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Abstract
Investigating the behaviour of Machine Read-
ing Comprehension (MRC) models under var-
ious types of test-time perturbations can shed
light on the enhancement of their robustness
and generalisation capability, despite the su-
perhuman performance they have achieved on
existing benchmark datasets. In this paper, we
study the robustness of contemporary MRC
systems to context paraphrasing, i.e., whether
these models are still able to correctly answer
the questions once the reading passages have
been paraphrased. To this end, we systemati-
cally design a pipeline to semi-automatically
generate perturbed MRC instances which ulti-
mately lead to the creation of a paraphrased test
set. We conduct experiments on this dataset
with six state-of-the-art neural MRC models
and we find that even the minimum perfor-
mance drop of all these models exceeds 41%,
whereas human performance remains high. Re-
training models with augmented perturbed ex-
amples results in improved robustness, though
the performance remains lower than on the orig-
inal dataset. These results demonstrate that the
existing high-performing MRC systems are still
far away from real language understanding1.

1 Introduction

Machine reading comprehension (MRC), the task
of automatically reading a passage of text and an-
swering related questions, serves as an important
testbed for evaluating various Natural Language
Understanding (NLU) capabilities of computer sys-
tems (Chen, 2018). While neural MRC systems
approach or even surpass human performance on
benchmark datasets (Devlin et al., 2019; Lan et al.,
2020; He et al., 2021), it remains uncertain whether
they can indeed solve the MRC task (Schlegel et al.,
2020; Wu et al., 2021b; Sugawara et al., 2022; Shin-
oda et al., 2023; Schlegel et al., 2023). In par-
ticular, recent studies have shown that instead of

1Our code and data are available at https://github.
com/Yulong-W/context-paraphrasing.

Question: In what year did Harvard President
Joseph Willard die?
Original Context: [. . . ] When the Hollis
Professor of Divinity David Tappan died in
1803 and the president of Harvard Joseph
Willard died a year later, in 1804, a struggle
broke out over their replacements. [. . . ]
Prediction: 1804
Paraphrased Context: [. . . ] When the Hollis
professor of divinity David Tappan died in
1803, the President of Harvard Joseph Willard
died a year later, a battle broke out in 1804 for
their successors. [. . . ]
Prediction: 1803
Prediction by a human: 1804

Figure 1: An instance where the RoBERTa-large model
(Liu et al., 2019) can get the answer correct over the
original reading passage, but is misled when presented
with a whole context paraphrased version.

performing consistently well, contemporary mod-
els are brittle under various test-time perturbations
(Ribeiro et al., 2020; Si et al., 2021; Wu et al.,
2021a; Schlegel et al., 2021; Yan et al., 2022). This
raises the question of the suitability of existing gold
standard datasets to establish a model’s robustness
and the need to improve the reliability of these
MRC systems (Wang et al., 2022).

Paraphrase understanding plays a role in mea-
suring the robustness and generalisation ability of
MRC models. Intuitively, a trustworthy MRC sys-
tem should demonstrate robust generalisation on
paraphrased contexts and/or questions, i.e., those
that convey the same semantic meaning using dif-
ferent surface forms. Previous studies have at-
tempted to paraphrase the questions (Gan and Ng,
2019) and strategically modify portions of the read-
ing passage, e.g., paraphrase only the answer sen-
tence using the back-translation (Lai et al., 2021) or
generate paraphrases that exclude the top five im-

https://github.com/Yulong-W/context-paraphrasing
https://github.com/Yulong-W/context-paraphrasing
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portant words in the context (Wu et al., 2021a). By
assessing model performance on the paraphrased
test sets, they concluded that MRC models might
be vulnerable to paraphrasing-oriented attacks.

The reading comprehension task assesses a
model’s real understanding of a given context, i.e.,
a passage. Though the findings in the work of Lai
et al. (2021) and Wu et al. (2021a) provide insights
into the weaknesses of MRC datasets to benchmark
partial-context paraphrasing understanding, their
designed strategic paraphrasing approach may hin-
der the generated perturbed examples from accu-
rately simulating real-world text disruptions, which
can pervade any part of a passage, not just spe-
cific words or answer sentences. Furthermore, it is
not clear whether the modifications introduced as
part of the perturbations changed the meaning of
the original context. Therefore, to precisely reveal
the capability of existing gold standard datasets
to benchmark paraphrase understanding, we argue
that it is crucial to examine the robustness of MRC
systems to paraphrasing the whole context as well.

