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Abstract

Recent advancements in biomedical NLP have
been driven by domain-specific pre-trained lan-
guage models (LMs), yet the challenge of ef-
fectively storing extensive biomedical factual
knowledge remains. Despite the superior per-
formance of fine-tuned LMs in downstream
NLP tasks, these models exhibit limitations
in ontology memorization, reasoning abilities,
and capturing complex specialized domain ter-
minology. To address these issues, we present
four research questions that explore the integra-
tion of LMs with large knowledge graphs (KGs)
like the Unified Medical Language System
(UMLS). Our proposal introduces novel align-
ment methods to bridge LMs with the UMLS
KG, with the aim of leveraging structured back-
ground knowledge to enhance the reasoning
and generalization capabilities of biomedical
LMs. The research proposal discusses multi-
lingual specifics of KBs and evaluation metrics
across various datasets.

1 Introduction

Recent years have witnessed significant progress
in various biomedical Natural Language Process-
ing (NLP) caused by domain-specific pre-trained
Language Models (LMs) (Lee et al., 2020; Peng
et al., 2019; Alsentzer et al., 2019; Beltagy et al.,
2019; Michalopoulos et al., 2021; Gu et al., 2022;
Yasunaga et al., 2022b). Although, these models
demonstrate superior performance on Biomedical
Language Understanding and Reasoning Bench-
mark (BLURB) (Gu et al., 2022) and BigBio bench-
mark (Fries et al., 2022), their ability to store
extensive biomedical factual knowledge remains
an open question. In the general domain, Large
LMs (LLMs) were shown to have limited ontology
memorization and reasoning abilities (Wu et al.,
2023). Existing research on biomedical knowl-
edge probing task indicate that the biomedical LMs
struggle to capture complex specialized domain

terminology (Meng et al., 2022), are highly bi-
ased towards certain prompts, and are unaware
of synonyms (Sung et al., 2021). Making LM
well-informed about in-domain facts could assist
various NLP applications including drug discov-
ery (Wu et al., 2018; Khrabrov et al., 2022; Zitnik
et al., 2018), clinical decision making (Sutton et al.,
2020; Peiffer-Smadja et al., 2020), and biomedical
research (Lee et al., 2016; Fiorini et al., 2018; Soni
and Roberts, 2021).

In the biomedical domain, vast multilingual
Knowledge Bases (KBs) such as the Unified Medi-
cal Language System (UMLS) (Bodenreider, 2004)
are available, making the infusion of factual knowl-
edge into LMs possible. Over 166 lexicons/thesauri
with over 4M concepts and 15M concept names
from 27 languages are present in the UMLS. How-
ever, as seen from Tab. 1, severe language imbal-
ance is a great challenge for processing texts in
low-resource languages.

In KBs, factual information is usually stored in
the form of knowledge triples (h, r, t). Each triple
reflects the fact that concept h is in relation to type
r with concept t. The combination of concept set
V and relation triples E ∈ {V × R × V } can be
seen as a knowledge graph (KG) G = G(V,E,R)
where R is a set of possible relation types. Al-
though plenty of research focused on developing
effective knowledge-augmented general-purpose
pre-training methods for LMs, this topic remains
challenging. One approach is to apply an LM on
textual sequences augmented by KB triples (Wang
et al., 2019a; Mannion et al., 2023; Xu et al., 2023;
Liu et al., 2020). These approaches share two major
limitations (Ke et al., 2021). First, the fully con-
nected nature of the attention mechanism present
in modern LMs contradicts the sparse structure of
the existing KB graphs. Second, the linearization
of a KB graph prevents a direct alignment between
the textual and the KB modalities. Wang et al.
(2021) obtained representations for Wikipedia en-
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Figure 1: Visualization of different approaches towards knowledge-enhanced LM training. A: During KB-enhanced
LM pre-training or fine-tuning, a text encoder and a graph encoder independently minimize a textual loss (i.e.,
masked language modeling) and a graph-related task (i.e., link prediction) with an implicit interaction between the
two encoders. An implicit interaction may be in the form of LM embeddings being initial node representations
for the graph model. B: A less common approach is to add an explicit alignment loss to stimulate an information
exchange between two modalities. Named entities can serve as anchor points for this kind of intermodal interaction.

tities by encoding short textual entity and relation
descriptions with an LM, which is not feasible in
the biomedical domain since most biomedical con-
cepts lack a textual description.

