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Abstract

We present PACT (Pretraining with Adversarial
Contrastive Learning for Text Classification),
a novel self-supervised framework for text clas-
sification. Instead of contrasting against in-
batch negatives, a popular approach in the lit-
erature, PACT mines negatives closer to the
anchor representation. PACT operates by en-
dowing the standard pretraining mechanisms of
BERT with adversarial contrastive learning ob-
jectives, allowing for effective joint optimiza-
tion of token- and sentence-level pretraining
of the BERT model. Our experiments on 13
diverse datasets including token-level, single-
sentence, and sentence-pair text classification
tasks show that PACT achieves consistent im-
provements over SOTA baselines. We further
show that PACT regularizes both token-level
and sentence-level embedding spaces into more
uniform representations, thereby alleviating the
undesirable anisotropic phenomenon of lan-
guage models.1

1 Introduction

Pretrained language models (PLM) like BERT (De-
vlin et al., 2019) revolutionized several NLP tasks
such as text classification, question answering, etc.
With the success of PLMs, different pretraining
objectives were proposed to further improve model
performance (Liu et al., 2019; Lan et al., 2020;
Clark et al., 2020). PLMs can also be finetuned on
downstream task data (Howard and Ruder, 2018).
One of the exciting lines of work aimed at sharp-
ening PLM representations is related to contrastive
learning (CL) (Hadsell et al., 2006). These works
are motivated by recent success in computer vi-
sion (Chen et al., 2020a; Dosovitskiy et al., 2014;
Chen et al., 2020b, 2017). The basic idea behind
CL is to pull positive samples close to each other
while pushing apart negative samples in the embed-
ding space. While these positive and negative sam-

1The source code of PACT is publicly available here:
https://github.com/Tawkat/PACT
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Figure 1: Visual comparison between our adversarial
approach and existing approach on the token-level nega-
tive. Our approach adversarially generated token (lev-
ant) is closer to the anchor token (running) than the
antonym token (sleeping) in the embedding space.

ples are already labeled and hence can be used for
supervised finetuning (Khosla et al., 2020; Gunel
et al., 2021), it is still challenging to mine positive
and especially negative samples for self-supervised
pretraining.

In NLP, CL has been used both for language
model pretraining (Gao et al., 2021; Fang et al.,
2020; Yan et al., 2021; Qu et al., 2020) and
finetuning (Suresh and Ong, 2021; Zhang et al.,
2022c). Prior works on CL-based pretraining
have applied different data augmentation meth-
ods such as dropout (Gao et al., 2021), back-
translation (Fang et al., 2020), adversarial attack,
and token-shuffling (Yan et al., 2021) for mining
positive samples. However, these methods rely
mostly on sampling independently from the train-
ing batch (in-batch negatives) to collect negative
samples, regardless of how uninformative these

https://github.com/Tawkat/PACT
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negative samples may be for the learned represen-
tation. Effectively pretraining a language model
requires informative negative examples that are
mapped nearby the positive samples but should be
far apart from one another (hard negatives) (Robin-
son et al., 2021). Existing works (Wang et al., 2021)
attempt to synthetically generate semantic negative
examples by replacing some tokens with antonyms.
However, such approaches require human cognitive
and external knowledge resources (e.g., dictionary),
and there is no guarantee that representations ob-
tained by such replacements are close to the actual
representation in the embedding space (i.e., there
is no guarantee they are actually hard negatives).

Another issue with PLMs is that they suffer from
anisotropy (Ethayarajh, 2019; Li et al., 2020) in the
embedding space. That is, representations obtained
by PLMs tend to occupy a narrow cone in the hyper-
space, making them less informative. This makes
it harder for classifiers to push apart samples be-
longing to different classes. Although prior works
attempt to address this issue using CL separately
for token-level (Su et al., 2022) embedding and
sentence-level (Gao et al., 2021), the sentence-level
work focused mainly on acquiring representations
that practically work fine for semantic similarity
tasks but not for sentence-level classification (e.g.,
sentiment analysis). In addition, it is yet to be
explored how to jointly optimize both token-level
and sentence-level representations to achieve better
uniformity (i.e., to alleviate anisotropy).

To address issues above, we present PACT, our
self-supervised pretraining method for text clas-
sification. First, we introduce adversarial masked
language modeling (MLM) to mine negative tokens
by adding a small perturbation to the masked token
representation in order to reduce the maximum like-
lihood of the correct token. Since we regulate the
perturbation within a small margin, it guarantees
to produce adversarial tokens within the vicinity
of the masked tokens (Figure 1). Next, we adver-
sarially perturb the next sentence prediction (NSP)
objective of BERT to minimize the maximum like-
lihood of correct prediction. For the contrastive
learning objective, we treat the obtained token-level
and sentence-level representations as negative pairs.
Since both of these are acquired with only small
perturbations, their representations stand as hard
negatives. Our proposed method is completely self-
supervised and simple in that it aligns with the
original pretraining objective of BERT. We further

show that the joint token-level and sentence-level
pretraining ensures uniformity in acquired repre-
sentations and thus alleviates anisotropy.

Our contributions are as follows:

1. We propose PACT, a novel pretraining frame-
work for BERT which jointly optimizes token-
level and sentence-level representations using
CL.