In this paper, our aim is to evaluate how well
current reading comprehension systems generalise
to a modified benchmark in which all contexts
were paraphrased while preserving the same mean-
ing and thus keeping the same gold standard an-
swer. Different from prior robustness assessment
research (Gan and Ng, 2019; Wu et al., 2021a;
Yan et al., 2022), we design a pipeline to generate
and identify perturbations of MRC examples that
demonstrate the lack of robustness of a strong MRC
system RoBERTa-large (Liu et al., 2019) to context
paraphrasing (see Figure 1 for an example). In do-
ing so, we also underscore the limitation of a large
language model to handle the paraphrased contexts.
This proposed evaluation framework leads to the
construction of a paraphrased test set drawn from
the original Stanford Question Answering Dataset
v1.1 (SQuAD 1.1) benchmark (Rajpurkar et al.,
2016). Results of our experiments show that the
performance of five other MRC models except the
RoBERTa-large on our created dataset is substan-
tially lower, indicating the transferability of such
adversarial attack against MRC models and the in-
sufficiency of the SQuAD 1.1 to benchmark context
paraphrasing understanding. Utilising a straightfor-
ward training data augmentation approach, we also
show the possibility to enhance the robustness of
these models in dealing with context paraphrasing.
These suggest that there is a need to create gold

standard datasets in which context paraphrasing
challenges are sufficiently represented.

2 Experiment Setup

MRC Dataset. In this paper, we investigated an
extractive English MRC dataset SQuAD 1.1 (Ra-
jpurkar et al., 2016) (License: CC-BY 4.0) due to
its simplicity and the fact that it is the dataset on
which current MRC models have already achieved
superhuman performance, hence allowing us to
focus on analysing the robustness of models to con-
text paraphrasing. The statistics for the dataset are
reported in Appendix A.

Models. We chose the following models for the
task of machine translation and reading compre-
hension, respectively.

Machine translation: We used the neural trans-
lation models provided by OPUS-MT (Tiedemann
and Thottingal, 2020) which are based on the popu-
lar Marian-Neural Machine Translation framework
(Junczys-Dowmunt et al., 2018) pre-trained on the
OPUS (Tiedemann, 2012) multilingual corpus.

Reading comprehension: We selected the
RoBERTa-large model (Liu et al., 2019) to gen-
erate the paraphrased test set mainly due to its im-
pressive performance (93.1% F1) on the original
development set of SQuAD 1.1 (Rajpurkar et al.,
2016). The process of generating the challenge
set also entails the utilisation of a Generative Pre-
trained Transformer (GPT) (Brown et al., 2020)
series model, specifically GPT-3.5-turbo, through
the OpenAI ChatGPT API. In the final evaluation
stage, we used multiple strong MRC models includ-
ing BERT (Devlin et al., 2019), DistilBERT (Sanh
et al., 2019), ALBERT (Lan et al., 2020), Span-
BERT (Joshi et al., 2020) and DeBERTa (He et al.,
2021), to comprehensively demonstrate the chal-
lenge posed by our created dataset. We fine-tuned
these pre-trained language models on the training
set of SQuAD 1.1 and evaluated them on each of
the original and perturbed test sets by making use
of HuggingFace’s Transformers library (Wolf et al.,
2020). Model details and the hyperparameters used
in model fine-tuning are shown in Appendix B.

3 Context Paraphrasing-Oriented
Challenge Set Generation

In this section, we describe our methodology
for generating a semantics-preserving context-
paraphrased dataset. Four steps are involved in
the perturbation pipeline, which are detailed below.
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Language Performance
(EM/F1)

Original Paraphrased

Sino-Tibetan

Chinese 91.07/94.38 80.60/86.05−8.83

Indo-European

Hindi 92.50/95.29 70.89/76.11−20.13

Spanish 89.80/93.99 87.75/92.51−1.57

French 90.26/94.24 87.20/92.02−2.36

Russian 90.69/94.38 85.29/90.27−4.35

German 89.95/94.22 87.51/92.29−2.05

Italian 90.07/94.13 86.85/91.99−2.27

Dutch 89.43/93.98 86.98/92.08−2.02

Swedish 89.70/94.04 87.26/92.16−2.0

Austronesian

Indonesian 91.07/94.53 84.39/89.54−5.28

Austro-Asiatic

Vietnamese 91.73/95.06 77.14/82.89−12.8

Uralic

Finnish 91.20/94.62 85.15/90.22−4.65

Table 1: The performance (%) of the RoBERTa-large
(Liu et al., 2019) on the original and paraphrased test
sets generated using 12 pivot languages across five lan-
guage families. Values in smaller font are changes in F1
(%) relative to the original performance of the model.

3.1 Automatic Context Paraphrasing

We explored paraphrasing the reading passages in
the development set of an MRC dataset using a
back-translation approach, by which each sentence
in the context is translated from a source language
(English) to a pivot language and then back to the
source language. We identified twelve languages
across five language families as the pivot language,
informed by their number of speakers (Eberhard
et al., 2022) and the performance of their associ-
ated pre-trained neural translation models (Tiede-
mann and Thottingal, 2020). After obtaining the
paraphrases, we kept only those with at least one
question where all annotated answers can still be
found in the paraphrased context. The original con-
texts of those paraphrases were then extracted from
the development set, to keep it aligned with the
modified test set and the performance comparable.

