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Abstract

Automatic evaluation of text generation is es-
sential for improving the accuracy of gener-
ation tasks. In light of the current trend to-
wards increasingly larger decoder-based lan-
guage models, we investigate automatic evalua-
tion methods based on such models for text gen-
eration. This paper compares various methods,
including tuning with encoder-based models
and large language models under equal condi-
tions, on two different tasks, machine transla-
tion evaluation and semantic textual similarity,
in two languages, Japanese and English. Ex-
perimental results show that compared to the
tuned encoder-based models, the tuned decoder-
based models perform poorly. The analysis of
the causes for this suggests that the decoder-
based models focus on surface word sequences
and do not capture meaning. It is also revealed
that in-context learning of very large decoder-
based models such as ChatGPT makes it dif-
ficult to identify fine-grained semantic differ-
ences.

1 Introduction

Neural network-based text generation models are
used in various natural language processing tasks,
including machine translation, dialogue systems,
and text summarization. However, the outputs from
these models are open-ended, and there is no single
correct answer, making the evaluation of genera-
tions difficult. Manual evaluation is often used due
to its high accuracy but incurs significant temporal
and financial costs. Therefore, automatic evalua-
tion is essential for the rapid development of text
generation models.

Automatic evaluation methods for text genera-
tion, such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), have been based mainly on
surface word overlaps between the generated text
and the reference text. In recent years, with the
development of self-supervised models such as
BERT (Devlin et al., 2019) and BART (Lewis

et al., 2020), more accurate automatic evalua-
tion methods have been proposed. For example,
BERTScore (Zhang et al., 2020) uses word em-
beddings obtained by these models. Such meth-
ods can be classified along two axes: whether the
model used is an encoder-based, decoder-based,
or encoder-decoder-based architecture of Trans-
former (Vaswani et al., 2017), and whether tuning
is performed. While encoder-based methods with
tuning are reported to be highly accurate (Rei et al.,
2020), in-context learning without tuning is the
mainstream in decoder-based methods.

In recent years, self-supervised decoder-based
models have become larger and larger, as seen in
GPT-4 (OpenAI, 2023), Megatron-Turing (Smith
et al., 2022), and PaLM (Chowdhery et al., 2022).
These decoder-based self-supervised large lan-
guage models are referred to as LLMs in this paper.
However, encoder-based models have remained rel-
atively smaller than decoder-based ones.

Based on the above situation, this paper com-
pares various methods, including tuning with
encoder-based models and LLMs under equal con-
ditions, on two different tasks, machine translation
evaluation and semantic textual similarity (STS), in
two languages, Japanese and English. The results
revealed the following three observations.

1. When a decoder-based model is tuned, the
accuracy is proportional to the model size up
to a certain model size, but it reaches a ceiling.

2. Compared to tuned encoder-based models,
tuned decoder-based models perform poorly.

3. In-context learning of very large decoder-
based models such as ChatGPT1 makes it dif-
ficult to identify fine-grained semantic differ-
ences.

The analysis of the causes for the poor perfor-
mance of the tuned decoder-based models suggests

1https://openai.com/chatgpt

https://openai.com/chatgpt
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that they focus on surface word sequences and do
not capture meaning. Note that our study focuses
on evaluation methods under the assumption that
reference text is available.

2 Related Work

Automatic evaluation of text generation mainly re-
quires the text generated by a model and the refer-
ence text. The classic automatic evaluation metrics,
such as BLEU, ROUGE, METEOR (Banerjee and
Lavie, 2005), and CIDEr (Vedantam et al., 2015),
are based on the n-gram overlap between these two
texts. The biggest disadvantage of these metrics is
that they do not score well even when synonyms
are included, as the n-grams must match exactly for
a higher score. TER (Snover et al., 2006) and oth-
ers that base their evaluation on edit distance have
similar drawbacks. METEOR aims to overcome
this drawback by using a synonym dictionary, but
it is unable to perform context-sensitive synonym
evaluation.