2. We introduce adversarial MLM and Sequence
objectives to mine adversarial hard negative
samples in a self-supervised fashion.

3. Our experiments on 13 different token and
sentence classification tasks show that PACT
achieves consistent improvement over the
SOTA baselines.

4. We show that PACT demonstrates better
sentence-level (Section 6.1) and token-level
(Section 6.2) uniformity than other baselines
that alleviate the problem of anisotrophy.

2 Related Works

Contrastive Learning. CL aims to learn effec-
tive embeddings by pulling semantically close
neighbors together while pushing apart non-
neighbors (Hadsell et al., 2006). CL employs a
similarity objective to learn the embedding rep-
resentation in the hyperspace (Chen et al., 2017;
Henderson et al., 2017). In computer vision, Chen
et al. (2020a) propose a framework (SimCLR) for
CL of visual representations without specialized ar-
chitectures or a memory bank. Chen et al. (2020b)
dynamically build a queue of in-batch negative sam-
ples. The authors use a moving-averaged encoder
with the dynamic queue to facilitate unsupervised
CL. Hu et al. (2021) argue that such queue may not
be able to track the change of the learned represen-
tations. Hence, the authors propose an adversarial
contrast (AdCo) model consisting of two adversar-
ial networks. One is a backbone representation
network that encodes the representation of input
samples. The other is a collection of negative adver-
saries that are used to discriminate against positive
queries over a minibatch. By this way, AdCo up-
dates negative samples as a whole by making them
sufficiently challenging to train the representation
network. In NLP, several memory-based methods
have been explored in the context of sentence repre-
sentation learning (Karpukhin et al., 2020; Gillick
et al., 2019; Logeswaran and Lee, 2018).
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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[SEP]
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Figure 2: Overview of our proposed framework. PACT consists of two principal CL objectives: (i) adv-MLM
(top) and (ii) adv-Sequence (bottom). adv-MLM further consists of two losses: (a) LMLM−CL (top-left) and (b)
LT (top-right). The core idea behind adv-MLM and adv-Sequence objectives is to pull the representations of
teacher-BERT and student-BERT together and push the representations of student-BERT and adv-BERT apart.

Self-Supervised CL. CL approaches in NLP can
be broadly categorized into two types: (i) self-
supervised and (ii) supervised. For self-supervised
CL, one of the most notable works is SimCSE (Gao
et al., 2021), which augments an input sentence
with another view of the same sentence after ap-
plying dropout. Meng et al. (2021) introduce an
auxiliary model to train the student model us-
ing corrupted text sequence through ELECTRA-
style (Clark et al., 2020) pretraining. Fang et al.
(2020) pretrain BERT with back-translation and
show improvement in natural language understand-
ing (NLU) tasks. DeCLUTR (Giorgi et al., 2021)
adopts the architecture of SimCLR and jointly
trains two encoders to maximize the agreement
between a span of a sequence. Wu et al. (2020) ad-
vances DeCLUTR with both word- and span-level
data augmentation strategies.
Supervised CL. For the supervised setting, Khosla
et al. (2020); Gunel et al. (2021) propose to directly
use the representations of the same class as positive
pairs and different classes as negative pairs. Pan
et al. (2022) propose adversarial perturbation of the
word embedding layer of BERT during finetuning.

Similarly, Lee et al. (2021) propose to generate ad-
versarial tokens for text generation tasks. Suresh
and Ong (2021) introduce an additional weighting
network to capture inter-label relationships for fine-
grained classification, while Zhang et al. (2022c)
initialize additional label embeddings to match the
representations of instances and corresponding la-
bels.
Adversarial Learning. In the literature (e.g.,
(Miyato et al., 2017; Pan et al., 2022; Qiu et al.,
2021)), adversarial perturbation was used for data
augmentation as a way to improve model robust-
ness (i.e., by making the model invariant to adver-
sarial samples). Diverging from the literature, we
employ adversarial perturbation in a completely
different way: instead of using adversarial sam-
ples as positive pairs to enhance robustness, we
use the adversarial samples generated through self-
supervised learning as negative pairs. Therefore,
our model learns to differentiate between the an-
chor and the adversarial representations instead
of making them invariant in the embedding space.
Thus, PACT is pretrained to be discriminative of
negative samples closely located near the anchor
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representation in the embedding space.

3 Proposed Framework

PACT introduces two novel CL objectives for
BERT (Devlin et al., 2019), namely adversarial
MLM and adversarial Sequence. For this pur-
pose, we design a self-supervised framework con-
sisting of three BERT-base models: one teacher
model (teacher-BERT), one adversarial model (adv-
BERT), and the main model (student-BERT). The
purpose of teacher-BERT is to provide positive ex-
amples for student-BERT. We pass the same exam-
ples to teacher-BERT and student-BERT to gener-
ate both token- and sentence-level representations.
Since these representations are obtained without
further manipulation, we can consider them posi-
tive pairs for the contrastive learning (CL) objec-
tive. On the other hand, the purpose of adv-BERT
is to provide negative examples that are closely lo-
cated with the anchor examples (examples obtained
from student-BERT) in the embedding space. After
obtaining the representation from the adv-BERT,
we add a small adversarial perturbation to mini-
mize the likelihood of the correct representation
(which means the likelihood of both the correctly
predicted token and the next sentence prediction
will be minimized). In this way, the manipulated
representation coming from the adv-BERT is con-
sidered a negative pair for the anchor representation
in CL objective.