3.2 Preliminary Evaluation

As presented in Section 3.1, we generated per-
turbed test subsets (one for each of the 12 pivot
languages) in which contexts were paraphrased
using back-translation, and their corresponding
original versions. Then, we examined the perfor-
mance of a strong MRC model, RoBERTa-large
(Liu et al., 2019), on these datasets, as demon-
strated in Table 1. It can be seen from Table 1 that
paraphrasing the contexts using different pivot lan-
guages caused various degrees of degradation in
terms of the performance of the RoBERTa-large
model. Nonetheless, we cannot simply conclude
that this indicates the vulnerability of MRC models
to the context paraphrasing attack as it is unclear
whether these context paragraphs were indeed para-
phrased, i.e., remain semantically equivalent while
lexical/syntactic features were changed. Therefore,
we manually verified the validity of the perturbed
MRC instances in the next step.

3.3 Human Evaluation

With the aim of studying the lack of robustness of
MRC models to context paraphrasing, from each
generated perturbed test set, we identified MRC
examples on which the RoBERTa-large model (Liu
et al., 2019) predicts a wrong answer span whereas
it provides the correct answer given the original
passage. Afterwards, we randomly sampled 10%
examples from each filtered perturbed test set; this
resulted in a total of 247 candidate examples, based
on which human performance was assessed. A can-
didate perturbed MRC example has the ability to
demonstrate the vulnerability of a model to context
paraphrasing, if the model makes a wrong predic-
tion on the paraphrased context paragraph, but a
human can answer the question correctly. We refer
to such candidates as suitable examples. Out of
247 examples, we identified 53 as suitable. The
identification process is detailed in Appendix C. In
addition, Figure 2 measures the languages contri-
bution of suitable examples within the annotated
dataset, from which it is evident that employing
Finnish for back-translation/paraphrasing yields
the most suitable examples.

3.4 Paraphrased Test Set Generation

While human evaluation enables us to identify suit-
able MRC instances precisely, it requires signifi-
cant human annotation effort. Hence, we explored
the viability of two different approaches to auto-
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Figure 2: Percentage of suitable MRC examples within
the candidate instances generated by using each pivot
language, respectively.

matically determine whether a perturbed MRC ex-
ample is suitable: one based on Machine Learn-
ing (ML) techniques and the other employing the
GPT-3.5-turbo model. The process and outcomes
derived from experimenting with these two meth-
ods are detailed in Appendix D and Appendix E.
The best-performing model, GPT-3.5-turbo under
zero-shot scenario (0.69 precision in predicting
suitable example), was then applied on the fil-
tered perturbed instances generated using Finnish,
Spanish, Vietnamese, Italian and Swedish, 182 of
which were classified as suitable (from 150 original
contexts). For multiple paraphrased contexts that
correspond to the same original passage, we only
kept the perturbed one with the most questions pre-
served, or in case of a tie, the one with the lowest
average question–context lexical overlap (Shinoda
et al., 2021). Our final paraphrased test set contains
150 contexts and 158 questions in total. For the
purposes of comparison, we also created an Origi-
nal version of the test set keeping only the original
passages and questions corresponding to those that
were included in the Paraphrased version.

4 Results and Discussion

4.1 Evaluation
We assessed the performance of six state-of-the-
art MRC models on the newly created challenge
set, as shown in Table 2. The table shows that
all the evaluated neural language models demon-
strated poor generalisation to our generated test
set. RoBERTa-large suffered the largest perfor-
mance drop of 85.07%—this is within our expec-
tation since its errors were used to identify suit-

Model Original Paraphrased
(EM/F1) (EM/F1)

RoBERTa-large 100/100 0/14.93−85.07

DistilBERT-base 66.46/73.5 27.22/39.05−46.87

BERT-large 75.32/81.7 32.91/40.69−50.2

SpanBERT-large 77.85/84.72 32.91/42.62−49.69

ALBERT-xxlarge-v1 88.61/92.64 44.3/54.16−41.54

DeBERTa-large 89.24/93.58 41.14/49.74−46.85

Table 2: The performance (%) of the fine-tuned MRC
models on the original and the paraphrased test set.

able examples. For the other five model architec-
tures, the relative changes were smaller than that of
RoBERTa-large, but still very noticeable with over
41% performance decrease. This demonstrates the
poor capability of these reading comprehension
systems to properly deal with the paraphrased con-
texts. Apart from RoBERTa and ALBERT, the
performance of other four MRC models remained
consistent across both original and paraphrased test
set, with DeBERTa achieving the highest EM and
F1 score, followed by SpanBERT, BERT and Dis-
tilBERT. While the performance of ALBERT on
the original dataset was slightly lower than that of
DeBERTa, it notably outperformed the latter on the
paraphrased test set, attaining the highest perfor-
mance score (54.16 F1). We also found that the
consistency in original model performance rank-
ings might not apply to their robustness to context
paraphrasing, with the BERT-large model demon-
strating the greatest F1 decrease (50.2%) and the
ALBERT-xxlarge-v1 exhibiting the smallest perfor-
mance decline (41.54%).

