
Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of
the Asia-Pacific Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 75–81

November 1–4, 2023. ©2023 Association for Computational Linguistics

75

Modeling Collaborative Dialogue in Minecraft with Action-Utterance
Model

Takuma Ichikawa and Ryuichiro Higashinaka
Graduate School of Informatics, Nagoya University, Japan

{ichikawa.takuma.w0@s.mail,higashinaka@i}.nagoya-u.ac.jp

Abstract

With the advancement of dialogue systems pro-
pelled by neural-based methods, researchers
have been working on developing dialogue sys-
tems that can collaborate with humans to com-
plete tasks in the real world and virtual environ-
ments. In such collaborative work, the system
needs to either perform an action or make an
utterance appropriate for the context. However,
previous literature has treated action and utter-
ance generation separately. In this study, with
the aim of enabling the system to autonomously
determine whether to act or utter, we create a
model that can handle both action and utter-
ance generation in a unified model. We con-
ducted experiments on a dataset related to col-
laborative work in Minecraft and show that the
proposed model can autonomously determine
whether to act or utter and generate better ac-
tions and utterances than the baselines.

1 Introduction

With the advancement of dialogue systems by
neural-based methods (Bang et al., 2023; Shus-
ter et al., 2022), towards more advanced dialogue
systems, researchers have been working on devel-
oping dialogue systems that can collaborate with
humans to complete tasks (Meena et al., 2013; He
et al., 2017). Many studies have focused on col-
laborative work in virtual environments, such as
Minecraft (Narayan-Chen et al., 2019; Ogawa et al.,
2020; Bara et al., 2021), and competitions such as
the Interactive Grounded Language Understand-
ing (IGLU) challenge1 have been organized. In
such collaborative work, systems need to handle
not only dialogue but also actions in their environ-
ment. However, studies in previous literature treat
action and utterance generation as separate tasks
(Narayan-Chen et al., 2019; Jayannavar et al., 2020;
Mohanty et al., 2023), making systems incapable

1https://www.iglu-contest.net/

of executing both, which is required in realistic
settings.

In this study, with the aim of enabling a system
to autonomously determine whether to act or utter
and execute on the basis of context, we create a
unified model, the Action-Utterance Model, that
can handle both action and utterance generation.
Specifically, the model is trained simultaneously
on three tasks: action type classification, action
generation, and utterance generation.

We conducted experiments using the Collab-
orative Garden Task Corpus (Ichikawa and Hi-
gashinaka, 2022), which is a dataset related to
collaborative work in Minecraft, and the results
showed that the proposed model can autonomously
determine whether to act or utter and generate bet-
ter actions and utterances than the baselines. Fur-
thermore, we analyzed the inference results and
revealed the difficulty of generating actions unre-
lated to last actions.

2 Related Work

Studies have been emerging on performing com-
plex collaborative work involving both actions and
utterances in virtual worlds such as Minecraft (Kim
et al., 2019; Ichikawa and Higashinaka, 2022) with
some implemented systems.

For example, Gray et al. (2019) constructed a
system that creates simple structures on the basis of
user instructions through text chat. Narayan-Chen
et al. (2019) and Jayannavar et al. (2020) mod-
elled an instructor and builder for the Collaborative
Building Task (Narayan-Chen et al., 2019), which
involves two interlocutors working together to cre-
ate a target structure. Recent research has focused
on the IGLU task, which is based on the Collabora-
tive Building Task (Kiseleva et al., 2022; Mohanty
et al., 2023; Shi et al., 2023; Mehta et al., 2023).
However, while there have been efforts to classify
whether to act or utter, these tasks are treated as

https://www.iglu-contest.net/
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Figure 1: Dialogue in Collaborative Garden Task Corpus. ID represents utterance number, and S represents
interlocutor. Utterances were originally in Japanese and have been translated into English by authors. Shaded rows
indicate actions. Figure on right shows situation immediately after last action.

independent. Since actions and utterances are inter-
related at the intent level and should not be treated
separately, in this study, we focus on a model that
can handle both action and utterance generation.