Now we describe the proposed two CL (adver-
sarial MLM and adversarial Sequence) objectives.
The overall framework is shown in Figure 2.
Adversarial MLM: BERT uses masked language
modeling (MLM) objective, which takes an input
sequence, X = {x1, x2, ... , xi, ... , xn}, masks out
a random token (e.g. i-th token), and attempts to
predict the original token given a contextualized
representation of the sequence:

pMLM (x̂i |h(i)) =
exp (ψ(x̂i)

T h(i))∑
xt∈V exp (ψ(xt)T h(i))

where, ψ(.) is the token embedding matrix and H =
{h(i)}ni=1 is the contextualized vector representa-
tion generated by BERT. The pretraining objective
is to minimize MLM loss and maximize the like-
lihood of the correct tokens at a set of masked
positions M:

LMLM = E

(
−
∑
i∈M

log pMLM (xi |h(i))

)

We introduce adversarial learning to this
MLM objective of adv-BERT to perturb the
contextualized representation of the masked token
by a small margin so that the maximum likelihood
of the correct token is minimized. For this purpose,
we use the same MLM objective as BERT. BERT
optimizes the masked representation by going
along the direction of the gradient to predict the
correct token. However, instead of taking the origi-
nal masked embedding to predict the correct token,
we manipulate it by adding a small perturbation.
Unlike BERT, we take the opposite direction of the
gradient and add it with the original masked repre-
sentation. As a result of this perturbation, we get
an adversarial token representation where the prob-
ability of predicting the correct token is minimized:

δ = argminδ̂ pMLM (x̂i |h(i) + δ̂) s.t. ||δ̂|| < ϵ, ϵ > 0

hadv(i) = h(i) + δ

We use fast gradient sign method (FGSM) (Good-
fellow et al., 2015) to approximate the perturbation
δ with a linear approximation around h(i) and an
L2 norm constraint:

hadv(i) = h(i)− g / ||g||2
where g = ∇h(i) log pMLM (x̂i |h(i)).
We normalize the gradient g by ||g||2, to keep the
adversarial representation hadv(i) close to h(i) in
the embedding space.

We pass the contextualized representations (h(i),
hT(i), hadv(i)) of the masked tokens of all three
models through non-linear projection layers and
take the average of the representations to obtain Z,
ZT, and Zadv:

z(i) = ϕ(W.h(i) + b)

Z =

∑
z(i)

|z|
We apply CL loss on the obtained Z, where for

the i-th sample in the batch, the model learns to
increase the similarity between the representation
of the student model (Z(i)) and the teacher model
(ZT

(i)), while decreasing the similarity between
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the representation of the student model (Z(i)) and
the adversarial model (Zadv

(i)).

LMLM−CL = −
∑N

i=1 log
exp(sim(Z(i),ZT

(i))/τ)∑
{Ẑ={ZT

(i)}∪Zadv
(i)} exp(sim(Z(i),Ẑ(k))/τ)

Following Su et al. (2022), we further apply
token-CL among the masked tokens of student-
BERT and teacher-BERT:

LT = −
N∑
i=1

log
exp(sim(h(i),hT(i))/τ)∑N

k=1 exp(sim(h(i),hT(k))/τ)

Our final token-level CL is the summation of the
above two losses:

Ladv−MLM = LMLM−CL + LT

Adversarial Sequence: Additionally, we propose
to adversarially modify the next sentence prediction
(NSP) objective of BERT. Given two sequences X1

and X2, the NSP loss is based on the prediction of
whether the two sequences are next to each other:

LNSP = E (− log pNSP (isNext |C))

where C is the contextualized representation of
the [CLS] token, h([CLS]). Similar to adversarial
MLM, we apply FGSM to the NSP2 objective of
adv-BERT to obtain Cadv and use CL loss to push
it apart from the [CLS] representation of student-
BERT, C:

Cadv = C− g / ||g||2
where g = ∇C log pNSP (isNext |C)

Ladv−Seq = −
∑N

i=1 log
exp(sim(C(i),CT

(i))/τ)∑
{Ĉ={CT

(i)}∪Cadv
(i)} exp(sim(C(i),Ĉ(k))/τ)

To avoid catastrophic forgetting (McCloskey and
Cohen, 1989; Sun et al., 2019), we continue pre-
training student-BERT and adv-BERT with LMLM ,
LNSP objectives. The final loss function for
student-BERT is the linear combination of the vari-
ous loss terms:

L = LMLM + LNSP + Ladv−MLM + Ladv−Seq

(1)
2Although we demonstrate the adversarial Sequence ob-

jective with NSP, it can be implemented on any transformer
model with sequence-level pretraining. For example, AL-
BERT (Lan et al., 2020) uses sentence-order prediction (SOP)
instead of NSP. We can similarly apply FSGM on the SOP
loss to compute adversarial Sequence. To be able to directly
compare with existing CL-pretrained SOTA in the literature,
we focus on the BERT-based architecture in this work.