4.2 Error Analysis

To explore the source of model inaccuracies in
paraphrased contexts, we manually checked 50
perturbed examples on which the examined MRC
models failed and identified three potential sources
of model errors. We observed that the paraphras-
ing of keywords in the sentence that is required to
answer the question, along with some other lexical
changes, might lead models to provide an incorrect
answer (see Figure 9 in Appendix F). Moreover,
another source of errors might be the change in
the answer sentence structure (see Figure 10 in
Appendix F as an example). Paraphrasing other
contextual sentences may also inadvertently lead
to the generation of incorrect responses by MRC
models, particularly when such paraphrases result
in keyword overlap with the question. However,
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unraveling the sources of these errors in the midst
of full-context paraphrasing perturbation remains
a complex problem that requires further investi-
gation. Overall, our findings suggest that these
high-performing systems might mostly rely on cer-
tain words matching between the question and the
context to generate the answer, rather than truly
understanding the passage. However, we also ob-
served in a small proportion of examples that a
mismatch between the answer provided by a model
and the gold standard answer, does not necessarily
mean that the model’s answer is erroneous: in some
cases, the semantic meaning of the paraphrased
context has changed or the model’s answer is ar-
guably correct. This indicates that this work might
be underestimating the robustness of the investi-
gated models.

4.3 Robustness Improvement

An intuitive strategy to enhance the models’ ro-
bustness to context paraphrasing involves exposing
them to suitable examples. To this end, we selected
2694 MRC contexts (comprising 12723 questions)
from the original SQuAD 1.1 training set (Ra-
jpurkar et al., 2016) and paraphrased them using
Finnish, a language that has been demonstrated to
be the most effective for generating suitable MRC
examples. We then curated the perturbed examples
where the answer span still contained within the
corresponding paraphrased context, yielding 2459
paraphrased contexts across a total of 8075 ques-
tions. The investigated models were then re-trained
on the SQuAD 1.1 training set, augmented with
these perturbed instances. Table 3 shows their per-
formance on both the original and the paraphrased
test sets, before and after re-training.

From Table 3, we can see that on the original
test set, apart from the DistilBERT-base, which ex-
perienced a slight performance decline in terms of
the EM metric, all retrained models demonstrated
higher performance than the one trained on the
original training set of SQuAD 1.1, though the aug-
mented contexts-paraphrased set contains noises,
i.e., those are not suitable examples. These findings
showcase the potential for enhancing performance
on the original dataset by training models with
context-paraphrased MRC examples. On the para-
phrased challenge set, for all models expect the
DistilBERT-base, re-training with the additional
perturbed examples improved the performance and
thus their robustness to context paraphrasing. How-

Model Performance
(EM/F1)

Before After

DistilBERT 66.46/73.5 65.19/73.58
(base) 27.22/39.05 24.68/36.18

BERT 75.32/81.7 81.65/85.77
(large) 32.91/40.69 34.18/43.58

SpanBERT 77.85/84.72 83.54/88.96
(large) 32.91/42.62 38.61/48.29

ALBERT 88.61/92.64 88.61/93.52
(xxlarge-v1) 44.3/54.16 46.84/55.78

DeBERTa 89.24/93.58 90.51/94.81
(large) 41.14/49.74 43.04/51.77

Table 3: The performance (%) of MRC systems on the
original and the paraphrased test set, before and after
re-training. Performance figures displayed in white cells
correspond to results obtained on the original test set,
whereas the results shown in the shaded areas represent
the performance on the generated challenge set.

ever, for the DistilBERT-base model, exposing it
to the paraphrased examples even resulted in a
moderate performance drop (7.35% F1), further
compromising its robustness in handling context
paraphrasing. This might due to the unsuitable
examples included in the augmented training set,
but also demonstrate the challenging nature of the
whole context paraphrasing perturbation on the
DistilBERT-base (Sanh et al., 2019).

5 Conclusion

In this paper, we reveal the weaknesses of con-
temporary reading comprehension systems to con-
text paraphrasing. With the proposed perturbation
framework, we generated a paraphrased challenge
set, to which six high-performing MRC models
generalise poorly. We also demonstrate that a train-
ing data augmentation approach can enhance the
robustness of the majority of models when exposed
to the paraphrased contexts. This informs us that
to equip models with context paraphrasing under-
standing ability, there is a need to create bench-
marks in which this reasoning challenge is pre-
cisely represented. Future work will include the
design of better techniques to remove the noise ex-
isting in the challenge set and the optimise of the
perturbation pipeline so that it can be generalisable
to more challenging datasets.
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Limitations

In this work, our annotated gold dataset might
contain potentially debatable instances of suitable
MRC examples. To address this concern, there is a
pressing need for the establishment of theoretical
foundations which clearly define human answer-
able under the context-paraphrasing oriented per-
turbations and other types of perturbations. Build-
ing upon this, research efforts are needed to eval-
uate and enhance the precision of automatic ap-
proaches for identifying suitable examples, en-
abling precise assessment of models robustness
against test-time perturbations. Further, there is po-
tential to design better document-level paraphras-
ing methods and expand this study to include other
sophisticated MRC datasets and diverse NLU tasks.
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A Dataset Statistics

Table 4 presents the number of contexts and ques-
tions contained within the SQuAD 1.1 training and
development set, respectively.

