
CoNaLa 100k data with regular fine-tuning, dy-
namic negative sampling-based fine-tuning (DNS),
and our AST-guided curriculum, and show the re-
sults over all 4 test sets described in §4.1, in Tab. 2.
For all experiments, we use zero as the random
seed.
Model Selection. We use a retrieval style vali-
dation with 14k queries and 18.3k code candidates
and the recall@5 metric to pick the best model.
Testing. We test all the models, except UniX-
coder on all 4 datasets. UniXcoder is not evaluated
on CodeSearchNet as it is part of its pre-training
corpus. The summary statistics of each test set are
shown in Table 4. We average the metrics over all
test sets to report the generalization performance
and use the average performance barring CoNaLa
to report out-of-domain (OOD) generalization.
Metrics. We report Normalized Discounted Cu-
mulative Gain (NDCG), recall@k (k = 5, 10), and
Mean Reciprocal Rank (MRR) as the metrics.

4.2.1 Baselines
As baselines, we include a few simple modeling
baselines (CNN/RNN/n-Bow) based on (Husain
et al., 2019) (in appendix E). We further propose
several contrastive learning-based baselines. We
had to adapt and re-implement these baselines for
the python code retrieval scenario.
• CodeRetriever: We propose a strong baseline
based on the unimodal and bimodal contrastive
learning objectives in Li et al. (2022a). We adapt

their objective based on differences in the train-
ing corpora. We use the negative euclidean dis-
tance instead of cosine similarity as the similarity
measure s(x, y) in Eqn. 3). Additionally, Li et al.
(2022a) use “NameMatcher” and “DocMatcher” re-
trieval to create code pairs (y, y+) of functions
for CodeSearchNet. CoNaLa has code snippets
instead of functions and Stack Overflow post ti-
tles as the intent so we can not replicate this step.
Instead, we pair code snippets sharing the same
intent. Also, we drop the code-comment bimodal
objective used in the original paper as most code
snippets in CoNaLa don’t have comments. We also
use temperature τ = 1.

Lϕ(x, y) = −

[
log(

es(x,y)/τ∑
y′∈Y es(x,y′)/τ

)+

log(
es(y,y

+)/τ∑
y′∈Y es(y,y′)/τ

)

]
, (3)

• (DIs)-Similarity of Source Code from Pro-
gram Contrasts (DISCO): Ding et al. (2021)
proposed AST-guided rule-based perturbations for
data augmentation to leverage contrastive learning
for tasks such as code-clone and vulnerability
detection. As the original rules are for C/C++
and Java, we adapt them for Python (see Table 8).
Additionally, we transform the objective to a
bimodal one (Eqn. 4) for intent representation x,
code representation y, and AST perturbed negative
sample y−) as the original DISCO approach
only deals with code representations. For this
conversion, we use the intent representation x
instead of the code representations obtained from
semantics-preserving changes. Also similar to
the CodeRetriever baseline we use the negative
euclidean distance for similarity and temperature
τ = 1. We also simplify the objective by dropping
the MLM and local AST node-type MLM terms.

Lϕ(x, y) = − log(
es(x,y)/τ∑N

n=1 e
s(x,yn)/τ + es(x,y

−
n )/τ

)

(4)

• Dynamic Negative Sampling (DNS): We pro-
pose a strong baseline loosely based on the STAR
and ADORE algorithms (Zhan et al., 2021). STAR
uses static hard negatives and randomly sampled
soft negatives to simultaneously train the query and
document encoder. ADORE freezes the document
encoder and trains the query encoder while using
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MRR NDCG Recall@5 Recall@10

Model ID OOD Total ID OOD Total ID OOD Total ID OOD Total

n-BOW 6.19 6.13 6.15 20.76 18.7 19.21 8 6.73 7.05 9.6 10.37 10.17
CNN 6.05 1.93 2.96 21.88 15.05 16.76 5.4 1.67 2.6 10.4 3.45 5.19
RNN 13.02 4.59 6.7 29.28 18.8 21.42 16.2 5.55 8.21 25.6 9.52 13.54

CB (zero shot) 2.77 2.79 2.78 16.77 15.35 15.7 3 3.28 3.21 5 4.96 4.97
CB 54.99 44.21 46.91 65.65 56.27 58.62 62.8 53.25 55.64 78.4 63.73 67.4
CB+DNS 54.51 48.59 50.07 65.51 59.94 61.33 65 57.55 59.41 79.2 67.26 70.25
CB+CR 58.03 48.55 50.92 68.43 59.89 62.02 70.4 57.78 60.79 83.2 67.05 71.09
CB+DISCO 58.27 40.48 44.93 68.63 52.87 56.81 67.4 49.23 53.77 80.2 59.7 64.82
CB+SYNC 56.28 50.95 52.28 66.89 61.93 63.17 67.8 60.34 62.21 81.8 70.51 73.33

GCB (zero shot) 9.89 18.64 16.45 23.72 29.48 28.04 12 22.2 19.65 17.22 24.77 22.88
GCB 57.4 48.4 50.65 67.78 59.94 61.19 69.8 58.84 61.58 83.2 69.1 72.62
GCB+DNS 59.28 50.87 52.97 69.26 62.08 63.88 67.6 60.59 62.34 80.8 71.45 73.79
GCB+CR 59.2 50.16 52.42 69.28 61.3 63.29 70.2 59.47 62.16 83.8 69.51 73.08
GCB+DISCO 61.84 42.75 47.52 71.45 54.82 58.98 74 51.8 57.35 84.2 61 66.8
GCB+SYNC 58.28 55.44 56.15 68.37 65.73 66.39 68.4 63.99 65.09 83.6 73.38 75.93

UX (zero shot) 20.7 56.24 44.39 34.9 67.32 56.51 24 63.88 50.59 30.4 70.61 57.21
UX 59.82 65.79 63.8 69.53 75.3 73.37 69.6 74.59 72.92 83 83.49 83.33
UX+DNS 59.13 66.74 64.2 69.02 76.01 73.68 72.4 75.79 74.66 84.2 82.99 83.39
UX+CR 64.35 66.98 66.1 73.21 76.23 75.23 75.66 74.93 75.15 88.8 82.8 84.8
UX+DISCO 65.24 65.5 65.41 73.91 75.11 74.71 77 73.08 74.39 84.6 81.51 82.54
UX+SYNC 60.21 67.6 65.13 70.06 76.83 74.58 72.4 76.05 74.83 84.8 84.61 84.68

Table 2: In-domain (ID) performance of the models when trained on CoNaLa and the out-of-domain (OOD)
performance averaged over PyDocs, WebQuery, and CodeSearchNet (excluded for UniXcoder). CB: CodeBERT,
GCB: GraphCodeBERT, UX: UniXcoder, CR: CodeRetriever. “Total”: average performance with equal weights for
all datasets. If we weigh the datasets relative to their sizes, UX+SYNC also achieves the best “Total” performance.

the document encoder to dynamically retrieve hard
negatives from the whole dataset. The original pa-
per applies the STAR approach first and further
trains the query encoder with ADORE. However,
since we have a shared query and code encoder,
we strike a balance by performing an ADORE-
like retrieval but only over the documents of each
mini-batch (Fig. 3 in the Appendix). We find this
approach to be stable during training and see signif-
icant improvements in performance for CodeBERT
and GraphCodeBERT as outlined in section 5.

