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Abstract

In intent detection tasks, leveraging meaning-
ful semantic information from intent labels can
be particularly beneficial for few-shot scenar-
ios. However, existing few-shot intent detec-
tion methods either ignore the intent labels, (e.g.
treating intents as indices) or do not fully uti-
lize this information (e.g. only using part of the
intent labels). In this work, we present an end-
to-end One-to-All system that enables the
comparison of an input utterance with all label
candidates. The system can then fully utilize la-
bel semantics in this way. Experiments on three
few-shot intent detection tasks demonstrate that
One-to-All is especially effective when the
training resource is extremely scarce, achieving
state-of-the-art performance in 1-, 3- and 5-shot
settings. Moreover, we present a novel pretrain-
ing strategy for our model that utilizes indirect
supervision from paraphrasing, enabling zero-
shot cross-domain generalization on intent de-
tection tasks. Our code is at https://github.
com/jiangshdd/AllLablesTogether.

1 Introduction

Few-shot intent detection aims to identify the in-
tents of user utterances with only a few labeled ex-
amples. Recent works can be mainly summarized
into three categories: 1) Standard classifier-based
approaches (He et al., 2022a,b; Zhang et al., 2022,
2021), which leverage pretrained language models
(PLMs) equipped with a standard classifier layer
(e.g., MLP), treating intent labels as indices; 2)
Example-based approaches (Zhang et al., 2020;
Mehri and Eric, 2021; Vulić et al., 2021), which
learn to compare the similarities between different
examples and classify an input utterance based on
the closest neighbor in the training data; 3) Intent
semantic aware approaches (Qu et al., 2021; Xia
et al., 2021; Du et al., 2022), which explicitly incor-
porate intent label words during training. However,
both classifier-based and example-based methods
disregard label semantic information, which is an

important source of supervision in few-shot scenar-
ios. Exiting intent semantic aware approaches also
suffer from different drawbacks, such as relying on
large-scale pretraining datasets and only partially
using intent labels. More details on related work
are discussed in Appendix A.

To solve these issues, we propose an end-to-end
intent semantic aware model, One-to-All. It con-
catenates each utterance with the entire intent label
set as the input and then encodes them simultane-
ously. In this way, the semantic information of
all intents is fully utilized and integrated with ut-
terances. The encoded embeddings of labels and
utterances are subsequently used for contrastive
learning. We define a new contrastive learning
paradigm by comparing the representations of ut-
terances and intents directly. This approach ensures
utterances are moved closer to their gold intents
while distancing them from any incorrect ones. Fur-
thermore, we introduce a novel pretraining strategy
for One-to-All that leverages indirect supervision
from paraphrase identification datasets. Through
this strategy, the model develops the ability to
understand semantic similarities and distinctions
among sentences, generalizing its comprehension
to unseen intents in zero-shot intent detection tasks.

To demonstrate the effectiveness of our pro-
posed model, we conduct experiments on three
fine-grained intent detection tasks: BANKING77
(Casanueva et al., 2020), HWU64 (Liu et al.,
2019a) and CLINC150 (Larson et al., 2019), under
low-shot settings (0-, 1-, 3- and 5-shot). The re-
sults show that One-to-All is especially effective
in extreme few-shot scenarios, with an average im-
provement of 4.62% in 1-shot and 2.60% in 3-shot
settings over the state-of-the-art (SOTA) without
any pretraining. Our model also achieves SOTA in
5-shot scenarios with pretraining on out-of-domain
(OOD) data. Furthermore, One-to-All shows
great cross-domain generalization capabilities in
the zero-shot setting when further pretrained on

https://github.com/jiangshdd/AllLablesTogether
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paraphrasing identification datasets.
Our contributions can be summarized as follows.

First, we proposed an end-to-end One-to-All sys-
tem that enables the comparison of an input utter-
ance with all label candidates via a newly defined
contrastive learning paradigm. To our knowledge,
this is the first work that can encode the entire la-
bel space while modeling the intent identification
problem. Second, we go beyond few-shot intent de-
tection and further achieve zero-shot cross-domain
generalization with a novel pretraining stage of
our model: pretraining on paraphrase identification
datasets. This is the first work that effectively uses
indirect supervision from paraphrasing to handle
zero-shot intent identification tasks.