Training Development

Context 18,896 2,067
Question 87,599 10,570

Table 4: Number of contexts and questions in the
SQuAD 1.1 training and development sets (Rajpurkar
et al., 2016).

B Hyperparameters of the Neural
Reading Comprehension Models

Table 5 shows the hyperparameters used to fine-
tune the pre-trained MRC models in this work. We
utilised 2 16GB Nvidia v100 GPUs to fine-tune
and evaluate each model.

C Human Annotation

This Appendix details the process of manually iden-
tifying the perturbed MRC examples that are suit-
able for context paraphrasing oriented robustness
assessment. A total of three human annotators were
involved in this task, including the first author of
this paper. Prior to starting the annotation task, we
asked all annotators to check a few examples and
report the average time they spent for annotating

Modelparameters(M) d b lr ep

RoBERTa-large(355) 384 8 3e-5 2.0

DistilBERT-base(65) 384 8 3e-5 3.0
BERT-large(340) 384 8 3e-5 2.0

SpanBERT-large(340) 512 4 2e-5 4.0
ALBERT-xxlarge-v1(223) 384 4 3e-5 2.0

DeBERTa-large(350) 384 4 3e-6 3.0

Table 5: The hyperparameters used to fine-tune each
pre-trained MRC model (with its number of parameters).
d is the size of the token sequence fed into the model, b
is the training batch size, lr is the learning rate, and ep
is the number of training epochs. We used stride = 128
for documents longer than d tokens.

each example. Based on this, we paid the annota-
tors for their work by offering them coupons with a
value of 20 pence for each example they annotate.

For the randomly sampled 247 candidate in-
stances, we first asked two annotators to answer
each question based on the corresponding para-
phrased context, respectively. The annotators were
required to select the shortest continuous span in
the paraphrased context that answered the question
only if they are confident that the paraphrased con-
text still makes it possible to answer the associated
question and were allowed to leave the answer as
blank if the question is not answerable anymore.
Full text of instruction given to the annotators can
be seen in Figure 3. Afterwards, for each example,
we measured the correctness of the answer span
provided by each annotator through comparing it
with the ground truth answers, respectively , and la-
belled the example as suitable or unsuitable based
on the criteria described in Section 3.3. To con-
duct a precise analysis, we manually checked all
examples with the answer span given by the an-
notator(s) does not exact match any of the ground
truth answers and decided the correctness of the
answer by taking into account the corresponding
context and the question as well. Figure 4 demon-
strates one such example. We then measured the
inter-annotator agreement by computing the Co-
hen’s kappa coefficient (Cohen, 1960), which is
around 0.48. This might indicate that there exists
moderate discrepancies between the two annotators
concerning the answerability of the questions pred-
icated on the contexts that have been paraphrased.
Finally, we presented the examples on which the
two annotators share a disagreement to the third
annotator and provided them the label that agreed
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by the majority of annotators. This yielded a to-
tal of 66 suitable examples. From the identified
66 examples, we further manually eliminated 13
wherein the prediction of the RoBERTa-large (Liu
et al., 2019) could be reasonably deemed accurate,
thus rendering them unsuitable for the robustness
assessment (see Figure 5 as an example). Our final
annotated dataset contains 53 (out of 247) suitable
examples. In an effort to curtail potential bias,
all annotators were solely provided with the para-
phrased context and the corresponding question for
their examination.

Thanks for contributing to this project! Your
task is to read each given context and answer a
question about it. We will compare the answer
you provide with the ground truth answers to
determine the human answerability of the
question, and then screen out the examples that
are suitable for the robustness assessment of
reading comprehension systems. When you are
answering the questions:
(1) If you meet a question that you truly think
you can answer it based on the given context,
then select the shortest continuous span in the
context as the answer.
(2) If you meet a question that is completely
unanswerable, leave the answer as blank.

Figure 3: Instructions for the annotation task.

Context: [. . . ] The production of major food
staples such as corn is subject to sharp
weather-related fluctuations. [. . . ]
Paraphrased Context: [. . . ] The production of
staple foods, such as maize, is affected by
severe weather-related fluctuations. [. . . ]
Question: What can cause fluctuations in the
production of corn?
Ground Truth Answers:
weather-related fluctuations, weather-related,
weather
Prediction Under Context Paraphrasing:
Human Annotator 1:
severe weather
Human Annotator 2:
severe weather-related

Figure 4: An instance requiring human effort for the val-
idation of answer accuracy. Both answer spans provided
by the two annotators are considered correct, despite
yielding an EM score of 0.