5 Results and Discussion

The code retrieval results are in Tab. 2. Based on
all metrics, our proposed AST-guided curriculum
achieves the best OOD generalization out of all
the methods for all 3 transformer models, with
the biggest improvements in GraphCodeBERT. We
also observe that the DISCO implementation per-
forms worse than the base variants on OOD per-
formance. Our approach achieves better ID perfor-
mance than the DNS approach, but slightly lower
performance as compared to the CodeRetriever and

DISCO approaches. Our approach achieves the
best “total” performance in terms of the metrics
averaged across all test sets for CodeBERT and
GraphCodeBERT. The OOD corpora, i.e., Code-
SearchNet has 60 times more queries than CoNaLa
test set, and thus the generalization results holds
more significance in terms of the number and type
of queries that our models can answer.
As CodeSearchNet is excluded from test for UniX-
coder, the gain of our approach in OOD perfor-
mance doesn’t reflect in total score in comparison
to CodeRetriever and DISCO (MRR and NDCG).
We analyze this in more detail later. Finally we
observe the simple modeling baselines fail to reach
zero-shot performance of structure-aware LMs like
UniXcoder, highlighting the importance of incor-
poration of structure for code search.
Comparison of errors made by our approach
(UX+SYNC) and CodeRetriever (UX+CR) for
UniXcoder. We analyze the drop in in-domain per-
formance of UX+SYNC against UX+CR by find-
ing instances where the UX+CR approach retrieves
the correct document within the top 5 results and
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our approach doesn’t. There are 23 such instances.
Among these, 5 are labeling errors, 6 are incorrect
operation invoke and 5 are correct function with
incorrect arguments (more in Tab. 16). We further
analyze the CodeBLEU (Ren et al., 2020) scores
of the top-ranked code candidates for each query.
UX+SYNC and UX+CR achieves a CodeBLEU
score of 71.65 and 73.56 ID performance resp.ly.
Interestingly, for the error instances by UX+SYNC
(i.e., where the correct document is not in the top-
5 candidates) we achieve a CodeBLEU score of
18.36 as compared to 16.62 by UX+CR. This im-
plies that our model retrieves syntactically and lex-
ically closer snippets to the gold labels compared
to UX+CR. For the OOD data (WebQuery and Py-
Docs), UX+SYNC achieves a CodeBLEU score of
60.91 compared to 57.97 achieved by UX+CR, and
a score of 10.69 as compared to 9.47 for mistakes,
showing the trend of better structural similarity
holds for OOD as well.
Why do CodeRetriever and DISCO have bet-
ter ID performance but worse OOD perfor-
mance? Both DISCO and CodeRetriever use
cross-entropy loss instead of triplet margin loss
(which is used for our approach) and gain ID per-
formance at the expense of OOD generalization.
This ID-OOD tradeoff can be observed even while
adding more negatives to CodeBERT (Tab. 9),
which matches our ID performance on CoNaLa,
while lagging behind in OOD performance.
For DISCO, the OOD performance is worse than
the base variants (UX/GCB/CB rows) trained with
soft negatives and a triplet margin loss. We per-
formed additional ablations over the CodeRetriever
objective to tease out the influence of the loss func-
tion (triplet margin loss vs. cross-entropy loss)
and the effect of the unimodal loss component
(in Appendix C.1). The results suggest that the
choice of triplet margin loss leads to better OOD
performance at the cost of ID performance and the
unimodal code similarity objective also improves
the OOD performance at the cost of the ID perfor-
mance, which explains why CodeRetriever outper-
forms DISCO on OOD data, while DISCO does
better on ID data. This aligns with the intuition that
margins add robustness to models and prevent over-
fitting, motivating our choice of triplet margin loss
as the objective for the AST-guided curriculum.
Qualitative Analysis. We show some motivat-
ing examples in Appendix Tab. 13. For the first
example, all the top 5 retrieved code snippets us-

ing the AST model invoke the correct function call
extend() compared to the base model. In the sec-
ond example, three of the top five retrieved code
snippets for the AST model have a tuple of tuples
or a list of tuples data structure, while the base-
line model retrieval results feature 1D lists instead.
Finally, for the third example, the highest-ranked
candidate gets all 3 function arguments correct.

We also perform analogy testing (of the form
a:b::c:? for each rule) over the code representa-
tions to quantify their sensitivity to the perturbation
patterns introduced by our AST-guided hard neg-
atives. We observe improvements for CodeBERT
and GraphCodeBERT and a slight drop for some
rules in UniXcoder in Tabs. 14 & 15.

6 Conclusion
For neural code search, Transformers-based pre-
trained models make certain common mistakes
which indicates loss of syntactic and semantic infor-
mation, while learning the representation. To learn
robust structure-preserving representation during
fine-tuning, we propose a structure-aware hard neg-
ative sampling through AST perturbation along
with a mastering-rate-based curriculum, where our
AST perturbation rules are motivated by common
semantic and syntactic variations of code. Our
experiments show significant improvement over
standard contrastive learning for three SOTA trans-
former models on four code retrieval datasets (in ID
and OOD settings), outperforming competitive con-
trastive learning baselines like DISCO and CodeRe-
triever over OOD generalization. Interestingly, our
method shows improvement even for UniXCoder
which is exposed to the underlying AST structure
of the code snippets during pre-training. Addi-
tionally, CodeBLEU scores show that even when
models trained using our approach makes mistakes
in retrieval, it still exhibits comparably better struc-
tural similarity with gold truth code snippets.
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Limitations

• In our approach, we use a set of AST perturbation
rules (manually written by us and following previ-
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ous work) to create hard negatives around common
grammatical (and semantic) constructs. While we
do not assume “necessity” or “sufficiency” of the
rules, it is still hard to define any such properties
for a collection of rules.
• Our approach mitigates the problem of train-
ing instability and susceptibility to local optima
encountered in hard negative mining while achiev-
ing the best OOD generalization. However it fails
to achieve the best ID performance (compared to
other contrastive learning approaches). Some of
these limitations stem from the choice of the triplet
margin loss function that improves the OOD per-
formance at the expense of the ID performance as
shown by the CodeRetriever ablations (Appendix).
We will investigate this further as part of future
work.