Dataset Task Classification Type Source
CoLA Linguistic acceptability Single-sentence GLUE
SST-2 Sentiment Analysis Single-sentence GLUE
NC News Classification Single-sentence XGLUE
MRPC Paraphrase Identification Sentence-pair GLUE
QQP Question Paraphrase Sentence-pair GLUE
MNLI Natural language inference Sentence-pair GLUE
QNLI Question answer entailment Sentence-pair GLUE
RTE Textual entailment Sentence-pair XGLUE
QAM Question passage entailment Sentence-pair XGLUE
QADSM Query-Advertisement Matching Sentence-pair XGLUE
PAWSX Paraphrase Identification Sentence-pair XGLUE
NER Named-entity recognition Token-level XGLUE
POS Part-of-speech tagging Token-level XGLUE

Table 1: Summary of the datasets used in this paper.

We initialize all three models with pretrained
BERT-base weights at the start of training. We
freeze teacher-BERT weights and update adv-
BERT with LMLM , LNSP losses. We now present
our experiments.

4 Experiments

4.1 Datasets
To evaluate the efficacy of PACT, we conduct exper-
iments on 13 diverse datasets from GLUE (Wang
et al., 2019) and XGLUE (Liang et al., 2020)
benchmarks. We cover both single-sentence and
sentence-pair text classification tasks. We further
experiment on named entity recognition (NER) and
part-of-speech (POS) tagging datasets to evaluate
the model’s performance on the token-level classi-
fication tasks. A summary of the datasets that we
experiment on is presented in Table 1. We describe
the detailed experimental setup in Appendix A.

4.2 Baselines
We compare PACT with the following state-of-the-
art BERT-base models pretrained with contrastive
learning objective:

• TaCL (Su et al., 2022) propose token-level
contrastive learning to produce diverse token
representation from BERT.

• SimCSE (Gao et al., 2021) propose dropout-
based data augmentation as positive pairs and
in-batch examples as negative pairs.

• Mirror-BERT (Liu et al., 2021) construct
positive pairs by random span masking as well
as different dropout masks.

• SCD (Klein and Nabi, 2022) optimize a joint
self-contrastive and decorrelation objective
by leveraging the instantiation of standard
dropout at different rates.
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• DiffCSE (Chuang et al., 2022) introduce an
unsupervised contrastive learning framework
that is sensitive to the difference between the
original sentence and an edited sentence. The
edited sentence is obtained by stochastically
masking out the original sentence and then
sampling from a masked language model.

• BERT-PT. In addition to comparing with
BERT-base, we further pretrain it (i.e., BERT-
base) with MLM and NSP objectives for an
equal number of training steps as PACT to
facilitate fair comparison.

5 Results

Sentence-level Classification: We report perfor-
mance of the models for both single-sentence and
sentence-pair classification tasks in Table 2. Es-
pecially, PACT either outperforms other models
(CoLA, NC) or maintains comparable performance
(SST-2) with the published results on the single-
sentence classification tasks. For sentence-pair
classification tasks, PACT achieves the best score
(QNLI, RTE, QADSM, and PAWSX) or the joint
best score (QQP and QAM) except for MNLI. Over-
all, PACT improves performance for both single-
sentence classification and sentence-pair classifica-
tion tasks. The consistent improvement across 11
different sentence-level classification tasks shows
the efficacy of the proposed sentence-level (adv-
Sequence) contrastive objective.
Token-level Classification: Table 3 shows our
evaluation results on token-level classification
tasks. As observed, PACT outperforms other mod-
els in both NER and POS tagging tasks. This re-
sult highlights that PACT can also improve over
token-level classification tasks by pretraining on
token-level contrastive learning. Although TaCL
is also pretrained on token-level CL, our adver-
sarial MLM-based CL objective helps the model
differentiate very similar tokens that may belong to
different classes during the finetuning stage, which
helps the model perform better on the downstream
tasks.

Overall, PACT is pretrained to contrast both
token-level and sentence-level adversarial hard neg-
atives. Therefore, the joint optimization helps the
model produce discriminative representations to
improve on the downstream tasks.

6 Analysis

6.1 Uniformity-Tolerance Dilemma

Figure 3: Uniformity vs tolerance (higher is better).
Uniformity indicates how uniformly the representations
are distributed and tolerance indicates how closely the
representations from the same class are located in the
embedding space. PACT (red-circled) produces higher
uniformity while maintaining impressive tolerance.

In Wang and Liu (2021), the authors find that
both uniformity and tolerance are the significant
properties in contrastive learning. Wang and
Isola (2020) show that the contrastive loss can be
disentangled into two parts, which encourages
the positive features to be aligned and the repre-
sentations to match a uniform distribution in a
hypersphere. Therefore, we employ the uniformity
metric with gaussian potential kernel proposed
by Wang and Isola (2020); Wang and Liu (2021),

Luniformity = log E
xi,xj ∼ pdata

[
e−t || f(xi)− f(xj) ||22

]
Where, xi and xj are two different examples and
f(.) is the model encoder. Following Gao et al.
(2021); Zhang et al. (2022b), we set t = 2.
On the contrary, we measure the tolerance using
the mean similarities of samples belonging to the
same class formulated as,

Ltolerance = E
xi,xj ∼ pdata

[
(f(xi)

T f(xj) ) . Il(xi)= l(xj)