Using embeddings derived from self-supervised
models, synonyms can be judged to be similar
based on their context. BERTScore (Zhang et al.,
2020) is a method that embeds the generated text
and the reference text respectively by an encoder-
based model and calculates a score based on their
similarity. BARTScore (Yuan et al., 2021) and
T5Score (Qin et al., 2022) input the source text to
the encoder and the target text to the decoder, and
calculate a score based on the generation probabil-
ity of the target text. GPTScore (Fu et al., 2023)
calculates a score based on the generation probabil-
ity of the target text by applying in-context learn-
ing (Brown et al., 2020) to an LLM. G-Eval (Liu
et al., 2023) proposes a method to have an LLM
generate scores directly. In addition, Chen et al.
(2023) show that directly generated scores are more
accurate than generation probability-based ones
when using LLMs.

Other evaluation methods increase accuracy by
fine-tuning a self-supervised model using datasets
consisting of text pairs and their similarity la-
bels. Models trained on translation evaluation
datasets include BLEURT (Sellam et al., 2020) and
COMET (Rei et al., 2020), while models trained
on STS datasets include Sentence-BERT (Reimers
and Gurevych, 2019). There are also methods
such as SimCSE (Gao et al., 2021) that learn sen-
tence embeddings by contrastive learning on nat-
ural language inference datasets and use them to

calculate text pair similarity. Most of these self-
supervised methods use encoder-based models. In-
structScore (Xu et al., 2023) is a method of fine-
tuning LLaMA (Touvron et al., 2023). However,
Xu et al. (2023)’s experiments did not involve tuned
LLMs on the target datasets and did not compare
them to encoder-based models under equal condi-
tions. In this study, we compare LLMs, which do
not have bidirectional attention but larger model
size, with encoder-based models, which have bidi-
rectional attention but smaller model size, by tun-
ing them under equal conditions.

3 Experimental Setup

We compare various methods for text generation
evaluation, including tuned encoder-based models
and LLMs on equal conditions, on two different
tasks, machine translation evaluation and STS, in
two languages, Japanese and English.

3.1 Datasets

3.1.1 Datasets in English
For the experiments in English, we use
WMT20 (Mathur et al., 2020) and WMT21 (Fre-
itag et al., 2021) as the translation evaluation
datasets, and STS-B (Cer et al., 2017) and
SICK (Marelli et al., 2014) as the datasets for STS.
WMT20 and WMT21 include human-translated
texts, machine-translated texts, and their eval-
uation labels of Direct Assessment (DA) and
Multidimensional Quality Metrics (MQM). In our
experiments, we adopted the MQM labels that
were evaluated by experts and native speakers.
Since only the Chinese-to-English translation task
is labeled with MQM, we use its datasets (WMT20
MQM and WMT21 MQM). STS and SICK consist
of sentence pairs and their similarity labels. Note
that for WMT20 and WMT21, the datasets were
not pre-separated into train, valid, and test, and we
randomly split these datasets with a ratio of 8:1:1.

3.1.2 Datasets in Japanese
The datasets used in the experiments in Japanese
are the WMT20 English to Japanese translation
task (WMT20 en-ja) and JSTS included in the
Japanese General Language Understanding Evalu-
ation (JGLUE) (Kurihara et al., 2022) benchmark.
The WMT20 dataset includes human-translated
texts, machine-translated texts, and their evaluation
labels (Direct Assessment). JSTS is an STS dataset
for Japanese, consisting of sentence pairs and their
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Method Model Architecture Size WMT20 WMT21 STS-B SICK
No-Tuning Methods
BLEU - - - 0.109 0.120 0.244 0.354
Edit Distance - - - 0.345 0.340 0.089 0.278
BERTScore RoBERTa-large Encoder 355M 0.306 0.294 0.405 0.455
BARTScore CNN+Para BART-large Enc-Dec 406M 0.225 0.219 0.475 0.505
OpenAI Embeddings text-embedding-ada-002 Encoder ? 0.184 0.181 0.655 0.627
ChatGPT Zero-Shot gpt-3.5-turbo Decoder ? 0.113 0.097 0.669 0.622
ChatGPT Few-Shot gpt-3.5-turbo Decoder ? 0.175 0.136 0.618 0.656
Tuning Methods (Not Target Dataset)
BLEURT-20 RemBERT Encoder 576M 0.345 0.323 0.620 0.574
InstructScore LLaMA Decoder 6.7B 0.439 0.345 0.471 0.526
Tuning Methods (Target Dataset)
COMET (WMT21 MQM) XLM-RoBERTa-large Encoder 560M 0.506 0.362 – –
RoBERTa Fine-Tuning RoBERTa-large Encoder 355M 0.699 0.391 0.737 0.658