In fields outside of collaborative work, there
are studies that aim to develop systems that can
handle both actions and utterances. For example,
Chen et al. (2021) constructed a task-oriented dia-
logue dataset that incorporates both actions, such
as search and purchase, and utterances. Reed et al.
(2022) proposed a model called Gato, which uti-
lizes a single Transformer architecture to perform
various tasks, including text generation tasks, such
as utterance generation and caption generation, as
well as action generation tasks. However, these
studies do not use a model that can handle both
actions and utterances. In this paper, we investigate
the effectiveness of a unified model in collaborative
work tasks.

3 Dataset and Task

3.1 Collaborative Garden Task Corpus

In this study, we adopt the Collaborative Gar-
den Task Corpus constructed by Ichikawa and Hi-
gashinaka (2022) as a collaborative work dataset.
Figure 1 shows an example of a dialogue included
in the corpus. In the Collaborative Garden Task,
two interlocutors interact via text chat while ma-
nipulating blocks in order to cooperatively create
a beautiful and unique garden in Minecraft (here,
beauty and uniqueness are based on the subjective
evaluation of the interlocutors). In the dataset, the
interlocutors can freely use 17 different types of
blocks within a 10 × 10 × 4 area; they need to
decide on the design of the garden through dia-
logue with their partner. Since the activity com-
bines actions and utterances, we determined it to

be a suitable dataset for evaluation. The Collabora-
tive Garden Task Corpus contains 1,092 dialogues,
each of which records in-game information such as
utterances, block manipulations, and avatar move-
ments. The language used is Japanese, with a total
of 31,416 utterances, an average word count of
13.9 per utterance, and a total of 657,693 block
manipulations.

3.2 Next Action-Utterance Generation Task

In this study, we address the Next Action-Utterance
Generation Task, which aims to predict the next
action or utterance to be performed. In this task,
the goal is to predict the interlocutor’s next actions
(which may include making utterances), denoted
as at, given the dialogue and state history Ht, the
world state Wt, and the avatar’s position (xt, yt, zt)
and orientation (yawt, pitcht) at turn t.

An action at is composed of one of four
action types [utterance (UTT), block manip-
ulation (BLOCK), SKIP, FINISH], along
with its subsidiary information. In the
case of UTT, we additionally predict utter-
ance ut. In the case of BLOCK, we addi-
tionally predict the set of block operations
bt = {(block_action, [block_name], x, y, z), ...};
block_action represents whether to place or break
and (x, y, z) represents the block coordinates. In
the case of placement, the block type block_name
is also to be output. SKIP represents the interlocu-
tors’ non-operation at turn t. SKIP is introduced to
model complex mixed-initiative interactions into a
simple turn-by-turn dialogue. FINISH represents
the end of the dialogue; the dialogue ends when
one of the interlocutors outputs FINISH.
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Figure 2: Overall architecture of proposed model. Model takes as input dialogue and state history Ht =
{(∆Wi0 ,Wi0 , ui0), ..., (∆Wi,Wi, ui), ...}, actions (which may include making utterances) performed in last N
turns, change in world state between previous utterance and current time, ∆Wt, current world state Wt, and avatar’s
positions and orientations. Model outputs next action type along with its content.

4 Model

4.1 Model Architecture

Figure 2 shows the overall architecture of the pro-
posed model, the Action-Utterance Model. We use
a pretrained Transformer decoder model as the un-
derlying Large Language Model (LLM). Addition-
ally, to embed non-verbal information, such as the
world state and the avatar’s position and orientation,
into the same dimension as text, various encoders
are prepared, including the Flattened Voxel Block
Encoder, GPS multi-layer perceptron (MLP), and
Compass MLP. These encoders were inspired by
the implementation in MineDojo (Fan et al., 2022).

The Flattened Voxel Block Encoder consists of
an embedding layer and a 3-layer MLP. It con-
verts voxel data representing the world state into
a vector equivalent to one token. The GPS MLP
and Compass MLP consist of 2-layer MLPs, each
transforming the avatar’s positional and orientation
information into a vector equivalent to one token.
Each MLP is composed of linear and ReLU lay-
ers. Non-verbal information such as the world state
embedded in the same vector space as the text is
concatenated with the text embedding and input
into the decoder. The LM Head receives the infor-
mation processed by the decoder and outputs the
next action.

4.2 Model Input

The model receives input at turn t, which includes
the dialogue and state history, Ht, actions taken in
the most recent N turns (we use N = 10 in this

paper), the change in the world state between the
previous utterance and the current time, ∆Wt, the
current world state Wt, and the avatar’s position
(xt, yt, zt) and orientation (yawt, pitcht).