]
Where l(xi) is the class of example xi and I is a
binary indicator function.
Ideally, models are expected to project the repre-
sentations uniformly distributed in the embedding
space and at the same time representations of the
same class as closely as possible. We compute
Luniformity and Ltolerance of the models taking
samples from two single sentence classification
tasks (SST-2 and NC) and plot them in Figure 3.
We observe that PACT achieves high uniformity
while maintaining a good tolerance compared to all
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Single-Sentence Sentence-Pair
Cola SST2 NC MRPC QQP MNLI QNLI RTE QAM QADSM PAWSX

BERT ∥ 52.1 93.5 - 88.9 89.2 84.6 90.5 66.4 - - -
BERT 52.1 92.7 92.8 88.2 89.2 84.4 90.6 66.9 69.0 71.5 93.3
BERT-PT 51.3 91.9 92.6 87.6 89.1 83.4 90.4 65.6 67.8 71.5 93.7
TaCL ‡ 52.4 92.3 - 90.8 - 84.4 91.1 62.8 - - -
TaCL 52.4 91.8 92.7 87.9 89.1 84.1 91.2 65.9 68.7 70.9 93.4
SimCSE 50.9 92.9 92.7 87.8 89.2 84.2 90.4 64.2 68.8 71.1 93.2
Mirror-BERT 52.8 92.3 92.8 86.8 89.2 84.2 90.9 66.5 68.9 72.2 93.5
SCD 52.0 92.2 92.8 86.9 89.1 84.3 90.2 65.3 68.8 71.4 92.7
DiffCSE 50.3 92.7 92.7 88.1 89.1 84.2 91.1 64.4 69.0 71.7 92.9
PACT 53.1 93.2♣ 93.1♣ 89.1 89.2♣ 84.2♣ 91.4♣ 67.1 69.0 72.5♣ 93.8♣

Table 2: Performance of the models on single-sentence and sentence-pair classification tasks. We evaluate MRPC
with F1-score, CoLA with Matthew’s correlation and the others with accuracy. ∥: published in Devlin et al. (2019)
and ‡: published in Su et al. (2022). Best performance in our experiments that outperforms the results in published
literature is highlighted in bold. Best performance in our experiments that does not outperform the published results
is highlighted in red. Best performance in published works that also outperform our own experiments is highlighted
in underline. ♣ indicates statistically significant result in t-test with p < 0.05.

NER POS
BERT 90.80 96.76
BERT-PT 90.64 96.64
TaCL 91.18 96.70
SimCSE 91.18 96.67
Mirror-BERT 90.49 96.71
SCD 90.51 96.41
DiffCSE 90.54 96.61
PACT 91.24♣ 96.85♣

Table 3: Performance of the models on token-level
classification tasks. Following Liang et al. (2020), we
evaluate NER with F1-score and POS with accuracy.
Best performance is highlighted in bold. ♣ indicates
statistically significant result in t-test with p < 0.05.

other models.3 The uniformity achieved by PACT
potentially stems from contrasting with the hard
adversarial sentence-level representations during
the pretraining. As a result, PACT achieves more
discriminative capability and reduces anisotropy in
the embedding space.

6.2 Token-level Uniformity
Following Su et al. (2022), we conduct a qualitative
experiment by visualizing the similarity among the
tokens (Figure 4). We pass an example sentence to
BERT (Figure 4a), TaCL (Figure 4b), and PACT
(Figure 4c) to compute the cosine similarity be-
tween every two tokens. We observe that similarity
along the diagonal is the highest for all the mod-
els because of the self-similarity. However, TaCL
and PACT produce lower similarity scores along
the off-diagonal compared to BERT. In fact, it is

3While SCD produces better uniformity than PACT, SCD
performs worst in terms of tolerance.

noticeable that PACT even produces better distin-
guishable token representations than TaCL in some
areas (red rectangular portion). This indicates that
PACT produces token-level discriminative repre-
sentation, like TaCL, resulting in an isotropic dis-
tribution in the embedding space.

6.3 Data Imbalance
Since real-world datasets are usually imbal-
anced (Cao et al., 2019; Bao et al., 2020), we
study how PACT performs on imbalanced scenar-
ios. Following Cao et al. (2019) and Zhang et al.
(2022c), we construct imbalanced classification
training datasets with different imbalance degrees,
ρ = |classmax| / |classmin|, where |classmax|,
|classmin| denotes the number of samples in the
maximum and the minimum class respectively. We
conduct this experiment on three binary classifi-
cation datasets where we sample |classmax| / ρ
number of the minimum class for ρ = 2, 3, 4, 5, 10.
As can be seen from Table 4, performance de-
creases almost monotonically for all the models as
ρ increases. However, PACT generally maintains
a preferable performance compared to other meth-
ods. We conjecture that the higher sequence-level
uniformity helps PACT to generate more discrimi-
native representations, which make it easier to draw
a boundary between two classes even with fewer
examples from one class, resulting in an enhanced
capability of the model to differentiate the classes.