As LM pre-training from scratch requires exten-
sive computational resources, a cheaper alternative
is a task-specific KB-aware fine-tuning. Recently,
a series of studies focused on the utilization of the
UMLS concept names and inter-concept relations
for improved Biomedical Concept Normalization
(BCN) (Liu et al., 2021a,b; Yuan et al., 2022b;
Sakhovskiy et al., 2023). While GEBERT pro-
posed by Sakhovskiy et al. (2023) explicitly learns
the identity between synonymous concept names
and concept node representations, the model is ex-
tremely tied to BCN and leaves no room for its gen-
eralization to other biomedical tasks. Recently pro-
posed Question Answering (QA) (Yasunaga et al.,
2022a, 2021a; Zhang et al., 2022b) systems adopt
Message Passing (MP) (Gilmer et al., 2017) graph
neural networks to perform well-grounded reason-
ing over KB which results in an improved quality
in both general and biomedical domains. These
models rely on implicit interaction between an LM
and a graph encoder and do not explicitly learn an
alignment between two modalities, thus limiting
LM’s ability to memorize KB facts.

2 Related work

An extensive comparison of various biomedi-
cal knowledge representation learning approaches
was conducted by Chang et al. (2020). They
compared semantic matching methods, such as
TransE (Bordes et al., 2013), DistMult (Yang
et al., 2015), ComplEx (Trouillon et al., 2016),
SimplE (Kazemi and Poole, 2018), and Ro-
tatE (Sun et al., 2019), for link prediction quality
on SNOMED-CT dataset. Although these methods
outperform simpler Snomed2Vec (Agarwal et al.,
2019) and Cui2Vec (Beam et al., 2020) baselines,
they fall short of LM-based approaches (Wang
et al., 2019a).

Several attempts to integrate a pre-trained
biomedical LM with an external KB have in-
creased performance in various downstream tasks.
Sakhovskiy et al. (2021); Sakhovskiy and Tu-
tubalina (2022) employed DrugBank (Wishart
et al., 2008, 2017), a drug-oriented chemical
database, to combine LM embeddings with drug
chemical features in a classification layer to de-
tect texts that mention an adverse drug reaction.
SapBERT (Liu et al., 2021a,b) achieved state-of-
the-art Medical Concept Normalization (MCN)
performance by applying a contrastive objective
to learn from synonymous biomedical concept
names from the Unified Medical Language System
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(UMLS) ontology. CODER (Yuan et al., 2022b)
and GEBERT (Sakhovskiy et al., 2023) extended
the idea by introducing additional graph-based
contrastive objectives to capture inter-concept re-
lations from the UMLS graph. CODER (Yuan
et al., 2022b) and multilingual SapBERT (Liu et al.,
2021b) achieve a normalization improvement in
both monolingual English and multilingual setups.

In both general and biomedical domains, numer-
ous state-of-the-art QA solutions retrieve a relevant
subgraph from a KB (Lin et al., 2019; Feng et al.,
2020; Yasunaga et al., 2021a; Zhang et al., 2022b,a;
Yasunaga et al., 2022a) to perform a knowledge-
aware reasoning. Yasunaga et al. (2022a) proposed
a language-knowledge DRAGON model that bene-
fits from joint language modeling and graph com-
pletion objectives and bidirectional interaction be-
tween text and graph encoders in both general and
biomedical domains.

Thus, the existing knowledge-enhanced text pro-
cessing models possess at least one of the following
key limitations. First, they are too tied to a spe-
cific downstream task, such as MCN or QA. Sec-
ond, they provide no explicit alignment between
a biomedical concept and its mention in a text but
instead rely on implicit interaction between textual
and graph encoders. Third, except for multilin-
gual BCN methods, they mostly focus on English,
which has the most extensive KBs, ignoring a low-
resource case.

3 Research plan

3.1 Research questions

Although a wide range of knowledge-aware Lan-
guage Modeling techniques have been proposed,
several fundamental research questions remain
unanswered. In this proposal, we formulate some
important questions as well as possible trajectories
for answering them. First of all, we see three major
knowledge fusion strategies:

1. Knowledge-enhanced LM pre-training from
scratch;

2. KB-augmented task-specific fine-tuning;

3. Alignment between pre-trained LM and infor-
mative KB representations.

RQ1. What is an optimal knowledge fusion
strategy?