LLM LoRA-Tuning Cerebras-GPT Decoder

111M 0.589 0.362 0.540 0.425
256M 0.634 0.378 0.585 0.462
590M 0.654 0.371 0.616 0.486
1.3B 0.663 0.383 0.625 0.483
2.7B 0.671 0.377 0.661 0.512
6.7B 0.665 0.370 0.681 0.530

Table 1: Kendall’s correlation coefficients between the predictions by the automatic evaluation metrics and the
labels in the experiments in English.

similarity labels. Note that WMT20 en-ja was ran-
domly split at a ratio of train:valid:test=8:1:1 as in
the English datasets.

3.2 Tuning of LLMs

For the method by LLM tuning, we performed
LoRA-tuning of LLMs using datasets of text pairs
and their evaluation or similarity labels. We chose
LoRA-tuning because it can achieve competitive
accuracy with fine-tuning at a lower cost (Hu et al.,
2021).

3.2.1 Architecture and Input-Output
Relationships

The architecture and input-output relationship of
the LLM’s tuning are shown in Figure 1. Given
a text pair as an input to the model, their similar-
ity value is returned as an output. The following
procedure is used to calculate the similarity.

1. Feed each text of a text pair into an LLM.

2. Obtain the embedding corresponding to the
token at the end of each text (the preceding
token of the EOS token).

3. Calculate the cosine similarity between the
two embeddings.

4. Pass the cosine similarity to a 1-layer FNN
and regard its output as the similarity of the
text pair.

Figure 1: The architecture and input-output overview of
the LLM’s tuning.

The FNN layer is used to convert the cosine
similarity values into a label distribution of the
dataset. Based on the results of our preliminary
experiments, we decided to use the embedding of
the token at the end of a text instead of the special
EOS token.

3.2.2 Training Method
The gold labels (similarity values) in the dataset
are normalized between 0 and 1 in advance. We
calculate the similarity of a text pair using the pro-
cedure described in Section 3.2.1. Next, only the
parameters newly added to the model (including
the parameters of the FNN) are updated based on
the mean squared error between the predictions and
the gold labels. Furthermore, the initial values of
the FNN are set to 1 for weight and 0 for bias. We
employ LoRA-tuning as the tuning method of the
LLM for its high performance.

For experiments in English, we use the Cerebras-
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Method Model Architecture Size WMT20 JSTS
No-Tuning Methods
BLEU - - - 0.226 0.353
Edit Distance - - - 0.242 0.321
BERTScore Waseda RoBERTa-large Encoder 337M 0.319 0.558
OpenAI Embeddings text-embedding-ada-002 Encoder ? 0.237 0.611
ChatGPT Zero-Shot gpt-3.5-turbo Decoder ? 0.187 0.709
ChatGPT Few-Shot gpt-3.5-turbo Decoder ? 0.205 0.690
Tuning Methods (Not Target Dataset)
BLEURT-20 RemBERT Encoder 576M 0.315 0.569
Tuning Methods (Target Dataset)
RoBERTa Fine-Tuning Waseda RoBERTa-large Encoder 337M 0.396 0.729

LLM LoRA-Tuning Rinna-gpt Decoder

37M 0.342 0.600
110M 0.378 0.644
336M 0.396 0.677
1.3B 0.370 0.659
3.6B 0.380 0.687

Table 2: Kendall’s correlation coefficients between the predictions by the automatic evaluation metrics and the
labels in the experiments in Japanese.