2 Methods
2.1 One-to-All Input Sequence Construction
Incorporating additional labels as contexts along-
side utterances within an input sequence can help
the model make a better decision (Du et al., 2022).
One-to-All concatenates each utterance with the
complete intent label set as the input and encodes
them together. However, the limitation of the maxi-
mum input sequence length makes it impractical to
include all labels in a single sequence, especially
when the label space is large. Therefore, given an
intent detection task with n intents, we take every
k intents as a group and then all the intents will
be divided into m = ⌈n/k⌉ groups. To keep each
group with a consistent number of elements, we
introduce a special placeholder token <plh>. For
the group whose number of intents (s) is less than
k, we fill it with (k − s) <plh>s to maintain con-
sistency. Each utterance U is then duplicated m
times and appended with the m groups of intents,
respectively, yielding m input sequences, as shown
in Figure 1(A). In this way, the model works on
the entire intent space and incorporates multiple in-
tents into a single sequence. In practice, we choose
k by minimizing n mod k to avoid introducing too
many <plh>s. Each input sequence is then shuffled
k times during training to perform data augmenta-
tion, which is beneficial for few-shot tasks.

2.2 Intent-Aware Contrastive Learning
To better exploit intent semantic information, we
apply contrastive learning (CL) between utterances
and intents. Previous works perform CL between
input texts and their augmented views (Gao et al.,
2021; Yan et al., 2021; Chen et al., 2020; Mou
et al., 2022), or instances under different classes

<s> ... <plh></s> </s> </s> </s>...<s> </s> </s> </s> </s>
<s> ...</s> </s> </s> </s>

RoBERTa + Projector

I would like to get some extra cards? getting spare card

PositiveNegative Negative

(A) Pair Construction

(B) Contrastive Learning

Figure 1: Overview of One-to-All. (A) shows the in-
put sequence construction strategy. IU indicates the
gold intent of U . (B) shows positive and negative in-
stances in contrastive learning.

(Zhang et al., 2021; Gunel et al., 2021; Lin et al.,
2022), while we directly perform CL between input
texts (utterances) and classes (intents) since intents
usually contain useful semantic meanings. There-
fore, the representations of intents can be regarded
as different views of utterances or explicit cluster
centroids. As shown in Figure 1 (B), we feed the
input sequence constructed from Section 2.1 into
RoBERTa and obtain a list of token-level represen-
tations. Then for the utterance U and all the intents
Ij , j ∈ {1, ..., k} in the input sequence, we average
the representations of their corresponding tokens
as their representations zU and zj , j ∈ {1, ..., k}.
Finally, we use a shared MLP projector to project
zU and zj into the same semantic space, yielding
the final utterance representation hU and intent rep-
resentation hj . We use h+U to denote the represen-
tation of the gold intent IU for U . Let sim(u, v)
denote the cosine similarity between u and v. The
contrastive learning loss is then defined as follows:

l = − 1

Nb

Nb∑
i=1

log
esim(hi

U ,hi+
U )/τ∑k

j=1 e
sim(hi

U ,hi
j)/τ

(1)

, where Nb is the batch size. hi∗ means the rep-
resentation in the i-th input in a batch. τ is the
temperature parameter. Through the contrastive
loss, One-to-All pushes utterances closer to their
gold intents and meanwhile drives them away from
all the incorrect intents. For the input sequences
that do not include gold intents, we simply set the
numerator of Equation 1 to 1 so the model only
pushes the utterance away from other intents.

By shuffling the order of concatenated intents
within the sequence, a large number of training
instances and distinct contrastive pairs can be gen-
erated. This is particularly beneficial for both few-
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shot and contrastive learning. Furthermore, a more
robust model is yielded since we enforce the model
to recognize the correct intent regardless of its lo-
cation in the concatenated input sequence.

2.3 Zero-shot Intent Detection via Paraphrase
Identification Pretraining

Paraphrase identification (Socher et al., 2011) is a
task that aims at identifying if two sentences have
the same meaning. Pretraining on the paraphrase
detection identification dataset encourages mod-
els to capture the essence of utterances rather than
relying solely on surface-level patterns. This can
improve the ability of One-to-All to distinguish
between similar intents that might have subtle dif-
ferences in wording or phrasing. Therefore, we
propose a novel pretraining stage to effectively use
indirect supervision from paraphrasing for zero-
shot intent detection task. Specifically, for each
sentence, we regard its paraphrase as its gold label
and select other t most similar sentences with the
help of Sentence-BERT (Reimers and Gurevych,
2019) as the negative labels. For the target task
with n intents, we set t = n− 1 so each sentence
has totally n labels to compare as well. We set k,
which is the number of intents in each group, the
same as the target task to keep the pretraining and
downstream tasks consistent.