Context: Kenya [. . . ], officially the Republic of
Kenya, is a country in Africa and a founding
member of the East African Community (EAC).
Its capital and largest city is Nairobi. Kenya’s
territory lies on the equator and overlies the
East African Rift covering a diverse and
expansive terrain that extends roughly from
Lake Victoria to Lake Turkana (formerly called
Lake Rudolf) and further south-east to the
Indian Ocean. [. . . ]
Paraphrased Context: Kenya (Kenya:
"Kenya") is a country in Africa and one of the
founding members of the East African
Community (EAC). The capital and largest city
is Nairobi. The area of Kenya lies on the
equator and survives the East African Rift
which covers a diverse and vast area that
stretches roughly from Lake Victoria to Lake
Turkana (formerly Lake Rudolf) and further
south-eastern to the Indian Ocean. [. . . ]
Question: Where is Kenya located?
Ground Truth Answers:
Africa, in Africa
RoBERTa-large’s Prediction Under Context
Paraphrasing: on the equator

Figure 5: A perturbed example that is not suitable for
the robustness assessment since the answer span offered
by the RoBERTa-large model (Liu et al., 2019) is rea-
sonably accurate, albeit not an exact match for any of
the ground truth answers.

D Automated Identification of Suitable
MRC Instances

To circumvent the substantial effort required for
manual annotation, we attempted to automatically
classify whether a perturbed reading comprehen-
sion example is qualified to demonstrate the lack
of robustness of MRC models to context paraphras-
ing. In the following, we elaborate on the two
approaches undertaken and present the empirical
results derived from these experiments.

ML-based Approach: We trained and evaluated
multiple classifiers on our 247 annotated exam-
ples with 129 input features that were calculated by
TAACO (Crossley et al., 2019), a tool that measures
various linguistic features of the passage such as
lexical density and adjacent sentence overlap. The
designed classification pipeline involves data stan-
dardisation, features selection and random oversam-
pling. Hyperparameter tuning was carried out to
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determine the optimal configuration. The obtained
best-performing model, Random Forest (with 40
selected features), only achieved 0.39 precision
in predicting suitable example, which implies that
those extracted features might not sufficient to rep-
resent this challenging task. Therefore, we shifted
our attention to the GPT series models, given their
exceptional efficacy in transforming many tasks
into generative tasks.

GPT Series Models: Compared to traditional
ML methods, GPT series models offer the advan-
tage of not requiring the construction of linguistic
features, thereby simplifying the approach to auto-
matically classify suitable MRC examples. Draw-
ing upon the human annotation process described
in Appendix C, we first manually constructed the
zero-shot prompt encompassing the paraphrased
context, question, ground truth answers, the an-
swer span given by the RoBERTa-large (Liu et al.,
2019), and tasked the model to generate binary
output (0 or 1) to indicate whether an example is
suitable for robustness assessment, adhering to a
predefined set of decision rules. We also experi-
mented with the few-shot prompt by adding three
randomly selected in-context exemplars of input-
label pairs (demonstrations) (Brown et al., 2020)
in the zero-shot prompt. Under both zero-shot and
few-shot scenarios, we further investigated the use
of the Chain-of-Thought (CoT) (Wei et al., 2022)
by adding “let’s think step by step” and CoT demon-
strations in the corresponding prompt, respectively.
The templates for the four prompting strategies are
shown in Appendix G. In order to mitigate the in-
fluence of prior dialogues, each request was sent
individually to produce the corresponding response.
When processing the responses, especially under
the zero-shot CoT and few-shot CoT scenarios, we
only consider an example as suitable if its response
includes a solid explanation and judgement. Labels
generated by the model under the four distinct test
configurations were subsequently compared with
the gold labels annotated by human evaluators, re-
spectively. The results are shown in Table 6.

It can be seen from Table 6 that on the preci-
sion of predicting suitable MRC example, prompt-
ing under the zero-shot scenario provides the best
result, which is 0.41. Surprisingly, the incorpo-
ration of demonstrations and the adoption of the
CoT prompting considerably attenuate model per-
formance, a finding that deviates from existing
literature asserting enhancements in performance

Prompting Method Precision

Zero-shot 0.41
Zero-shot CoT 0.23

Few-shot 0.26
Few-shot CoT 0.28

Table 6: Precision of the GPT-3.5-turbo model in pre-
dicting suitable example using four different prompting
methods.

across many NLU tasks with the inclusion of in-
context demonstrations (Brown et al., 2020) and
the CoT method (Wei et al., 2022). The observed
unsatisfactory performance could potentially be
attributed to two factors: (1) The ambiguity in-
herent to the task of automated identification of
suitable MRC example, as viewed from the dataset
annotation perspective. As indicated in Appendix
C, a moderate level of disagreement was even ob-
served between two human annotators in determin-
ing whether a question is indeed answerable based
on the paraphrased context, with an inter-annotator
agreement score of 0.48. This suggests that our
annotated set of 247 examples might contain con-
tentious cases, thereby rendering the task notably
challenging for the model. (2) From the model’s
perspective, we investigated potential reasons for
performance degradation following the adoption
of in-context examples and CoT by manually scru-
tinizing some responses under these testing con-
ditions. Our findings reveal that despite guidance
from demonstrations and CoT, the model frequently
produces reasoning that contradicts the predicted
label or even generates hallucinations. For instance,
under the zero-shot CoT scenario, model produces
response like “This example is suitable for robust-
ness assessment. The ground truth answers (GTAs)
and RoBERTa’s answer A are different, indicating
that there is potential for the model to make mis-
takes. Therefore, it is important to test the model’s
robustness by presenting it with similar but slightly
different contexts and questions to ensure that it can
generalize well and provide accurate answers.”,
which even not relevant to the task. While we ac-
knowledge that there exists scope to improve the
prompts used in this work, it remains evident that
the GPT-3.5-turbo model, despite its significant ac-
complishments in some NLU tasks, still falls short
of attaining human-level language comprehension.