GPT models2 with parameter sizes ranging from
111M to 6.7B. These models are tuned on WMT20
MQM for the translation evaluation task and on
STS-B for the STS tasks, respectively. In other
words, the models trained with WMT20 MQM are
evaluated on WMT20 MQM and WMT21 MQM,
and the models trained with STS-B are evaluated
on STS-B and SICK.

For experiments in Japanese, we use the GPT-2
and GPT-NeoX models developed by rinna3, rang-
ing from the 37M model to the 3.6B model. We
trained models on each of the two datasets in Sec-
tion 3.1.2.

3.3 Baselines

For comparison, we adopt the following base-
lines: BLEU, character edit distance, fine-tuned
RoBERTa-large (Liu et al., 2019), BERTScore4,
BARTScore5, OpenAI Embeddings (Neelakan-
tan et al., 2022), in-context learning of Chat-
GPT (gpt-3.5-turbo), BLEURT6, COMET7 and
InstructScore8. For fine-tuned RoBERTa, as de-
scribed in Section 3.2.2, we trained models on
WMT20 MQM and STS-B for the English ex-
periments and on the two datasets shown in Sec-
tion 3.1.2 for the Japanese experiments, respec-
tively. For BERTScore, the training data is used
to select the best output layer to obtain the em-

2https://huggingface.co/cerebras
3https://huggingface.co/rinna
4https://github.com/Tiiiger/bert_score
5https://github.com/neulab/BARTScore
6https://github.com/google-research/

bleurt
7https://unbabel.github.io/COMET
8https://github.com/xu1998hz/SEScore3

beddings. For OpenAI Embeddings, the scores
are the cosine similarity of the obtained embed-
dings. The prompt used in ChatGPT’s in-context
learning is shown in Appendix A. We also had a
preliminary experiment with in-context learning of
Cerebras-GPT as well as ChatGPT, but were un-
able to generate scores successfully. It is assumed
that the model size of few billion is too small for
in-context learning. We do not tune BLEURT, but
instead use BLEURT-20 (Pu et al., 2021), which
is trained in multiple languages. For COMET, we
use the model trained on WMT21 MQM. We do
not apply COMET to the STS datasets because
COMET is a metric for automatic translation evalu-
ation and requires three inputs: pre-translated text,
human-translated text, and machine-translated text.
Our hyperparameters for training are shown in Ap-
pendix B.

Note that BARTScore, COMET, and In-
structScore, only support English and hence are
not used for experiments in Japanese.

4 Experimental Results and Analysis

4.1 Main Results

Kendall’s correlation coefficients between the pre-
dictions by the automatic evaluation metrics and
the gold labels in English and Japanese are shown
in Tables 1 and 2, respectively. For all datasets in
both languages, RoBERTa-large with fine-tuning
achieved the highest accuracy. For LoRA-tuned
LLMs, there is a tendency for the accuracy to be
proportional to the model size up to a certain model
size, but it reaches a ceiling. Also, even models
with overwhelmingly larger parameter sizes than

https://huggingface.co/cerebras
https://huggingface.co/rinna
https://github.com/Tiiiger/bert_score 
https://github.com/neulab/BARTScore
https://github.com/google-research/bleurt
https://github.com/google-research/bleurt
https://unbabel.github.io/COMET
https://github.com/xu1998hz/SEScore3
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Model Size BLEU Edit Distance
WMT20 WMT21 STS-B SICK WMT20 WMT21 STS-B SICK

RoBERTa-large 355M 0.126 0.127 0.237 0.363 0.394 0.511 0.046 0.262

Cerebras-GPT

111M 0.213 0.212 0.281 0.553 0.491 0.612 0.077 0.491
256M 0.192 0.216 0.292 0.553 0.455 0.615 0.081 0.486
590M 0.187 0.211 0.268 0.559 0.432 0.583 0.087 0.487
1.3B 0.175 0.225 0.277 0.545 0.425 0.574 0.096 0.483
2.7B 0.178 0.231 0.263 0.549 0.428 0.567 0.058 0.478
6.7B 0.181 0.205 0.259 0.552 0.441 0.522 0.068 0.472

Table 3: Kendall’s correlations between the metrics based on superficial word sequences and the predictions by
models with tuning in the experiments in English.