Ethics Consideration

In current work, we utilize python code retrieval
datasets that are publicly available. Some of the
datasets are semi-automatically curated from scrap-
ing StackOverflow and Python standard library API
reference. To the best of our knowledge, we have
not noted any offensive or adult content in the
datasets. Secondly, current code language mod-
els are targeted towards high-resource language
such as English. If our work is accepted, we also
plan to work on local low-resource language and
this is a reason we use models such as UniXCoder
that have the potential to be extended to multiple
languages. Apart from this, we do not foresee any
specific ethical considerations.
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Rule Input Pattern Perturbed Output Description

1 Library function substitution f(exp1, exp2, . . . expn) f ′(exp1, exp2, . . . expn)
Replace standard library functions
with closest library function based
on function name and signature

2
List comprehension to
set comprehension

[exp1, exp2, ...expn]
[x for x in exp1 if exp2]

{exp1, exp2, . . . expn}
{x for x in exp1 if exp2}

Replace list comprehension with
set comprehension (Box brackets
to curly brackets)

3
Set comprehension to
list comprehension

{exp1, exp2, . . . expn}
{x for x in exp1 if exp2}

[exp1, exp2, . . . expn]
[x for x in exp1 if exp2]

Replace set comprehension with
list comprehension (Curly
brackets to box brackets)

4
Convert integer/float constants to
strings and vice versa

dig1 . . . dign
dig1 . . . dign.dig′1 . . . dig

′
m

“char1 . . . charn"
“char1 . . . charn"

“dig1 . . . dign"
“dig1 . . . dign.dig′1 . . . dig

′
m"

n
n.0

Substitute integer constant with
string (enclose in quotation
marks) and replace string with
integer or floating value equal
to the length of the string

5 Flip boolean constants
exp == True
exp != False

exp == False
exp != True

Replace ‘True‘ with ‘False‘ and
vice-versa

6 Flip comparators

exp1 == exp2
exp1 != exp2
exp1 < exp2
exp1 > exp2
exp1 ≥ exp2
exp1 ≤ exp2

exp1 != exp2
exp1 == exp2
exp1 ≥ exp2
exp1 ≤ exp2
exp1 < exp2
exp1 > exp2

Flip comparators <to >=,
>to <=, == to !=, “is" to
“is not", “in" to “not in" and
vice-versa

7 Flip boolean operators
exp1 or exp2
exp1 and exp2

exp1 and exp2
exp1 or exp2

Replace “and" with “or" and
vice-versa in composite
boolean expressions

8
Replace function calls with
identifier name

f(exp1, . . . expn)
v op= f(exp1, . . . expn)
v = exp′ op f(exp1, . . . expn)

f
v op= f
v = exp′ op f

Replace function call with
identifier of the same name

9
Replace If-Else statement or
expression with its body

if exp: s1; else s2;
if exp1: s1; elif exp2: s2; . . . else: sn;
exp1 if exp2 else exp3

s1
s1
exp1

Remove branching in the form of
if-else statements, if-else if ladders
or inline if-else expressions with
the body of the if statement

Table 3: All AST perturbation rules and their corresponding grammars in Python’s Abstract Syntax Description
Language (or ASDL) format. ASL has 4 inbuilt data types: identifier, int, string, and constant.

Figure 2: AST perturbation in action: For the given code snippet, rule 5, 6, 7 & 9 are applicable, leading to 4
AST-based hard negative candidates. Rule 5 flips the leaf nodes corresponding to the named constants “True” &
“False”, while rule 6 replaces boolean “and” operator leaf node with an “or” leaf node, rule 7 flips the “==” leaf
nodes to “!=” leaf nodes and finally rule 9 replaces the code snippet with the body of the if statement “print(’Hello’)”.
Rule 9 is not shown due to a lack of space.
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Algorithm 1: Pseudocode for AST guided code perturbation
Data: ρ,R *[r]ρ is program snippet,R is set of rules
Result: P = {ρ′1, . . . ρ′n} *[r]ρ′i is ith corrupted program snippet

1 T ← parseAST(ρ);
2 S ← ∅*[r]Traverse AST & collect applicable rule sites η ← getRoot(T );
3 W ← {η} ;
4 whileW ≠ ∅ do
5 η ←W.pop();
6 for r ∈ R do
7 if isValidSite(η, r) then
8 S.push(⟨η, r⟩)*[r]Collect valid candidate rule sites without modifying AST

9 for n ∈ succ(η) do
10 W.push(n);

11 P ← ∅;
12 for ⟨η, r⟩ ∈ S do
13 Tc ← copy(T )*[r]Create a copy of the AST to modify later into a corrupted program snippet

Tc ← applyRule(Tc, η, r)*[r]Apply rule on valid site node and transform AST
ρ′ ← unparseAST(Tc)*[r]Regain program snippet from transformed AST
P.push(ρ′)*[r]Collect set of corrupted program snippets

we successively apply a rule on all of its valid sites
at a time, but we apply at most one rule at a time.
For e.g. while applying rule 5 on if x == True
and y == False, we substitute all occurrences of
True with False and False with True, to obtain
if x == False and y == True. Our procedure is
guaranteed to give syntactically correct corrupted
codes as output, as the unparse module fails to re-
cover the code string if the transformed AST is
invalid. Now we will briefly cover the approach we
use to score and rank candidate function calls for
the function call substitution rule (rule 1 in 1). Fig.
2 shows our algorithm in action for if x != True
and y != False: print("Hello").

A.2 Function similarity scoring for function
call substitution (rule 1)

For a target, function call Fi to be substituted by
a target function call Fj we compute the score
sij as the sum of the function name match score
snij and the function signature match score ssij
(sij = snij + ssij). We compute snij using the
token_sort_ratio measure, implemented by the
fuzzwuzzy2 python package, between the function
strings after replacing underscores with spaces and
normalizing it to be between 0 to 1, instead of
0 to 100. ssij also has two components: a return

2https://pypi.org/project/fuzzywuzzy/

type match score sretij and a parameter match score
spij and is compute as spij = sretij + spij . sretij is 1
if both function calls have the same return type
and 0 otherwise, while spij attempts to match the
parameter kinds (positional argument vs keyword
argument) and default values, from left to right and
normalizes it by the maximum possible score. We
do not use the data type information for function
arguments, as it is not available for several of the
function calls (Python doesn’t require explicit data
types in function specifications and data type in-
formation can only be given as optional hints or
annotations). Each component score in sij , varies
between 0 to 1, leading to sij itself ranging from
0 to 3 (as sij = snij + sreti j + spij). We recognize
that prior work like (Patra and Pradel, 2022) has ap-
plied learned semantic embeddings to match code
entities, but we avoid doing it for function names
here to enable faster matching over larger candi-
date sets (≈ 5.9k candidates). Efficient ways to
incorporate learned embeddings or even the current
model weights to match candidate functions could
be a promising extension of our work.