Though the performance of the obtained best
model, i.e., GPT-3.5-turbo under the zero-shot sce-
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nario, is not satisfactory, we attempted to measure
its precision in predicting suitable example from
the candidate perturbed instances generated by us-
ing each pivot language, respectively, as shown in
Table 7. From Table 7, we can see that in classify-
ing perturbed examples paraphrased using Finnish,
the model exhibits flawless performance, achiev-
ing a precision score of 1.0. In contrast, for other
languages, such as Russian, Chinese and Indone-
sian, the precision score is notably low or even zero.
Therefore, to generate our paraphrased challenge
set, we restricted model’s application to filtered per-
turbed examples produced using Finnish, Spanish,
Vietnamese, Italian and Swedish (with precision
greater than 0.5), which yielded a final precision
score of 0.69, while excluding instances generated
using other languages.

Pivot Language(s) Precision

Finnish 1.0
Spanish 0.8

Vietnamese 0.67
Italian, Swedish 0.5

German 0.33
Dutch, Russian 0.25

Chinese 0.16
Hindi, Indonesian, French 0

Table 7: Precision of the GPT-3.5-turbo in predicting
suitable example from the candidate perturbed instances
generated using each of the 12 pivot languages.

E Analysis of Disparities in Adversarial
Examples Perception: GPT-3.5-turbo
vs. Human

The zero-shot prompt, as designed in Appendix
D, directly solicits a binary response from the
GPT-3.5-turbo model concerning the suitability
of a perturbed MRC example for robustness as-
sessment. To validate the stability of the ob-
tained performance (0.41 precision) and also ex-
amine the divergence in the perception of whole
context-paraphrased adversarial examples between
the GPT-3.5-turbo model and human observers, we
conducted further experiments by directly asking
the model to extract the shortest continuous span
as the answer given the paraphrased context and
the question. We utilised the prompting method
based on both instruction and opinion (Zhou et al.,
2023) to improve the faithfulness of the model to

paraphrased context when formulating responses,
thereby precluding the use of its parametric knowl-
edge to a great extent. Additionally, an “I do not
know” option was allowed to encourage the model
to abstain from providing the answer if the para-
phrased context does not make it possible to answer
the question anymore. Figure 6 demonstrates the
used prompt template.

Instruction: read the given information and
answer the corresponding question. The output
should only be the shortest continuous span
from the context and should not include any
explanation. Output "I do not know" if the
context makes it impossible to answer the
corresponding question.
Bob said, “context”
Q: question in Bob’s opinion based on the given
text?

Figure 6: An instruction-opinion based prompt template
(Zhou et al., 2023).

Afterwards, we determined the accuracy of each
response generated by the GPT-3.5-turbo model
and assigned a binary label (1 or 0) to signify its ap-
propriateness for robustness assessment. We then
compared the obtained results with the gold stan-
dard labels of the annotated dataset version con-
taining 66 suitable examples (see Appendix C), as
our provided prompt does not require the model to
consider the correctness of the prediction made by
the RoBERTa-large (Liu et al., 2019). Experimen-
tal results revealed that the GPT-3.5-turbo model
maintained a consistent 0.41 precision score in pre-
dicting suitable MRC example, thereby suggesting
its stability on this task to some extent. Figure
7 and Figure 8 demonstrate a failure case of the
GPT-3.5-turbo model on the suitable example clas-
sification, respectively. In Figure 7, the model is
still able to extract the correct answer span “John
Sutcliffe” from the paraphrased context, though
both human annotators deem that the question is
not answerable. On the contrary, as can be seen
from Figure 8, while human annotators can get
the answer correct, the model abstains from an-
swering the question and thus generates “I do not
know” as the answer. These findings suggest the
existence of a significant gap between the GPT-3.5-
turbo model and human performance in discerning
whole context paraphrasing oriented textual attacks
and the GPT-3.5-turbo is still substantially distant
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from achieving human-level NLU capability.

Context: [. . . ] The game was called by ESPN
Deportes’ Monday Night Football commentary
crew of Alvaro Martin and Raul Allegre, and
sideline reporter John Sutcliffe. [. . . ]
Paraphrased Context: [. . . ] The game was
called by ESPN Deportes’ Monday Night
Football comment crew Alvaro Martin and Raul
Allegre, and side EPOR John Sutcliffe. [. . . ]
Question: Who was the ESPN Deportes
sideline commentator for Super Bowl 50?
Prediction Under Context Paraphrasing:
Human Annotators: Unanswerable
GPT-3.5-turbo: John Sutcliffe

Figure 7: Demonstration of a failure case of the GPT-
3.5-turbo model in predicting suitable example. While
both human annotators deem that the question is not
answerable over the paraphrased context, the model still
provides the correct answer span.