Language # concept names percentage

English 11,280,428 70.78%
Spanish 1,589,581 9.97%
French 431,527 2.71%

Portuguese 423,826 2.66%
Japanese 332,099 2.08%

Dutch 293,817 1.84%
Russian 293,031 1.84%
Italian 251,912 1.58%

German 235,736 1.48%
Czech 198,115 1.24%
Korean 147,217 0.92%

Hungarian 109,271 0.69%
Chinese 81,916 0.51%

Norwegian 63,797 0.4%
Polish 51,778 0.32%

Turkish 51,597 0.32%
Estonian 31,183 0.2%
Swedish 30,439 0.19%
Finnish 25,489 0.16%
Croatian 10,035 0.06%

Greek 2,286 0.01%
Latvian 1405 0.01%
Danish 723 0.1%
Basque 695 <0.1%
Hebrew 485 <0.1%

Table 1: UMLS statistics on the number of concept
names.

While existing knowledge-enhanced general-
domain and biomedical LMs benefit from pre-
training with external knowledge, they usually
share at least one of the following critical lim-
itations. First, they imply a modification of an
LM architecture (Peters et al., 2019; Zhang et al.,
2022b; Yasunaga et al., 2022a). Second, they re-
quire additional pre-training of all model param-
eters on textual inputs augmented with external
knowledge (Wang et al., 2021; Lauscher et al.,
2020; El Boukkouri et al., 2022; Yuan et al., 2022a;
Mannion et al., 2023). Both limitations lead to a
resource-intensive pre-training of all the LM param-
eters from scratch which might not be feasible. Re-
cently proposed FROMAGe (Koh et al., 2023b) and
GILL (Koh et al., 2023a) in text-and-image domain
propose to align image representations with their
textual captions via contrastive InfoNCE (Oord
et al., 2018) objective in a significantly more light-
weighted scenario of frozen textual encoder. With
far less trainable parameters, these alignment meth-
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ods manage to even outperform fully trainable bi-
modal Transformer (Vaswani et al., 2017) models.
Inspired by the success of alignment-based strat-
egy in text and image tasks, we strive to explore
its applicability and effectiveness in the biomedi-
cal domain in comparison with the remaining two
strategies.

RQ2. How to align KB and LM in the biomed-
ical domain?

To the best of our knowledge, no LM and
biomedical KB representation alignment method
is proposed so far. A direct adaptation of GILL
and FROMAGe to biomedical texts and KBs is
hindered by two critical issues. First, both models
rely on Transformer encoder-decoder architecture
and adopt text generation tasks, while the majority
of the existing state-of-the-art biomedical LMs are
encoder-only BERT models (Alsentzer et al., 2019;
Peng et al., 2019; Beltagy et al., 2019; Lee et al.,
2020; Gu et al., 2022; Liu et al., 2021a; Mannion
et al., 2023). Second, while image-to-text and text-
to-image tasks are inherently bi-modal, it is not
the case for most biomedical NLP tasks (i.e., only
textual sequence is provided during fine-tuning and
evaluation).

3.1.1 RQ3. How to enrich an LM with
biomedical knowledge?

Current biomedical knowledge probing bench-
marks (Sung et al., 2021; Meng et al., 2022) in-
dicate that the existing domain-specific LMs lack
factual knowledge. This might be caused by ei-
ther of two reasons: (i) imperfection of prompting
approaches or (ii) an actual absence or incomplete-
ness of knowledge in LMs. We believe, the inte-
gration of in-domain knowledge from biomedical
KBs (e.g., interaction between biomedical concepts
from the UMLS) remains an open challenge and
requires a thorough exploration.

RQ4. How to exploit rich English KBs for
low-resource languages?

Most existing research in biomedical NLP em-
ploy extensive English data leaving low-resource
languages out-of-scope. While the alignment of
multilingual UMLS concept names was shown to
significantly improve the BCN quality in uni-modal
setting (Liu et al., 2021b; Yuan et al., 2022b), they
still struggle to deal with severe language imbal-
ance of the UMLS concept names (see Table 1).
Alternatively, the UMLS KB can be approached
from a bi-modal text and graph perspective with
graph modality capturing language-independent

concept node’s features.

3.2 Proposed methodology

3.2.1 Representation alignment
Currently, the alignment of textual and KB repre-
sentations remains under-expored topic. To answer
RQ1 and RQ2 we plan to develop novel align-
ment methods. To align textual representations
with KB knowledge, we plan to use biomedical
concept representations obtained from their contex-
tualized mention embeddings in texts. We foresee
two possible alignment approaches: (i) implicit
alignment via an auxiliary KB-guided training ob-
jective and (ii) via an explicit alignment of textual
and graph representations.