B Dataset Statistics

We show number of unique queries and documents
(code snippets) alongwith representative examples
for each of the four test sets in Table 4. Notably,
PyDocs, WebQuery and CodeSearchNet all vary

https://pypi.org/project/fuzzywuzzy/


95

Dataset #Queries #Docs Intent Code Snippet

CoNaLa 365 490
How can I send a signal
from a python program?

os.kill(os.getpid(), signal.SIGUSR1)

PyDocs 365 416
Return the current collection
counts as a tuple of
(count0, count1, count2).

gc.get_count()

WebQuery 523 803 python git get latest commit

def latest_commit(self) ->git.Commit:
""":return: latest commit :rtype: git.Commit object"""
latest_commit: git.Commit = self.repo.head.commit
LOGGER.debug(’latest commit: %s’, latest_commit)
return latest_commit

CodeSearchNet 21504 22176
str->list Convert XML to URL
List. From Biligrab

def sina_xml_to_url_list(xml_data):
rawurl = []
dom = parseString(xml_data)
for node in dom.getElementsByTagName(’durl’):

url = node.getElementsByTagName(’url’)[0]
rawurl.append(url.childNodes[0].data)

return rawurl

Table 4: Statistics of each dataset: CoNaLa, PyDocs, WebQuery, CodeSearchNet.

from CoNaLa in the way queries are expressed.
WebQuery and CodeSearchNet contain larger code
snippets compared to PyDocs and CoNaLa.

B.1 Filtering CoNaLa Corpus

As mentioned in the Experiments section, we use
100k most relevant pairs of CoNaLa for fine-tuning,
as it achieves comparable or better performance on
the CoNaLa test set. Details are shown in Table 6.

C Ablation Studies

C.1 Ablation I: Utilizing CodeRetriever
objective With CodeBERT

We perform the following ablations for the CodeRe-
triever objective with CodeBERT:
1. Impact of unimodal loss: To test the impact
of the unimodal loss component, we run an experi-
ment without it, using only the bimodal loss.
2. Impact of choice of loss function: We test the
tradeoffs involved in choosing triplet margin loss
instead of cross-entropy loss. Under this setting,
both the unimodal and bimodal loss are triplet mar-
gin losses instead of cross entropy losses.
3. No. of epochs: Impact of no. of training
steps/epochs on ID and OOD performance. We
test this out with 5, 10, and 15 epochs.
4. Similarity measure: Using cosine similarity vs
using negative euclidean distance.
We summarize the results of these ablations in Ta-
ble 7.

The results indicate that performance usually de-
grades over epochs meaning fewer training steps

are better. Notably, it is the OOD performance
that drops drastically while the ID performance
does decrease much, which indicates overfitting to
noise. Using cosine similarity leads to very poor
performance as compared to the negative euclidean
distance, prompting us to use the latter as the simi-
larity measure for DISCO as well. We also see that
the loss type affects the ID and OOD breakdown.
Using triplet margin loss greatly degrades the ID
but also achieves the best OOD performance, how-
ever the average performance is poor. Finally, we
observe that removing the unimodal loss improves
the ID at the expense of the OOD performance,
which indicates that it potentially acts as a regular-
ization to prevent overfitting the bimodal loss.

Figure 3: We create a feedback loop in the model train-
ing by using the current model weights to pair each
intent-snippet pair with the closest snippet from another
intent. These create the hardest negatives at a batch
level, which are expected to be harder than randomly
sampled negatives.
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Model Trained on MRR NDCG Recall@5 Recall@10

CodeBERT CoNaLa 46.91 58.62 55.64 67.4
GraphCodeBERT CoNaLa 50.65 61.19 61.58 72.62
UniXcoder CoNaLa 63.8 73.37 72.92 83.33

CodeBERT PyDocs 44.08 55.36 48.57 56.07
GraphCodeBERT PyDocs 52.42 62.94 58.82 67.18
UniXcoder PyDocs 49.22 60.42 54.83 63.42

Table 5: Effect of training dataset on the generalizability of models.

Model MRR NDCG Recall@5 Recall@10

CodeBERT 51.68 63.21 61.4 77.6
CodeBERT 100k 54.99 65.65 62.8 78.4

GraphCodeBERT 57.03 67.3 66.2 79.2
GraphCodeBERT 100k 57.4 67.78 69.8 83.2

UniXcoder 59.77 69.45 69.2 83
UniXcoder 100k 59.82 69.53 69.6 83

Table 6: Pilot study comparing the effect of training on the entire CoNaLa mined pairs dataset (roughly 600k NL-PL
pairs) vs training on the 100k most "relevant" pairs based on the "prob" score. Using these 100k NL-PL pairs leads
to similar or better performance in 1

6

th the training time.

MRR NDCG Recall@5 Recall@10
Unimodal

Loss
Loss Type

Similarity
measure

Epochs Total ID OOD Total ID OOD Total ID OOD Total ID OOD

True cross entropy -euclid_dist 5 50.92 58.03 48.55 62.02 68.43 59.89 60.79 70.4 57.78 71.09 83.2 67.05
True cross entropy -euclid_dist 10 48.68 57.28 45.82 60.13 67.85 57.55 58.46 69.8 54.67 69.35 83.6 64.59
True cross entropy -euclid_dist 15 45.92 58.03 41.88 57.65 68.2 54.14 54.93 67.8 50.64 65.91 81.6 60.67

True cross entropy cosine_sim 5 19.65 30.65 16.19 34.4 44.91 30.9 24.2 36.8 20.3 33.92 50.4 28.42
True cross entropy cosine_sim 10 18.76 27.54 15.83 33.5 42.67 30.44 23.08 33.4 19.64 32.37 47 27.5
True cross entropy cosine_sim 15 18.81 27.61 15.88 33.53 42.66 30.49 22.81 33 19.41 32.53 47.2 27.64

False cross entropy -euclid_dist 5 50.97 60.73 47.72 62.04 70.6 59.19 60.6 73 56.46 71.52 86 66.69

True triplet margin -euclid_dist 5 50.87 53.82 49.89 62.06 64.7 61.18 60.01 64.2 58.61 71.05 77.4 68.94

Table 7: Various ablations for the CodeRetriever objective for CodeBERT.