Pretraining on out-of-domain (OOD) data can
further improve the performance of One-to-All.
Given an intent detection task, we treat other data
which do not have domain overlapping with this
task as the OOD data. During OOD pretraining, the
intent space is a union of intents from all the OOD
data. We follow the same sequence construction
strategy and training process stated in Section 2.1
and Section 2.2.

3 Experiments

We conduct experiments on three intent detection
tasks under both few-shot and zero-shot settings.

Datasets. Our model is evaluated on three fine-
grained intent detection datasets: BANKING77
(Casanueva et al., 2020), HWU64 (Liu et al.,
2019a), and CLINC150 (Larson et al., 2019). Each
dataset contains one or multiple domains and a fine-
grained intent space. Dataset statistics are shown
in Appendix Table 2. We randomly sample 10%
training data as the dev set, following Zhang et al.
(2021) and Mehri et al. (2020). For each target
task, we use the other two datasets excluding the

similar domains and intents as its OOD pretraining
data. For example, we take BANKING77 as the
target task, which contains banking-related intents.
To obtain its OOD pretraining data, we combine
the data from HWU64 and CLINC150 but remove
the “Banking” and “Credit Cards” domains. The
statistics of the OOD data for each target task are
shown in Appendix Table 3. We also sample 10%
OOD data as the dev set for the OOD pretraining.

For paraphrase detection pretraining, we lever-
age the public Quora Question Pairs (QQP)
dataset1. To incorporate more sentences in a single
pair, we filter short sentence pairs from QQP by
setting the max number of words and characters in
a sentence as 10 and 40, respectively. The filtered
QQP dataset contains 31,412 paraphrase pairs.

Baselines. We compare our method with six base-
lines in the three categories as we described in
Section 1. Standard classifier-based baselines: 1)
RoBERTa with a standard classifier. 2) CPFT
(Zhang et al., 2021) performs self-supervised CL
on multiple intent detection datasets and applies
supervised CL on the target task. 3) RoBERTa-SPI
(Zhang et al., 2022) introduces two regularizers
to improve supervised pretraining via isotropiza-
tion. For example-based approaches, we consider
its prior SOTA model: 4) DNNC (Zhang et al.,
2020), which identifies intents by finding the near-
est neighbors of utterances in the training set and
is pretrained on three natural language inference
datasets. For intent semantic aware methods, we
compare: 5) Context-TE and 6) Parallel-TE (Du
et al., 2022). These approaches incorporate mul-
tiple intents into a single textual entailment se-
quence. Context-TE relies on indirect supervision
from MNLI (Williams et al., 2018). Parallel-TE is
more comparable to One-to-All, it also encodes
utterances and intents simultaneously, but it is a
pipeline model that only selects top-k intents for
each utterance. Among all the baselines, CPFT
and DNNC are the prior SOTA models for 5- and
10-shot settings. Our paper considers more chal-
lenging scenarios, specifically the 1- and 3-shot
settings. The implementation of the baselines and
our model are detailed in Appendix C.

Results. For few-shot experiments, we conduct
three runs with distinct training data samples, fol-
lowing Du et al. (2022). Table 1 shows the average

1https://quoradata.quora.com/First-Quora-Dataset-
Release-Question-Pairs
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Model
BANKING77 HWU64 CLINC150

1-shot 3-shot 5-shot 1-shot 3-shot 5-shot 1-shot 3-shot 5-shot

RoBERTa 35.31(2.22) 64.78(0.76) 75.47(1.69) 40.34(2.66) 67.44(1.37) 75.71(1.26) 48.48(1.03) 80.91(2.10) 86.82(1.40)

CPFT 40.71(2.25) 71.57(0.34) 79.73(0.52) 50.61(2.18) 72.91(2.32) 79.82(1.64) 58.58(0.57) 83.12(0.43) 90.60(0.70)

RoBERTa-SPI 43.81(2.01) 65.63(0.66) 72.20(1.45) 53.75(2.13) 70.95(1.14) 75.58(1.24) 67.57(0.99) 83.31(1.78) 87.76(1.08)

DNNC 30.23(2.51) 72.21(1.02) 79.94(1.77) 29.77(1.45) 75.25(2.69) 79.31(0.19) 30.17(2.33) 87.07(0.44) 90.44(1.03)

Context-TE 64.22(0.50) 73.27(0.43) 77.07(0.57) 64.39(1.64) 73.45(1.72) 78.16(0.94) 74.71(0.91) 84.56(1.54) 87.61(0.79)