Implicit alignment One of the ways to enable
information exchange between two or more modal-
ities is to introduce a multi-modal objective. Prior
work on general domain QA (Yasunaga et al.,
2022a; Ke et al., 2021) introduced multi-task text
and graph restoration objectives to learn from
aligned textual sequences and KB subgraphs of en-
tities mention in a text. However, this approaches
rely on implicit interaction between text and graph
modalities and do not explicitly inform the model
that the subgraph is induced by text and is in fact
its alternative representation obtained from another
modality. In our work, we plan to adopt and extend
the idea of graph restoration objective the idea and
consider two its following cases:

• Single modality graph restoration: Follow-
ing Yasunaga et al. (2022a) and Ke et al.
(2021) we will treat text and graph restora-
tion tasks as separate uni-modal tasks with a
single graph encoder to encode both head and
tail concepts of a triple;

• Mixed-modality graph restoration: As LM-
and graph-based representations of a concept
are complementary, we propose to initialize a
head concept with an embedding of the first
modality and a tail concept with an embedding
of the second one.

While the first case is conventional, the mixed-
modality problem statement is, to the best of our
knowledge, under-explored. For both cases, we
will employ TransE or ComplEx which model a
tail concept as a relation-based transformation of a
head concept.
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Explicit alignment Another way to combine
multiple modalities is to explicitly inform the
model that text and graph embeddings are two com-
plementary representations of a single concept.

Early attempts of alignments of graphs with lin-
guistic models were presented by Biemann et al.
(2018): sparse representations of graphs were
linked with sparse distributional representations
of word senses. Nikishina et al. (2022) attempts to
align standard text BERT model with graph-based
BERT by learning projections of their internal rep-
resentations. Similarly, projections between static
graph and text embeddings can be used for comput-
ing similarity search in graphs given text e.g. for
question answering (Huang et al., 2019).

In prior work (Sakhovskiy et al., 2023), a con-
trastive objective was applied to learn from bi-
modal positive pairs consisting of a concept name
and a concept node. GILL and FROMAGe ben-
efited from aligning in-context LM tokens and
images via a contrastive objective and a small
alignment model. In our research, we plan to
combine these two approaches and perform an in-
context alignment of contextualized concept men-
tions and their graph representations obtained from
the UMLS via a graph encoder. We expect to in-
troduce either the Multi-Similarity (Wang et al.,
2019b) or the InfoNCE (Oord et al., 2018) loss
function, to directly minimize the distance be-
tween textual and graph representations of the same
biomedical concept.

3.2.2 Knowledge probing

Two possible ways to improve LM capabilities as
KB and answer RQ3 are (i) an improvement of
prompting strategies and (ii) a modification of LM
and its training pipeline. Although Meng et al.
(2022) and Sung et al. (2021) have observed a prob-
ing quality improvement after a proper prompt tun-
ing, the task is still far from being solved with
about only 10% in terms of accuracy. We will stick
to the second option and attempt to improve the
knowledge awareness of biomedical LMs through
alignment with KB modality: both implicit and
explicit. As current biomedical knowledge probing
benchmarks require filling masked concepts in a
prompt inferred from a knowledge triple, we will
investigate the knowledge infusion as a bi-modal
problem and focus on the following knowledge
probing problem statements:

Uni-modal textual approach involves filling
masked concept slot using solely an LM;

Bi-modal text and KB approach reformulates
triplet completion baseline as a bi-modal text-to-
graph task: given a textual prompt, the goal is to
predict the best matching KG node.

While text-only approaches commonly struggle
with multi-word concept names, we aim at ex-
ploring whether the reformulation of the task will
help overcome the issue. Moreover, the second
approach enables the incorporation of aforemen-
tioned modality alignment strategies: both explicit
and implicit.

3.2.3 Cross-lingual alignment
We expect to address the RQ4 with the cross-
lingual cross-modal representation alignment.
While a fixed concept name is monolingual, a con-
cept itself is multilingual from the language per-
spective and is independent of language from the
graph perspective. While cross-lingual concept
name alignment improved BCN quality (Liu et al.,
2021b; Yuan et al., 2022b), our goal is to investi-
gate whether cross-modal alignment could further
boost the performance. Unfortunately, application
on other biomedical tasks is hindered by the lack
of non-English data but the experiments on BCN
could serve as a good starting point.

3.3 Experimental setting

Training data As training data for various align-
ment methods, we will utilize PubMed abstracts.
To recognize and align textual concept mentions
with UMLS concepts, we will adopt BERN2 (Sung
et al., 2022), a recently proposed biomedical entity
recognition and normalization tool.

Text and graph encoders To obtain language
representations, we will adopt PubMedBERT (Gu
et al., 2022), a state-of-the-art biomedical LM pre-
trained on PubMed abstracts. To produce graph
representations, we will adopt the Message Passing
framework (Gilmer et al., 2017) and obtain concept
node embeddings with either GraphSAGE (Hamil-
ton et al., 2017) or GAT (Veličković et al., 2018)
encoder. Each node will be initialized with a Pub-
MedBERT embedding of its concept name at ran-
dom.