7 Label-Wise Similarity Distribution

We conduct an experiment to analyze the similarity
distribution for different labels. Specifically, we
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PAWSX QADSM QAM
ρ 2 3 4 5 10 2 3 4 5 10 2 3 4 5 10

BERT 91.9 89.6 89.3 88.4 82.9 68.2 63.5 63.5 52.8 53.0 67.1 64.7 61.8 60.6 55.3
BERT-PT 92.1 91.6 91.1 88.4 83.7 66.4 62.7 53.9 52.4 52.3 64.9 62.1 60.5 57.5 53.6
TaCL 88.6 86.6 86.2 83.2 76.9 66.9 63.5 54.4 52.9 52.8 65.5 64.5 62.4 61.3 56.1
SimCSE 92.1 91.9 91.9 87.3 81.3 68.5 61.4 55.3 54.1 52.8 66.6 63.4 60.8 59.9 54.9
Mirror-BERT 91.6 91.4 91.4 86.5 82.6 67.9 63.6 56.9 54.1 53.1 66.1 64.8 62.6 60.8 54.4
SCD 92.2 90.6 88.9 88.4 79.7 66.9 61.9 61.9 53.1 52.8 67.2 65.3 62.2 60.8 57.2
DiffCSE 92.3 90.6 87.3 86.7 78.9 68.4 64.6 59.1 54.1 53.2 67.2 65.1 62.8 60.6 56.9
PACT 92.5 90.1 89.9 88.6 83.7 68.4 64.0 55.5 54.2 53.2 67.7 65.4 63.5 61.3 57.8

Table 4: Performance of the models in data imbalance settings. Best performances are highlighted in bold.

(a) BERT

(b) TaCL

(c) PACT

Figure 4: Self-similarity matrix visualization for token
representations. Red-rectangle indicates the area where
PACT produces more discriminative representation than
TaCL.

analyze how the similarity distribution of represen-
tations coming from the same class differ from
the similarity distribution coming from different
classes. For this purpose, we take the models
finetuned on NC and plot the cosine similarity
score for every pair of examples in the evaluation
set. Figure 5 shows the similarity distribution for
different models. We denote the similarity score
for representations of the same class in blue and
representations of the different classes in orange.
As the Figure shows, PACT pushes the distribu-
tions to the opposite poles better than other models.

(a) BERT (b) BERT-PT

(c) TaCL (d) SimCSE

(e) Mirror-BERT (f) SCD

(g) DiffCSE (h) PACT

Figure 5: Label-wise similarity distribution of the mod-
els. blue distribution indicates cosine similarity for rep-
resentations of the same label and orange distribution
indicates cosine similarity for representations of the dif-
ferent labels.

We further quantify the distributions by comput-
ing Earth Mover’s Distance (EMD) (Rubner et al.,
2000; Ramdas et al., 2017) score. We present the
result in Table 5. Ideally, the distribution of same
class and the distribution of different classes (sec-
ond column) should be well-apart (higher EMD).
Moreover, the distribution of the same class (third
column) should be close to one (lower EMD) while
the distribution of the different classes (fourth col-
umn) should be close to zero (lower EMD), respec-
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Same ∼ Diff. ↑ Same ∼ 1.0 ↓ Diff. ∼ 0.0 ↓
BERT 0.488 0.145 0.367
BERT-PT 0.383 0.095 0.522
TaCL 0.447 0.143 0.409
SimCSE 0.556 0.158 0.280
Mirror-BERT 0.468 0.141 0.389
SCD 0.429 0.128 0.442
DiffCSE 0.555 0.145 0.296
PACT 0.557 0.206 0.237

Table 5: EMD scores of the models for Figure 5. Sec-
ond column indicates EMD between the two distribu-
tions. Third column indicates EMD between the distri-
bution of same class and 1.0. Fourth column indicates
EMD between the distribution of different class and
0.0. ↑ indicates higher is better and ↓ indicates lower is
better.

tively. We observe that PACT differentiates the two
distributions with higher EMD, by pushing them
to opposite directions, corroborating Figure 5. Al-
though EMD score of the second column is higher
for PACT compared to some other models, PACT
achieves the lowest EMD in the third column. Over-
all, as PACT achieves higher sentence-level unifor-
mity as a result of being pretrained on adversarial
hard negatives, it has more discriminative repre-
sentations for the different classes. This results
in a lower similarity and EMD score across the
different classes.
We further conduct experiments to analyze the
representation transferability of PACT, which we
present in Appendix B.

8 Ablation Study

NC PAWSX NER
PACT 92.93 93.27 94.93
- Ladv−Sequence 92.72 (-0.21) 92.83 (-0.44) 94.88 (-0.05)
- Ladv−MLM 92.82 (-0.11) 93.14 (-0.13) 94.70 (-0.23)
— LMLM−CL 92.83 (-0.10) 93.21 (-0.06) 94.79 (-0.14)
— LT 92.89 (-0.04) 93.18 (-0.09) 94.81 (-0.12)

Table 6: Ablation study on the contribution of proposed
Ladv−MLM and Ladv−Sequence losses.

We conduct ablation studies to analyze the effi-
cacy of our proposed two losses, Ladv−MLM and
Ladv−Sequence. For this purpose, we experiment
on the validation sets of one single-sentence (NC),
one pair-sentence (PAWSX), and one token-level
(NER) datasets and report performance in Table 6.