Figure 4: Hyperparameter search over the p and β for
UniXcoder

C.2 Ablation II: Hyper Parameter Variations
(β in Von-Mises Distribution, p in
Mastering Rate Curriculum, Warmup
steps)

We explore variations of the various hyper-
parameters associated with the mastering-rate
curriculum-learning algorithm and the von-Mises
Fischer sampling. Intuitively, higher β samples
harder negatives (negatives more similar to query)
through von-Mises sampling, and higher p forces
the curriculum to focus more on learning from
soft negatives (i.e. mastering the soft negative task
first); therefore creating a natural tradeoff.

Figure fig. 4 shows various variations of the β
(used for the sampling in §3.1) and p (used in the
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Our implementation
of DISCO

Original DISCO
implementation

Change ‘int‘/‘float‘ constant to ‘str‘ DataType Misuse
Flip comparators: == to !=, <to >=,

>to <=, ’is’ to ’is not’, ’in’ to ’not in’
and vice versa for each case

Change of
Conditional
Statements

Replace If-Else statement with
if’s body

Change of
Conditional
Statements

Swap function arguments
Change of

Function Calls

Replace If-Else statement with
else’s body

Change of
Conditional
Statements

Change ‘str‘ constant to ‘int‘ DataType Misuse
Change ‘str‘ constant to ‘float‘ DataType Misuse
VarMisuse: Replace variables

with each other
Misuse of Variables

Division-by-zero error introduced Misuse of Values

Table 8: A comparison of the perturbation rules imple-
mented in our adaptation of the DISCO baseline for
Python. We remove rules like “Misuse of Pointers” that
don’t have any Python equivalents but were proposed in
the original DISCO paper for C/C++

Figure 5: Effect of warmup steps on the performance of
CodeBERT over all 4 metrics, with p = 2 & β = 0.01

hard negative attention calculation for the master-
ing rate curriculum) for UniXcoder. We observe
that increasing p generally leads to better perfor-
mance, which indicates that hard negative attention
needs to be sensitive to a drop in the mastering
rate/accuracy of the soft negative learning task. Ad-
ditionally, we see that very low βs (almost uniform
distribution over hard negatives) lead to a better per-
formance with lower values of p, peaking a p = 2.
This intuitively makes sense, as low βs correspond
to softer hard negatives, reducing the gap between
hard and soft negative learning tasks. However

Figure 6: Effect of warmup steps on the performance
of GraphCodeBERT over all 4 metrics, with p = 2 &
β = 0.01

Figure 7: Effect of warmup steps on the performance of
UniXcoder over all 4 metrics, with p = 2 & β = 0.0001

similar variations with CodeBERT & GraphCode-
BERT indicated p = 2 and β = 0.01 to be overall
better. We perform a large parameter sweep over
various values of warmup steps (number of steps
for which only soft negatives are used). For UniX-
coder and CodeBERT we use a batch size of 48,
which leads to 5000 steps per epoch for CoNaLa-
100k (80:20 train-validation split and 3 negative
samples per NL-PL pair), while for GraphCode-
BERT a batch size of 32 was used, leading to 7500
steps per epoch, so we investigate variations in
warmup steps in increments of 1000 for UniXcoder
(Fig. 7) and CodeBERT (Fig. 5) and for increments
of 2500 for GraphCodeBERT (Fig. 6). These ex-
periments indicate a general upward trend in per-
formance, with a lot of fluctuations between con-
secutive points. For UniXcoder the upward trend
is a lot weaker, which leads to the fluctuations be-
ing more significant overall. We also observe that
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varying the warmup steps seems to have more im-
pact on the performance than p and β. We find
that p = 2, β = 0.01 & 17k warmup steps work
best for CodeBERT, while p = 2, β = 0.0001 &
13k warmup steps work best for UniXcoder and
p = 2, β = 0.01 & 12.5k warmup steps work best
for GraphCodeBERT. For all experiments, we used
ϵ = 0.8 and δ = 0.5. Future work would also ex-
amine the effect of these parameters on the overall
performance.

C.3 Ablation III: Effect of Adding More
Negatives

We conduct experiments with 10 soft negatives
per NL-PL pair instead of 3 as used in the previ-
ous triplet margin loss-based experiments and this
seems to boost both the OD and IID performance
of the model as shown in table 9, at the expense of
three to four times increased training time. While
this achieves slightly better in-domain performance
than SYNC, it still lags behind in the out-of-domain
performance which shows our method can achieve
better generalization with fewer (one-third) nega-
tives.

C.4 Ablation IV: Effect of curriculum
We examine the impact of the curriculum design by
trying some simple variations, like using only soft
negatives (“soft neg"), using only hard negatives
(“hard neg"), using a naive or random curriculum
(“rand curr") where we sample soft or hard negative
instances with equal probability and our mastering
rate curriculum (“MR curr"). The results are out-
lined in Table 10. We see that using hard negatives
only leads to the worst performance while just in-
troducing some soft negatives through the random
curriculum greatly improves the performance, but
still doesn’t do as well as just using soft negatives.
This shows how challenging it is to design a cur-
riculum like the mastering rate-based curriculum
used here to make the most of the hard negatives
and achieve better performance than just using soft
negatives.

C.5 Ablation V: Effect of different
perturbation rule sets

We conducted experiments with different sets of
perturbation rules to measure the impact of the rule
choice as shown in table 11. Each setting is ex-
plained below:
SYNC rules: The standard setting where we use
the rules outlined in table 3.

DISCO rules: For this setting we use the rules
outlined in table 8 which we implemented for the
DISCO baseline for Python.
Natural rules: For this setting we considered the
union of SYNC and DISCO rules with “unnatural
rules” being removed. We classed unnatural rules
as rules that induce bugs that a Python developer is
unlikely to make. These unnatural rules included
the following rules from table 3: rule 4, rule 8,
and from “VarMisuse: Replace variables with each
other” and “Division-by-zero error introduced” ta-
ble 8.

In Python string constants (like “Hello World”)
and floating point/integer (like 1.0 or 1) constants
are very unlikely to be confused with each other or
used in similar contexts explaining the choice of
excluding rule 4, for rule 8 an experienced devel-
oper is unlikely to declare a variable with the name
of common python functions like “print” (often
highlighted in a different color by IDEs). Finally,
the VarMisuse error would swap all occurrences
of two randomly picked variables while a user is
more likely to make errors where they swap just
one occurrence and for the division, by zero-error,
we replace denominators in division operators with
zero, which a developer is unlikely to do (it is more
likely to occur due to a mistake in an equation or
numerical instability).
Top-12 rules: for this experiment we again take the
union of DISCO and SYNC rules and then used the
regularly fine-tuned CodeBERT model to see the
triplet separation accuracy (accuracy of projecting
the correct code closer to the intent as compared
to the hard negative) for each rule. We considered
this to be the rule difficulty and picked the top-12
rules based on this score.