Computational efficiency Since for alignment
strategy, we assume both textual and graph encoder
are already well-trained, we strive to explore if
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we can reduce the computational burden of the
alignment procedure. For each encoder, we will
consider three cases: (i) fully frozen encoder with a
small external alignment model, (ii) partially frozen
encoder, (iii) fully trainable encoder.

Concept masking To enforce a KB-aligned LM
learns from full context rather than concept men-
tions only, we will mask concept mentions with
a fixed probability. Similarly, to stimulate graph
encoder pass more informative messages from con-
cept neighboring concepts in a KG, we will mask a
concept name of an anchor. Masking is expected
to improve model’s compatibility with knowledge
probing benchmarks.

3.4 Evaluation
Fries et al. (2022) released BigBio, a large data-
centric benchmark that includes 126 biomedical
NLP datasets, covering 13 tasks, including QA
and BCN in more than 10 languages. To an-
swer the RQ1 and RQ2, we will primarily fo-
cus on QA and BCN since these tasks already
have knowledge-enhanced task-specific solutions
to compare with. To explore the RQ4, we will com-
pare against current state-of-the-art cross-lingual
models for BCN (Liu et al., 2021b; Yuan et al.,
2022b; Sakhovskiy et al., 2023) and addition-
ally adopt two cross-lingual BCN benchmarks
for zero-shot ranking-based avaluation: (i) the
one (Alekseev et al., 2022) based on Mantra cor-
pus (Kors et al., 2015) and (ii) XL-BEL (Liu et al.,
2021b). We will adopt KG-enhanced state-of-the-
art QA models: QA-GNN (Yasunaga et al., 2021b),
GreaseLM (Zhang et al., 2022b), JointGT (Ke et al.,
2021), and DRAGON (Yasunaga et al., 2022a)
as knowledge-enhanced QA baselines. For both
BCN and QA as well as other tasks, we will
adopt strong domain-specific biomedical LMs, e.g.,
BioBERT (Lee et al., 2020).

For biomedical knowledge probing task and
RQ3, we will adopt the aforementioned Med-
LAMA and BioLAMA benchmarks. We will eval-
uate against the existing biomedical LMs, such as
the BioBERT (Lee et al., 2020), Bio-LM (Lewis
et al., 2020), and PubMedBERT (Gu et al., 2022).

4 Conclusion

In this paper, we identify critical limitations of
the existing domain-specific pre-trained biomedical
LMs and current state-of-the-art domain-specific
solutions for solving downstream NLP tasks. We

raise four important research questions and present
a plan for exploring them. Modern LMs are unable
to reveal the potential of factual knowledge fully
and lack an explicit text-KB alignment procedure
in current pre-training pipelines. While the usage
of KB has already advanced the quality of biomed-
ical concept normalization and question answering,
a method for the fusion of domain knowledge into
a general-purpose biomedical LM awaits to be ex-
plored. To overcome the existing LM limitations,
we propose ideas for explicit alignment of KB con-
cepts and their representatives in texts. The com-
pletion of our research plan is expected to deepen
the understanding of text-KB interaction and give a
better understanding of an optimal strategy for KB
utilization in biomedical NLP.
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5 Ethics, limitations, and risks

Large domain-specific graphs. We plan to em-
ploy a large biomedical knowledge graph, the Uni-
fied Medical Language System (UMLS), which
contains over 4 million concepts and 15 million
concept names. It is important to note that us-
ing knowledge graphs for different domains with
a smaller number of nodes and edges may affect
the performance. The knowledge graph’s size and
complexity can significantly impact the model’s
ability to learn and make accurate predictions.

Biases. Consequently, it is important to acknowl-
edge that trained models can inherit biases and
toxic behaviors present in the language models
and knowledge graphs used for their initialization.
Language models, for instance, have been demon-
strated to incorporate biases about race, gender, and
other demographic attributes. Biomedical research
and clinical trials may not adequately represent
certain populations. Likewise, a knowledge graph
may incorporate stereotypes instead of providing
unbiased, commonsense knowledge.

Diversity of biomedical concepts. It is impor-
tant to highlight that the datasets and knowledge
graphs primarily focus on well-documented med-
ical concepts found in the literature. This limits
the exposure of models to infrequent or uncommon
occurrences. Consequently, adapting trained mod-
els to handle rare biomedical events may require
additional effort and attention.
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