As we observe, removing Ladv−MLM loss hurts
performance on the NER dataset more than the
other two datasets. This shows that Ladv−MLM

contributes mostly for the token-level tasks. On the
other hand, if we remove Ladv−Sequence loss, per-
formance drops mostly on NC and PAWSX datasets,

indicating its contribution to sentence-level tasks.
Overall, performance degrades on all the datasets,
if we remove any of these two losses, which high-
lights the positive contribution of each of the two
losses.

9 Conclusion

We propose PACT, a contrastive learning self-
supervised framework for jointly optimizing token-
and sentence-level representations. We introduced
adversarial MLM and Sequence objectives to mine
adversarial hard negative samples close to the an-
chor representations in the embedding space. Our
evaluation over 13 different tasks show that PACT
achieves consistent improvements over the SOTA
baselines. We further show that PACT exhibits
better token- and sentence-level uniformity that
alleviate the issue of anisotropy in PLMs.

10 Limitations

Although PACT improves over SOTA baselines on
token-level and sentence-level classification tasks,
we empirically find that it exhibits subpar per-
formance on semantic text similarity (STS) tasks
(Table D.1). We hypothesize the reason is that
PACT does not explicitly attempt to align posi-
tive representations. This is in contrast to other
self-supervised methods such as those based on
exploiting dropout and back-translation that intrin-
sically learn another view of each data point (as
these would function as the positive pairs), hence
benefitting STS tasks. It is to be noted that our
work is focused on text classification, while STS
tasks are focused on generating similarity scores
between two sentences (as opposed to text clas-
sification). Therefore, STS tasks are out of the
scope of this work. Another limitation is related
to the pretraining time and resources: pretraining
PACT requires three BERT models, which costs
additional GPU resources. However, we only pre-
train the student-BERT and the adv-BERT, while
keeping the parameters of the teacher-BERT fixed.
To put this in perspective, the additional pretrain-
ing steps of the student-BERT and the adv-BERT
(150K steps each) are still significantly lower than
the original BERT (1M steps). Moreover, this pre-
training is a one-time execution and after that we
only use the student-BERT for the downstream
tasks. Finally, we outline a series of negative re-
sults in Appendix D. We hope these negative results
will spur further research in this area.
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Appendices
A Implementation Details

We use the pretrained BERT-base from Hugging-
face (Wolf et al., 2020) as the backbone architec-
ture. Following Su et al. (2022), we pretrain PACT
on Wikipedia 150k steps with 10% of the total opti-
mization steps for warm-up. During the pretraining,
we set the learning rate to 1e-4 with a batch size of
256 on 4 Nvidia 40GB GPUs. As evident from Ta-
ble 2 and Table 3, PACT improves the performance
over the baselines without incorporating additional
individual weights for each of the loss terms in
the final objective function (Eqn. 1). Incorporat-
ing such weights could have further improved the
performance of PACT on individual downstream
tasks. However, we opt out from including such
weighting hyperparameters for three reasons. First,
we focus on the practical scenarios where search-
ing for the optimal pretrained hyperparameters for
each task is not a feasible option due to the com-
putational cost of pretraining. Second, our main
goal is to offer a method that is easy to deploy in
the real world in that it can work well on a diverse
range of downstream tasks. Third, we wanted to
have fair comparisons to our baseline methods as
not all of these search for the optimal values of the
pretraining hyperparameters (Su et al., 2022; Klein
and Nabi, 2022). Nevertheless, search for best pre-
training hyperparamters can be investigated in the
future.

During the finetuning on downstream tasks,
we run CoLA, SST-2, and MRPC for 20 epochs
and the others for 10 epochs. We set the batch
size to 32, maximum sequence length to 256, and
use the AdamW optimizer with initial learning
rate as {5e-6, 1e-5, 2e-5, 3e-5, 4e-5, 5e-5} with
linear learning scheduler. We choose the best
model on the Dev set for reporting on the test
set. Following the standard protocol, we use
Matthew’s correlation for CoLA, F1-score for
MRPC and NER, and accuracy for other datasets
as the evaluation metrics. For each task, we run
the experiments three times with different random
seeds and report the average score. We further
conduct statistical significant test for PACT using
t-test against finetuned BERT with p-value < 0.05.

B Finetuned Representation
Transferability

Although we usually finetune a model on the same
task the model is evaluated on, we were inquisi-
tive about the transferability of our finetuned rep-
resentations across tasks . To test this transferabil-
ity, we select different sentence-pair classification
datasets and study how the models perform when
finetuned on one dataset and evaluated on another.
Although tasks are different across these sentence-
pair datasets, the core idea behind all these tasks
is to measure sentence-pair relevance. Hence, we
hypothesize a good model should be able to gener-
alize across tasks by performing favorably in the
zero-shot setting.

Table B.1 shows performance of the models fine-
tuned on one dataset (first part of the pair) when
evaluated on another (second part of the pair). We
see that PACT outperforms other models for most
of the pair combinations. We observe that PACT
produces uniform representations in the embedding
space, which allows the representations to be more
informative. As a result, the learned representations
increase the generalization capability of PACT and
help the model perform better across the tasks.