The results show that our originally chosen set
of rules for SYNC works the best (except ID re-
call@5), especially for OOD performance, indicat-
ing some sensitivity of our approach to the choice
of rules.

D Additional Experimental Results,
Qualitative Analysis and Analogy Tests

D.1 Dataset-wise performance breakdown

The dataset-wise performance breakdown for all
three transformer models (CodeBERT, GraphCode-
BERT, and UniXcoder) and all five training variants
(regular triplet training, dynamic negative sampling
(DNS), DISCO, CodeRetriever and our proposed
AST-guided training curriculum (AST)) is shown
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MRR NDCG Recall@5 Recall@10

Model ID OOD Total ID OOD Total ID OOD Total ID OOD Total

CB 3 -ves 54.99 44.21 46.91 65.65 56.27 58.62 62.8 53.25 55.64 78.4 63.73 67.4
CB 10 -ves 56.58 47.99 50.14 67.03 59.37 61.28 68.6 57.37 60.18 82.6 66.58 70.59
CB+SYNC 56.28 50.95 52.28 66.89 61.93 63.17 67.8 60.34 62.21 81.8 70.51 73.33

Table 9: Table showing the impact of using more soft negatives per NL-PL pair with the triplet margin loss. CB
refers to CodeBERT and 3 -ves implies 3 soft negatives are sampled per NL-PL pair (the default) setting, while 10
-ves represents a setting where 10 -ves are sampled per NL-PL pair. Clearly more negatives improve the ID and
OOD performance but the OOD performance is still below SYNC (CB+SYNC) which uses 3 -ves per NL-PL pair.

Model
Curriculum

Type
MRR NDCG Recall@5 Recall@10

CodeBERT soft neg 46.91 58.62 55.64 67.4
CodeBERT hard neg 18.4 33.28 23.37 32.56
CodeBERT rand curr 46.59 58.36 55.46 66.2
CodeBERT MR curr 52.28 63.17 62.21 73.33

GraphCodeBERT soft neg 50.65 61.19 61.58 72.62
GraphCodeBERT hard neg 33.79 47.09 41.43 52.59
GraphCodeBERT rand curr 50.35 61.58 59.84 70.6
GraphCodeBERT MR curr 56.15 66.39 65.09 75.93

UniXcoder soft neg 63.8 73.37 72.92 83.33
UniXcoder hard neg 50.9 62.94 61.44 72.78
UniXcoder rand curr 61.12 71.29 72.07 82.26
UniXcoder MR curr 65.13 74.58 74.83 84.68

Table 10: Results of ablations with various curriculum types. Using hard negatives only leads to worse results than
using soft negatives only because of training instability and getting trapped in local minima. Meanwhile, even
a random curriculum that mixes soft and hard negatives with equal probabilities doesn’t match the performance
achieved by using soft negatives only, indicating the challenge of effective curriculum design.

MRR NDCG Recall@5 Recall@10

Model ID OOD Total ID OOD Total ID OOD Total ID OOD Total

SYNC Rules 56.28 50.95 52.28 66.89 61.93 63.17 67.8 60.34 62.21 81.8 70.51 73.33
DISCO Rules 53.92 48.74 50.04 64.98 60.13 61.34 69.2 57.4 60.35 81.4 67.97 71.32
Natural Rules 53.43 48.4 49.65 64.61 59.87 61.06 68 57.25 59.94 80.4 67.98 71.08
Top-12 Rules 54.14 48.63 50.01 65.15 60.03 61.31 69 57.02 60.01 81.0 67.76 71.07

Table 11: The in-domain (ID) performance of CodeBERT, when trained on CoNaLa and the out-of-domain
performance (OOD) averaged over PyDocs, WebQuery, and CodeSearchNet for different sets of rules.

in table 12.

D.2 Qualitative Analysis

We show the qualitative effect of our approach
through examples in Table 13.

D.3 How does the curriculum help with hard
negatives?

We analyze the variation in validation recall@5 be-
tween CodeBERT and CodeBERT+SYNC (our cur-
riculum learning-based approach) with the weight
of the soft negatives (soft negative attention) for
CodeBERT+SYNC as determined by our curricu-
lum. The results are shown in figure 8.

For the initial steps, the soft negative attention
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CoNaLa PyDocs WebQuery CodeSearchNet

Model MRR NDCG R@5 R@10 MRR NDCG R@5 R@10 MRR NDCG R@5 R@10 MRR NDCG R@5 R@10

n-BOW 6.19 20.76 8 9.6 16.21 30.55 18.51 27.88 1.51 16.77 0.96 2.29 0.67 8.78 0.72 0.92
CNN 6.05 21.88 5.4 10.4 3.23 17.46 3.12 6.49 2.43 19.01 1.82 3.73 0.12 8.67 0.06 0.13
RNN 13.02 29.28 16.2 25.6 6.73 21.91 8.41 14.42 6.49 24.42 7.74 13.29 0.55 10.06 0.49 0.86

CB
(zero shot)

2.77 16.77 3.0 5.0 6.48 20.37 8.65 12.26 1.26 16.45 0.48 1.53 0.63 9.22 0.69 1.08

CB 54.99 65.65 62.8 78.4 64.33 72.23 74.52 83.89 41.87 58.34 51.34 66.06 26.44 38.24 33.9 41.24
CB+DNS 54.51 65.51 65.0 79.2 69.76 76.39 78.37 86.3 42.83 59.01 52.58 65.97 33.19 44.43 41.7 49.52
CB+CR 58.03 68.43 70.4 83.2 68.52 75.76 77.4 85.82 46.1 61.71 56.21 68.64 30.72 42.2 39.13 46.68
CB+DISCO 58.27 68.63 67.4 80.2 60.81 69.31 70.91 82.21 40.91 57.49 51.24 64.53 19.72 31.82 25.53 32.35
CB+SYNC 56.28 66.89 67.8 81.8 71.09 77.47 79.81 87.98 46.57 62.03 57.07 71.51 35.2 46.28 44.15 52.04
CB+SYNC
(hard neg)

20.92 36.4 26.2 37.4 18.34 32.48 23.56 32.45 25.92 44.49 32.7 45.79 8.42 19.75 11.04 14.58

CB+SYNC
(rand curr)

53.88 64.92 63.0 77.6 63.49 71.33 73.08 81.25 42.26 58.81 51.91 65.01 26.74 38.39 33.87 40.95

GCB
(zero shot)