The dialogue and state history consist of a set of
tuples, ∆Wi, Wi, and the utterance ui, formulated
as follows.

Ht = {(∆Wi0 ,Wi0 , ui0), ..., (∆Wi,Wi, ui), ...} (1)

∆Wi represents changes in the world state between
the previous utterance and the current utterance,
while Wi represents the world state at the time of
the utterance. Note that due to the increase in pro-
cessing time when considering all actions up to the
current time, we use the world state and its differ-
ences instead of all actions. ∆Wi is further divided
into those representing interlocutor A’s changes
∆WA

i and interlocutor B’s changes ∆WB
i . The

world state W and changes in the world state ∆W
are represented in 10 × 10 × 4 voxels. W con-
tains the block IDs at each coordinate, while ∆W
stores the block IDs after the changes (if there is
no change, it is 0).

For the actions taken in the most recent N turns,
we include action types (UTT, BLOCK, SKIP, and
FINISH) and, in the case of UTT or BLOCK, we
also include the content of these actions. Each
action type corresponds to a single token. In the
case of UTT, we include the utterance text uk. In
the case of BLOCK, we include the change in the
world state, denoted as ∆wk, occurring between
the previous action ak−1 and the next action ak.
∆w is a compressed representation of block opera-
tions and is in the same format as ∆W .
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The avatar’s position (xt, yt, zt) and orientation
(yawt, pitcht) represent the coordinates and facial
orientations in the environment.

4.3 Model Output
The model’s output is action at at turn t. The model
first outputs a token representing each action type,
followed by, for UTT, the utterance text ut, and
for BLOCK, the set of block operations bt. In this
paper, to reduce complexity, the block operations
are handled by dividing them into groups with up
to L block operations, and we set L as the average
size of b in the corpus, which is four. Therefore,
the maximum length of bt is four. All processing
is performed by the LM Head. To facilitate this,
tokens related to action types and block operations
are added to the tokenizer in advance.

5 Experiment

5.1 Settings
In this study, we investigated the performance of
the proposed model (Action-Utterance Model; AU)
and baselines for the Next Action-Utterance Gen-
eration Task using the Collaborative Garden Task
Corpus (Ichikawa and Higashinaka, 2022). Out of
the 1,092 dialogues in the corpus, we randomly
split the data and used 980 dialogues for training,
56 for validation, and 56 for testing.

To examine whether the proposed model can
determine the appropriate action type to take next
in a given context and perform suitable actions
and utterances, we prepared baselines for action
type classification, action generation, and utterance
generation.

For action type classification, we used the fol-
lowing two baselines:

Random Selects one of the four action types at
random.

Majority Always predicts the action type that is
most frequently observed in the training data.

For action generation, we used the following
baseline:

Random On the basis of the current world state,
one to four feasible block operations are ran-
domly selected.

Additionally, we established a human upper bound.
For this, one of the authors predicted the set of next
block operations to be performed for 20 samples
randomly extracted from the test data.

For utterance generation, we used the following
baseline:

Utterance Generation Only (UG) Transformer
decoder model trained only for the utterance
generation task. The model predicts the
next utterance on the basis of all preceding
utterances.

We used OpenCALM-Large2, a Japanese LLM
that contains 830 million parameters, and con-
ducted LoRA tuning using the PEFT library (Man-
grulkar et al., 2022). We optimized the model using
Maximum Likelihood Estimation (MLE). During
the evaluation, we used a checkpoint with the small-
est loss calculated using the validation data.

5.2 Evaluation

We prepared the following evaluation metrics for
each task: action type classification, action gener-
ation, and utterance generation. All metrics were
computed by comparing the ground truth data with
the inference results and yield values between 0 and
1, with higher values indicating better performance.

Accuracy Accuracy based on the classification re-
sults for action types and ground truth data.

Macro-F1 Macro-average of F1 scores calculated
from the classification results and ground truth
data for each action type.

BLEU-1, BLEU-2 Average BLEU-1 and BLEU-
2 (Papineni et al., 2002) scores calculated by
using generated utterances and gold response.
If the system fails to generate an utterance due
to the system predicting a value other than
UTT, the value will be 0.

Distinct-1 Distinct-1 (Li et al., 2016) calculated
on the basis of uni-grams of words present in
generated utterances.