RoBERTa-large showed low accuracy. For Chat-
GPT’s in-context learning, the accuracy on the STS
datasets was comparable to that of the tuning-based
methods, but its accuracy on the translation eval-
uation datasets was low. Note that most of the
p-values were very close to 0.

4.2 Analysis of Why Tuned LLMs are Inferior

From Tables 1 and 2, we observe that LoRA-tuned
LLMs, which have by far a larger number of pa-
rameters than RoBERTa-large, are inferior in terms
of performance. We analyze the causes of this from
the experimental results in English.

The most significant difference between the two
models is that RoBERTa, an encoder-based model,
has bidirectional attention, while an LLM has uni-
directional attention. Here, we hypothesized that
unidirectional attention focuses more on surface
word sequences as opposed to bidirectional atten-
tion. To confirm this hypothesis, we calculated the
correlations of the predictions of RoBERTa and
LLMs to BLEU and character edit distance, which
are the metrics based on superficial word sequences.
The results are shown in Table 3. As hypothesized,
the results show that the correlations to both BLEU
and edit distance are stronger for LLMs than the
encoder-based model. The fact that the correlation
decreases as the model size increases in LLMs sug-
gests that the larger the model size, the better the
prediction is able to capture not only the surface
word sequences but also the meaning of the text.
However, even with a model size of 6.7B, the LLM
is still not as accurate as RoBERTa.

4.3 Analysis of the Inability of ChatGPT’s
In-context Learning

While ChatGPT’s in-context learning showed high
accuracy on the STS datasets, it did not perform
well on the translation evaluation datasets. We
analyze the causes of this from the experimental
results in English.

Figure 2: Label distribution of the test datasets used in
the English experiments.

In our experiments, the prompts were created
to score on a scale of 0 to 100. However, in the
output scores, there were many cases where the
last digit was 0 or 5 in both zero-shot and few-shot
settings. Also, as shown in Figure 2, the label dis-
tributions of the translation evaluation datasets are
skewed between 0.9 and 1.0, compared to the STS
datasets, which have gently sloping distributions.
Therefore, most of the predictions in the translation
evaluation datasets are 95, etc., and this is thought
to have caused the accuracy drop. Thus, it is clear
that ChatGPT’s in-context learning has difficulty
in identifying fine-grained semantic differences.

5 Conclusion

In this paper, we compared various automatic evalu-
ation methods for text generation in two languages,
Japanese and English. We showed that fine-tuned
encoder-based models are the strongest when train-
ing data is available, and in-context learning of
ChatGPT is equally accurate when the variance
of scores is large. Our analysis also revealed that
tuned LLMs are less accurate than tuned encoder-
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based models because of their focus on surface
word sequences.

Limitations

Our experiments assume the presence of a training
dataset. If no dataset for training exists, refer to
the results without the Tuning Method (Target
Dataset) to compare the metrics in Tables 1 and 2.
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A Prompt Used in Experiments with ChatGPT

The following text is an example of the prompt used in our experiments with ChatGPT, which was created
by referring to the prompt used in Chen et al. (2023)’s experiments.

B Hyperparameters

The hyperparameters that we used for training models in our experiments are shown in Table 4. Note that
the GPU used in our experiments is the NVIDIA A100 SXM4 GPU with a GPU memory size of 40 GB.

Hyperparameters
RoBERTa

Fine-Tuning
LLM

LoRA-Tuning
Learning Rate 2e-5 2e-4, 1e-4, 5e-5, 1e-5
Epoch Num 10 10
LoRA Dim - 4
LoRA Alpha - 32
LoRA Dropout - 0.1

Table 4: Hyperparameters for training in the experiments.