9.89 23.72 12 17.2 53.93 62.86 64.66 70.91 1.88 16.98 1.91 3.25 0.12 8.6 0.03 0.14

GCB 57.4 67.78 69.8 83.2 67.41 74.69 78.85 86.78 43.84 59.92 54.49 69.5 33.96 45.2 43.18 51.01
GCB+DNS 59.28 69.26 67.6 80.8 70.44 77.08 79.09 88.7 44.45 60.55 55.35 70.08 37.72 48.62 47.32 55.57
GCB+CR 59.2 69.28 70.2 83.8 71.02 77.51 79.81 88.46 44.81 60.57 54.78 68.64 34.65 45.81 43.84 51.41
GCB+DISCO 61.84 71.45 74 84.2 65.67 73.19 76.44 84.62 39.88 56.71 49.81 62.43 22.71 34.57 29.14 35.97
GCB+SYNC 58.28 68.37 68.4 83.6 78.47 83.32 85.58 91.11 47.04 62.49 55.64 70.46 40.82 51.37 50.75 58.57
GCB+SYNC
(hard neg)

30.77 45.17 37.8 49.8 51.1 61.22 62.26 75.72 32.79 50.5 39.87 53.63 20.49 31.47 25.81 31.2

GCB+SYNC
(rand curr)

56.53 67.14 66 80.4 68.98 75.67 79.33 85.82 43 59.36 52.39 66.92 32.9 44.15 41.66 49.25

UX
(zero shot)

20.7 34.9 24 30.4 83.02 86.94 90.87 93.99 29.46 47.7 36.9 47.23 - - - -

UX 59.82 69.53 69.6 83 83.42 87.27 89.9 94.71 48.17 63.32 59.27 72.28 - - - -
UX+DNS 59.13 69.02 72.4 84.2 84.77 88.31 91.35 94.47 48.71 63.71 60.23 71.51 - - - -
UX+CR 64.35 73.21 75.6 88.8 85.44 88.85 91.35 93.03 48.52 63.62 58.51 72.56 - - - -
UX+DISCO 65.24 73.91 77 84.6 83.82 87.61 90.14 93.99 47.17 62.61 56.02 69.02 - - - -
UX+SYNC 60.21 70.06 72.4 84.8 84.2 87.87 91.59 93.99 50.99 65.8 60.52 75.24 - - - -
UX+SYNC
(hard neg)

39.42 52.92 48 63 70.86 77.3 82.21 88.22 42.43 58.61 54.11 67.11 - - - -

UX+SYNC
(rand curr)

57.4 67.88 68.4 82.2 78.22 83.02 87.02 90.87 47.75 62.96 60.8 73.71 - - - -

Table 12: A breakdown of the performance of all models and baselines when trained on CoNaLa-100k over each test
set (CoNaLa, PyDocs, WebQuery, CodeSearchNet). CB: CodeBERT, GCB: GraphCodeBERT, and UX: UniXcoder

remains 1, meaning only soft negatives are picked,
which corresponds to the warmup steps. Code-
BERT+SYNC remains above CodeBERT during
this stage. Once the warmup steps are finished the
soft negative attention drops and hard negatives
are introduced leading to an initial drop in the val-
idation of CodeBERT+SYNC, but as the training
continues the validation performance climbs up
above CodeBERT. The behavior in between the
logging steps is slightly oscillatory which we have
smoothed here through a moving average across
the intervals between the logging steps.

D.4 Analogy tests for code representations

We perform analogy testing of the form a:b; c:? for
each rule category, to gauge the effectiveness of
the AST guided curriculum on the sensitivity of the
code embeddings towards transformations based
on the rules. To create the dataset we first apply
the AST rules over the CoNaLa mined pairs train
set and then sample 100 pairs of original code and

Figure 8: How the curriculum helps: validation re-
call@5 for CodeBERT and CodeBERT+SYNC and soft
negative attention of CodeBERT+SYNC at uniform log-
ging steps

transformed code for each of the 9 rule categories.
Then we sample 200 examples from all possible 2
element combinations of the pairs to get an analogy
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Model, Dataset
& Query

Gold Candidates AST Hits@5 Baseline Hits@5

Model: CodeBERT
Dataset: CoNaLa
Query: Append elements of
a set to a list in Python

a.extend(b)
a.extend(list(b))

a.extend(list(b))
c.extend(a)
a.extend(b)
list2.extend(list1)
list1.extend(mylog)

list(set(source_list))
list(set(t))
my_list.append(l2)
dict(((x, l.count(x)) for x in set(l)))
list2.extend(list1)

Model: CodeBERT
Dataset: CoNaLa
Query: How do I convert
tuple of tuples to list in one
line (pythonic)?

from functools import reduce
reduce(lambda a, b: a + b,
((‘aa’,),(‘bb’,),(‘cc’,)))
map(lambda a: a[0],
((‘aa’,),(‘bb’,),(‘cc’,)))

tuple(l)
map(lambda a: a[0],
((‘aa’,), (‘bb’,), (‘cc’,))
zip(*[(‘a’, 1), (‘b’, 2),
(‘c’, 3), (‘d’, 4)])
zip(*[(‘a’, 1), (‘b’, 2),
(‘c’, 3), (‘d’, 4), (‘e’,)]
[val for pair in zip(l1,
l2) for val in pair]

tuple(l)
“““, ”””.join(‘(’ + ‘, ’
.join(i) + ‘)’ for i in L)
print([item for item in [1, 2, 3]])

list(t)

“““,”””.join(l)

Model: GraphCodeBERT
Dataset: PyDocs
Query: Asynchronous version
of socket.getaddrinfo ( ) .
With arguments “host",
“port", “family".

loop.getaddrinfo(
host, port, family=0)

loop.getaddrinfo(
host, port, family=0)
dispatcher.create socket(
family=socket.AF INET)
socket.gethostbyname(
hostname)
socket.getfqdn()
socket.getservbyname(
servicename)

asyncio.open connection(
port=None)
dispatcher.create socket(
family=socket.AF INET)
asyncio.BaseProtocol

asyncore.dispatcher_with_send
async_exit_stack.push_async_exit(
exit)

Table 13: Qualitative examples illustrating how our AST-guided curriculum corrects errors

test bed of 1800 examples of the form a:b; c:d with
200 samples per rule category. Some examples are
shown in table 17. During the sampling process,
we also filter out code snippets smaller than 30
characters, to ensure example quality.

To evaluate the performance we measure all
pairs’ euclidean distance between the embeddings
c + b − a and d and rank all possible candidates
in the 1800 sample test set for each (a, b, c) triple.
We assign an analogy score of 1 to a sample if the
correct d is among the top 5 retrieved candidates
out of 1800 (similar to recall@5). The overall per-
formance is just the mean over each sample and
rule-wise performance is the mean over the sam-
ples involving transformations of a particular rule
class.