Jaccard Jaccard index calculated for the generated
set of block operations b̄ and the ground truth
data b using the following formula.

Jaccard =
1

N

N∑
i=1

|b̄i ∩ bi|
|b̄i ∪ bi|

(2)

To allow for a more lenient evaluation, two
other metric values were also computed by
considering only the set of block operation
types (Jacc-type) and only the set of block

2https://huggingface.co/cyberagent/
open-calm-large

https://huggingface.co/cyberagent/open-calm-large
https://huggingface.co/cyberagent/open-calm-large
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Model Accuracy Macro-F1
Random 0.24 0.19
Majority 0.61 0.19
AU (ours) 0.81∗ 0.67

Table 1: Evaluation results for action type classification.
Bold indicates best value. ∗ indicates Accuracy was
significantly better than Random and Majority at p <
0.05 in McNemar test with Bonferroni correction.

Model Jaccard Jacc-type Jacc-loc
Random 0.00 0.04 0.00
AU (ours) 0.17∗ 0.38∗ 0.27∗

Human 0.30 0.55 0.32

Table 2: Evaluation results for action generation. Bold
values indicate best value except for Human. ∗ indi-
cates metrics were significantly better than Random at
p < 0.05 in Wilcoxon signed-rank test with Bonferroni
correction.

positions (Jacc-loc). If the system fails to gen-
erate an action due to the system predicting a
value other than BLOCK, the value will be 0.

5.3 Results
Table 1 shows the results for action type classifi-
cation, Table 2 shows those for action generation,
and Table 3 shows those for utterance generation.
The proposed model significantly outperformed the
baselines in action type classification and action
generation. Furthermore, it achieved a higher score
in utterance generation compared with the baseline,
especially in terms of Distinct-1. These results
show that the proposed model can effectively deter-
mine the appropriate next action types and generate
better actions and utterances by handling both ac-
tion and utterance generation in a unified model.

Figure 3 shows a sample from the test data and
actions generated by the proposed model and the
baseline. The proposed model, while selecting to
utter, generated utterances relevant to the flow of
the dialogue and the current world state.

6 Analysis

To understand the current challenges with the pro-
posed model, we conducted a detailed analysis of
the inference results. When categorizing action
generation on the basis of the characteristics of
ground truth block operations, we found that the
Jaccard index was high at 0.20 when the same types
of blocks as the previous actions were included,

Model BLEU-1 BLEU-2 Distinct-1
UG 0.148 0.096 0.136
AU (ours) 0.153 0.098 0.155

Table 3: Evaluation results for utterance generation.
Bold indicates best value.

while it dropped significantly to 0.07 when they
were not. Similarly, when adjacent blocks were
included as previous actions, the Jaccard index was
high at 0.21, but it was low at 0.10 when they were
not. These results show that predicting cases un-
related to the last actions is a challenge. They
also suggest that there is insufficient grounding be-
tween dialogue and the world state and a lack of
understanding of symmetries and regularities that
humans comprehend.

7 Conclusion

In this study, we proposed a novel model for simul-
taneously generating actions and utterances during
collaborative work in Minecraft. The experimen-
tal results showed that the proposed model can
autonomously determine whether to act or utter
and generate better actions and utterances than the
baselines. Furthermore, we analyzed the inference
results and revealed the difficulty in generating ac-
tions unrelated to the last actions.

There are limitations in our study. We compared
our proposed model to simple baselines for action
type classification and action generation; we need
to perform comparisons with models introduced
in previous work such as (Mohanty et al., 2023)
and (Mehta et al., 2023). In addition, we only con-
ducted turn-level evaluations; we need to consider
dialogue-level evaluations in order to more accu-
rately measure the model’s performance. While we
utilized the Jaccard index as the evaluation metric
for action generation in this paper, the similarity of
block operations may not be sufficient; therefore,
we would like to conduct human evaluations and
explore more appropriate evaluation metrics.

Additionally, we will also work towards building
systems capable of actual collaborative dialogue.
Due to the high flexibility of the next action and
collaborative work themselves, rather than opti-
mizing by MLE, we will aim to acquire higher-
performing dialogue agents by incorporating rein-
forcement learning.
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Figure 3: Samples from test dataset and generation example for proposed model (translated to English by authors)
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