C Difference Between Adversarial
Sample Generation in CV and NLP

In computer vision, Jiang et al. (2020) propose to
create two different views: one with standard aug-
mentation and another with adversarial perturba-
tion to train with contrastive loss. Similarly, Zhang
et al. (2022a) add adversarial perturbation to the
images under l∞ to maximize robustness. Further-
more, Yu et al. (2022) consider generating positive
and negative views of an original image by directly
adding weighted perturbation.
The major difference of adversarial sample genera-
tion in computer vision (CV) works and NLP works
discussed in Section 2 is that while CV works fo-
cus on directly perturbating images in the continu-
ous space, due to the discrete nature of text, NLP
works primarily perturb on token-level. Perturbing
a whole image can create an additional view of the
anchor image, however, NLP works perturb each
token separately. To get a sentence-level adversar-
ial representation, some works (Pan et al., 2022)
perturb the representational token ([CLS]) to get
augmented view of the anchor sentence. Finally,
although adding a small perturbation in an anchor
image can produce an adversarial view, while ad-
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QADSM-QNLI QNLI-QADSM QADSM-MRPC MRPC-QADSM MRPC-PAWSX PAWSX-MRPC QNLI-QAM QAM-QNLI
BERT 63.1 52.8 69.3 49.7 45.4 69.1 61.6 78
BERT-PT 63.9 53.9 69.1 49.6 45.3 67.1 61.5 77.5
TaCL 61.8 55.6 69.6 48.8 45.4 68.6 60.9 78.2
SimCSE 63.4 53.1 69.6 49.8 45.4 68.3 61.8 77.6
Mirror-BERT 64.7 55.3 69.4 49.9 45.5 65.2 60.9 77.3
SCD 65.5 52.1 66.7 49.5 45.3 63.7 61.5 77.3
DiffCSE 63.4 52.6 69.9 50.1 45.5 67.6 62.5 78.0
PACT 65.5 52.8 71.3 49.8 45.6 71.6 61.8 78.5

Table B.1: Performance of the models for finetuned representation transferability. For GLUE datasets, we evaluate
on the validation sets. Best performances are highlighted in bold.

versaries can be obtained in NLP by changing the
words(e.g., with antonyms) in a sequence (Wang
et al., 2021) instead of continuous perturbation.

D Negative Results

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
DiffCSE 72.28 84.43 76.47 83.90 80.54 80.59 71.23 78.49
SCD 66.94 78.03 69.89 78.73 76.23 76.30 73.18 74.19
PACT 38.63 56.76 42.74 59.28 60.88 51.34 61.52 53.02

Table D.1: Performance on STS tasks (Spearman’s
correlation) for different models. PACT exhibits subpar
performance on STS tasks.

STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg
SimCSE 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
PACT 38.63 56.76 42.74 59.28 60.88 51.34 61.52 53.02
PACT-dropout 65.23 77.31 68.09 78.57 75.17 74.58 69.34 72.61

Table D.2: Performance comparison of PACT and
PACT-dropout on STS tasks.

In this section, we outline a series of experiments
that did not exhibit promising results:

1. To improve tolerance, we added another prob-
abilistic pretraining objective that teaches the
model whether two segments of a sequence
are the same. Motivated by SimCSE (Gao
et al., 2021), we therefore, incorporated a
dropout-based augmentation to align the posi-
tive examples. Although this objective indeed
improves performance for some tasks such as
paraphrase detection (PAWSX) and semantic
text similarity (Table D.2), it results in inferior
performance in other classification tasks.

2. We attempted to add phrase-level CL on top
of token- and sentence-level CL in a self-
supervised manner. For this purpose, we com-
puted point-wise mutual information (PMI)
to collect frequent bigram, trigram, and quad-
gram from Wikipedia instead of masking ran-
dom spans. We considered sentences contain-
ing the same phrases as positive pairs, how-
ever, this new phrase-level objective did not

improve performance. We conjecture that this
objective is contradicting the token-level CL
objective. That is, at the phrase-level, CL
pulls tokens belonging to the same phrase to-
gether, while at the token-level, CL pushes
non-identical tokens apart.

3. We further experimented on PACT’s efficacy
on low-resource data setting. Particularly, we
sampled 10%, 25%, and 50% data from each
class for multiple datasets to evaluate PACT,
but it exhibited inferior performance. This
can be potentially attributed to high unifor-
mity of PACT. In low resource setting, we
need to pull representations from the same
class close together with limited data. Since
PACT already distributes the representations
uniformly in the embedding space, it makes
it harder for PACT to pull them together with
fewer training data.

E Ethics Statement

E.1 Data Collection and Release.
We collect pretraining data from Wikipedia for
academic research purpose. The code to collect
the data is publicly available. We will also share
the dataset we used for pretraining upon request.
For the downstream tasks, we use 13 benchmark
datasets from GLUE and XGLUE (Table 1). To
ensure proper credit assignment, we refer users to
the original publications. We use the same train,
dev, and test splits provided by the benchmark
datasets.

E.2 Intended Use.
The intended use of PACT is for the text clas-
sification tasks. We aim to help researchers
to pretrain the models with adversarially hard
negative examples in the self-supervised setting.
PACT can also be used for achieving better token-
and sentence-level uniformity, thus alleviating the
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anisotropy in PLMs.

E.3 Potential Misuse and Bias.
Some of the pretraining data may contain potential
harmful and biased contents. For these reasons, we
recommend that PACT not be used for research or
in applications without careful prior consideration
of potential misuse and bias.
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