We observe an improvement or similar perfor-
mance in each rule category for all the models
except UniXcoder where we see slightly worse
performance for rules 1, 8, and 9. The highest
performance drop is on rule 8 which substitutes a
function call with the function’s name as an identi-
fier. This is a somewhat strange kind of error for a
developer to make and we theorize that since UniX-
coder has been pre-trained on CodeSearchNet data
having function code and corresponding comments,
it might not be sensitive to unnatural perturbations

like this.

E Details about Simple Baseline
Architectures

We train a few simple modeling-based, baselines
in a siamese configuration similar to Husain et al.
(2019) but use the same architecture for both the
text & code encoders to create a universal encoder.
We train them using a binary cross entropy loss
function objective where x and y are the code snip-
pet and intent representation, whereas 1n is an in-
dicator variable which is 1 if intent and snippet are
related to each other and 0 otherwise.

Lϕ(x, y) = −[1n · log(
1

1 + e−xT y
)

+ (1− 1n) · log(
e−xT y

1 + e−xT y
)], (5)

We obtain binary classification data of roughly
950k NL-PL pairs for training and 237.6k for vali-
dation with a roughly even class distribution from
the CoNaLa data by random sampling of negatives.
• Neural Bag of Words (n-BOW): Here, we treat
the intent and code snippet as a bag of words and
computes their representation via a 1-D mean pool
over all the tokens. We use CodeBERT tokenizer to
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Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 Rule 9 Total Score

CodeBERT 82.5 96 93 94 96.5 96.5 96 86.5 92.5 92.611
CodeBERT+SYNC 85 96.5 93.5 95.5 96.5 96.5 96 89 93 93.5

GraphCodeBERT 86.5 94 90.5 94.5 96.5 96.5 96 85 92 92.389
GraphCodeBERT+SYNC 87 96.5 90.5 94.5 96.5 96.5 96 90 95 93.611

UniXcoder 89.5 96.5 94.5 96.5 96.5 96.5 96 95 96.5 95.278
UniXcoder+SYNC 89 96.5 95.5 96.5 96.5 96.5 96 91 95.5 94.778

Table 14: Analogy test results (recall@5) for the retrieval task of fetching d given b+c−a from 1800 candidates from
the CoNaLa dataset. Rule-wise and overall performance are shown, with 200 samples from each rule (transformation
corresponding to the rule generates b from a and d from c). Euclidean distance is used here to score similarity
between b+ c− a and candidate ds.

Model Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8 Rule 9 Total Score

CodeBERT 82.5 96 93.5 94 96.5 96.5 96 86 93 92.667
CodeBERT+SYNC 83.5 96.5 93.5 95 96.5 96.5 96 89.5 93.5 93.389

GraphCodeBERT 86 94 90.5 94.5 96.5 96.5 96 85 93 92.444
GraphCodeBERT+SYNC 87 96.5 90.5 94.5 96.5 96.5 96 90 95 93.611

UniXcoder 89 96.5 94.5 96.5 96.5 96.5 96 94 96.5 95.111
UniXcoder+SYNC 89 96.5 95.5 96.5 96.5 96.5 96 91 96 94.833

Table 15: Analogy test results similar to Table 14 using cosine similarity instead of euclidean distance to rank ds for
a given b+ c− a

Error Freq Description

correct data structure,
incorrect operation

5

Correct data structure
or object used but
incorrect operation

invoked
correct function call,
incorrect arguments

6
Correct function called

with incorrect arguments

extra function call 1
At least one function
call which shouldn’t
have been invoked

incorrect data structure 2
Wrong data structure

or object is operated on

incorrect function call 3
Incorrect function call

invoked
labeling error 5

missing function calls 1

Correct solution involves
multiple function calls

and at least one or more
are missing

Table 16: Analysis of the types and frequencies of errors
made by our approach over the CodeRetriever approach
for in-domain performance (i.e., on CoNaLa test set.)

obtain the tokens, and the token-level embeddings
are initialized from the 768 dimensional embed-
ding layer of CodeBERT.
• CNN Baseline: For the CNN baseline, we use
three successive 1-D convolutions with a kernel
of width 16. We use padding, residual connec-
tions and dropout of 0.2 at each layer. Finally, we
pool across the sequence by using an attention-like
weighted sum. The architecture closely follows the
CNN baseline proposed in (Husain et al., 2019).
• RNN Baseline: We use a 2-layered Bi-LSTM ar-
chitecture with a dropout of 0.2. Similar to (Husain
et al., 2019), we use a final attention-like weighted
sum layer across all hidden states to calculate the
final representation.

F Computational Budget

We used 16 GB Tesla P100 GPUs for training
with roughly 2.5 hrs/epoch (roughly 3 times more
for the increased hard negatives experiment) and
5 epochs for each experiment. We carried out
roughly 170 experiments including the various ab-
lations and some exploration. The CodeBERT and
GraphCodeBERT models are RoBERTa (Liu et al.,
2019) based encoders with roughly 123M param-
eters (same as RoBERTa-base) while UniXcoder
has both an encoder and a decoder, but roughly the
same number of parameters at 125M.
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Rule a b c d

1 print(‘elements are not unique’) pprint(‘elements are not unique’) print(‘y = {0}’.format(y.value)) spring(‘y = {0}’._normalize(y.value))

2 [x for x in something_iterable if x != ‘item’] {x for x in something_iterable if (x != ‘item’)}
[len(list(group)) for value, group
in itertools.groupby(b_List) if value]

{len(list(group)) for (value, group)
in itertools.groupby(b_List) if value}

5
date_ceased_to_act =
models.DateField(blank=True, null=True)

date_ceased_to_act =
models.DateField(blank=False, null=False)

print(df.to_csv(sep=‘\t’, index=False)) print(df.to_csv(sep=‘\t’, index=True))

6 def isPrime(n): if n < 2: pass def isPrime(n): if (n >= 2): pass

import dill
import pickle
s = pickle.dumps(lambda x, y: x + y)
f = pickle.loads(s)
assert f(3, 4) == 7

import dill
import pickle
s = pickle.dumps((lambda x, y: (x + y)))
f = pickle.loads(s)
assert (f(3, 4) != 7)

Table 17: Some examples from the analogy test data. The columns “a” and “b” are the examples shown to indicate
the pattern being, applied, while column “c” is the input and column “d” is the target snippet to be retrieved (a:b::c:d).
We chose (a, b) & (c, d) such that the same rule is applied to get b from a and c from d, which is shown in the “Rule”
column.