Context: Sudbury model democratic schools
claim that popularly based authority can
maintain order more effectively than dictatorial
authority for governments and schools alike.
They also claim that in these schools the
preservation of public order is easier and more
efficient than anywhere else. [. . . ]
Paraphrased Context: Model schools in
Sudbury argue that popular authority can
maintain order more effectively than dictatorial
authority for governments and schools. They
also claim that, in these schools, the
preservation of public order is easier and more
effective than anywhere else. [. . . ]
Question: In addition to schools, where else is
popularly based authority effective?
Prediction Under Context Paraphrasing:
Human Annotators: governments
GPT-3.5-turbo: I do not know

Figure 8: Illustration of the robustness deficiency of
the GPT-3.5-turbo model to whole context paraphrasing.
The model was unable to generate the correct answer
span, despite both human annotators supplying the ac-
curate response.

F Suitable Examples Demonstration

We present two perturbed examples from the con-
structed challenge set on which the MRC mod-

els demonstrated unsatisfactory generalisation, as
shown in Figure 9 and Figure 10, respectively.

Paragraph: The game’s media day, which was
typically held on the Tuesday afternoon prior to
the game, was moved to the Monday evening
and re-branded as Super Bowl Opening Night.
[. . . ]
Paraphrased Paragraph: The video day of
the game, which was usually held on Tuesday
afternoon before playing games, was moved to
Monday night and was reset as Super Bowl
Opening Night. [. . . ]
Question: What day of the week was Media
Day held on for Super Bowl 50?
Original Prediction: Monday
Prediction Under Adversary: Tuesday

Figure 9: A perturbed example primarily involves lexi-
cal changes, ultimately leading the model to provide the
wrong answer.

Paragraph: A method to lessen the magnitude
of this heating and cooling was invented in
1804 by British engineer Arthur Woolf, who
patented his Woolf high-pressure compound
engine in 1805. [. . . ]
Paraphrased Paragraph: British engineer
Arthur Woolf, who patented Woolf’s high
pressure engine in 1805, invented in 1804 a
method to reduce the volume of this heating
and cooling. [. . . ]
Question: What nationality was Arthur Woolf?
Original Prediction: British
Prediction Under Adversary: engineer

Figure 10: Illustration of the brittleness of MRC systems
when dealing with a syntactic form changed context.

G Templates for Various Prompting
Strategies

Figure 11 illustrates the diverse templates em-
ployed to prompt the GPT-3.5-turbo model to clas-
sify the suitable perturbed MRC example.
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Instructions: Given an example which contains a context, question, ground truth answers (GTAs)
and RoBERTa’s answer A, decide whether it is suitable for robustness assessment by choosing one of
the following options: ’0’: A is reasonably correct or A is wrong and you cannot correctly answer the
question purely relying on the context as well. ’1’: A is wrong but you can correctly answer the
question purely relying on the context.
zero-shot:
[Instructions] Generate either ’0’ or ’1’, do not include the explanation.
Context: [context] Question: [question] GTAs: [GTAs] A: A
zero-shot CoT:
[Instructions]
Context: [context] Question: [question] GTAs: [GTAs] A: A
Let’s think step by step and then generate the response ([0] or [1]):
few-shot:
[Instructions] Generate either ’0’ or ’1’, do not include the explanation.

Example:
Context: Model schools in Sudbury argue that popular authority can maintain order more effectively
than dictatorial authority for governments and schools. [. . . ]
Question: In addition to schools, where else is popularly based authority effective?
GTAs: [’governments’]
A: governments and schools. They also claim that, in these schools, the preservation of public order is
easier and more effective than anywhere else.
Response: 1

Example:
Context: [context]
Question: [question]
GTAs: [GTAs]
A: A
few-shot CoT:
[Instructions]

Example:
Context: Model schools in Sudbury argue that popular authority can maintain order more effectively
than dictatorial authority for governments and schools. [. . . ]
Question: In addition to schools, where else is popularly based authority effective?
GTAs: [’governments’]
A: governments and schools. They also claim that, in these schools, the preservation of public order is
easier and more effective than anywhere else.
Response: Firstly, compare RoBERTa’s answer A with GTAs. Since governments and schools. They
also claim that, in these schools, the preservation of public order is easier and more effective than
anywhere else. is wrong, then there is a need to thoroughly check the context and question. Since the
context provides sufficient information to enable us to get the answer correct, the response is 1.

Example:
Context: [context]
Question: [question]
GTAs: [GTAs]
A: A

Figure 11: Prompt templates provided to the GPT-3.5-turbo model. Due to space limitations, we only show one
in-context input-label pair in the few-shot and few-shot CoT template.