Parallel-TE 64.34(1.23) 72.20(1.00) 76.23(0.37) 61.96(0.46) 74.10(0.51) 78.10(1.40) 74.54(0.81) 83.66(0.84) 86.61(0.58)

One-to-All 66.36(0.46) 76.13(0.45) 79.75(0.78) 68.77(1.94) 78.16(2.04) 79.89(0.30) 77.63(0.63) 87.09(1.44) 89.88(0.81)

w/ OOD 67.93(0.28) 76.92(0.18) 80.51(0.88) 73.17(0.37) 79.95(0.68) 82.50(1.05) 79.21(0.43) 88.01(1.46) 90.76(0.63)

Table 1: Test accuracy (%) and standard deviation on three dataset under three few-shot scenarios. The first and
second highest results are formatted in bold and underline, respectively.

accuracy and standard deviation on three datasets
under 1-, 3-, and 5-shot settings. One-to-All out-
performs all the baselines remarkably in 1- and
3-shot scenarios across three datasets without any
pretraining. For example, One-to-All improves
the state-of-the-art result for 1-shot on HWU64 by
6.81%. After pretraining on OOD data, the im-
provement percentage increases to 13.64%. For the
5-shot setting, One-to-All achieves comparable
results without pretraining and outperforms all the
baselines with pretraining on OOD. The example-
based model DNNC performs extremely poorly
on 1-shot tasks even though it achieves good per-
formances in 5-shot, showing its limitation when
training resources are extremely scarce.

For the zero-shot setting, we first did prelimi-
nary experiments evaluating all baselines and our
model on the target tasks without extra pretrain-
ing. The results are reported in Appendix Ta-
ble 4. Despite poor performance across all mod-
els, One-to-All remains the top-performing ap-
proach. Then we pretrain the model on OOD/QQP
data without accessing any in-domain training data.
The results are shown in Figure 2. The zero-shot
performance of One-to-All exhibits significant
improvement following pretraining on QQP data,
indicating the effectiveness of our novel pretrain-
ing strategy. Comparing the zero-shot results with
the few-shot results in Table 1, we can observe
that the performance of One-to-All (OOD) un-
der the zero-shot setting even outperforms some
baselines (RoBERTa, CPFT, and DNNC) under
the 1-shot setting. Thus, we compare our model,
One-to-All, with the two strongest baselines,
Context-TE and Parallel-TE, in the zero-shot set-
ting. As shown in Figure 2, One-to-All (OOD)
outperforms both Context-TE (OOD) and Parallel-
TE (OOD) in most settings. The zero-shot perfor-
mance of One-to-All is further boosted by pre-
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Figure 2: Zero-shot performance. OOD or QQP indi-
cates that the model is pretrained on OOD or QQP data.

training on both OOD and QQP data, outperform-
ing both Context-TE and Parallel-TE by a large
margin. Once again, this finding highlights the ef-
fectiveness of utilizing indirect supervision from
paraphrase identification datasets.

Analysis We investigate how our end-to-end de-
sign impacts our model performance by compar-
ing it with Parallel-TE through a case study on
BANKING77. We run One-to-All and Parallel-
TE under the 3-shot setting three times. The top-k
filtering step in Parallel-TE misses gold intents for
89 utterances in the test set, while One-to-All can
correctly predict 34.7 of them on average, which
brings a 1.1% improvement given the size of test
set is 3080. This suggests that our end-to-end de-
sign effectively identifies partial intents that may
have been overlooked by the pipeline system.

4 Conclusion

In this paper, we propose an end-to-end in-
tent semantic aware intent detection model
One-to-All to fully leverage intent semantics via
contrastive learning. Experiments show that it is es-
pecially effective when training resource is scarce.
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Limitations

Although we perform OOD pretraining on our
model and gain performance improvement, the
OOD data we use in our experiment is only from
at most two datasets. There are many publicly
available intent detection datasets from different
domains, such as ATIS (Hemphill et al., 1990) and
SNIPS (Coucke et al., 2018), can be used for the
OOD pretraining. We believe pretraining on large-
scale OOD datasets can further boost the perfor-
mance of our model, and we leave it for our future
work.
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tent semantics into generative models via pretrain-
ing. More specifically, during the pretraining stage,
LSAP takes partially masked utterance-intent pairs
as the input and predicts the masked contents. How-
ever, this approach relies on large-scale pretraining
data to obtain decent performance. Qu et al. (2021)
and Xia et al. (2021) cast ID as textual entailment
(TE), treating utterances and intents as premises and
hypotheses, respectively. But these two models are
only able to compare one single utterance with one
single intent, which makes them unaware of other
intent options. Du et al. (2022) learn to select the
best intent for an utterance by providing the top-k
intents for that utterance in one training example.
Despite providing a one-to-many comparison, Du
et al. (2022) are only able to view the top-k intents
rather than the entire intent label set during training.
Additionally, Du et al. (2022) propose a pipeline
model. Their performance is constrained by the
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accuracy of the first stage of the pipeline, which is
identifying the top-k intents. Moreover, Lamanov
et al. (2022) propose a template-based approach
for modeling intents and utterances as sentence
pairs. Burnyshev et al. (2021) use a deep contextu-
alized model to embed utterances and the natural
language descriptions of user intents in zero-shot
scenarios.

Different from all the literature we discussed
above, we propose an end-to-end intent semantic
aware system. By fully utilizing label semantics
via contrastive learning, our model achieves SOTA
performance even without pretraining on additional
datasets.

B Dataset Statistics

Dataset Domain Utterance Intent
BANKING77 1 13,083 77
HWU64 21 10,030 64
CLINC150 10 22,500 150

Table 2: Dataset statistics.

Target Domain Utterance Intent
BANKING77 29 28,030 183
HWU64 11 35,453 225
CLINC150 21 9,854 63

Table 3: Statistics of the OOD pretraining data used for
each target task.

C Implementation Details.

All the baselines and One-to-All adopt
RoBERTa-base (Liu et al., 2019b) as the backbones
for a fair comparison.

Baseline implementation. For the RoBERTa
model, we implement it with the Hugging Face2 li-
brary. For RoBERTa-SPI, DNNC, Context-TE, and
Parallel-TE, we directly run their open-source code
under our experiment settings. It is important to
note that the original Context-TE and Parallel-TE
models utilize RoBERTa-large as their base mod-
els. However, in our implementation, we replace
it with RoBERTa-base to ensure a fair compari-
son. Regarding CPFT, we strive to replicate its
methodology to the best of our ability, given the un-
availability of its code and pretrained checkpoints
to the public. The original paper trained CPFT on
a fixed set of 5-shot data, while in our experiments,

2https://huggingface.co/

64 32 16 4 2
k values

40

50

60

70

80

Ac
cu

ra
cy

Different k values on HWU64

1-shot
3-shot
5-shot

(a) HWU64

39 26 13 6 2
k values

50

60

70

80

Ac
cu

ra
cy

Different k values on BANKING77

1-shot
3-shot
5-shot

(b) BANKING77

Figure 3: Model performance with different k values on
the dev set of HWU64 and BANKING77.

Model BANKING HWU CLINC

RoBERTa 1.65 1.77 2.01
CPFT 1.91 2.03 2.78
RoBERTa-SPI 1.90 1.87 2.52
Context-TE 1.04 1.20 1.43
Parallel-TE 1.66 2.14 2.24

One-to-All 6.04 13.05 5.84

Table 4: Zero-shot performance (%) without pretraining
on additional datasets. DNNC is not included since it
requires at least one training example.

we conduct three runs with uniquely sampled few-
shot training data, which mitigates the potential
influence of data sampling bias.

One-to-All implementation. For few-shot
tasks and OOD pretraining, we train the model
for 10 and 3 epochs, respectively, and keep the
best ones on the dev set. For paraphrase detection
pretraining, we train the model for 3 epochs.
All the training batch size is set to 8 and the
learning rate is 2e-5. The output dimension of the
MLP projector is set to 768 and the temperature
parameter τ = 0.1. We set k to 26, 32, 30
for BANKING77, HWU64, and CLINC150,
respectively, according to the observations on their
dev sets. Details are discussed in Appendix E.

D Zero-shot Preliminary Experiments

E Additional Analysis

We try to explore how the number of intents in each
input sequence, k, influences the performance. We
explore the influence of k by conducting experi-
ments on the dev set of HWU64 and BANKING77
with different k values. As shown in Figure 3, the
model performance stays similar when k > 20 but
drops sharply when k is below 10. This is probably
due to the reduction of contrastive instances in a
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single pair. Therefore, we set k to 26, 32, 30 for
BANKING77, HWU64, and CLINC150, respec-
tively, and it can bring two benefits: 1) it is more
friendly for the paraphrase detection pretraining
as it is the max number of the sentences that can
be incorporated into a single pair; 2) it minimizes
n mod k as we discussed in Section 2.1.


