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Abstract

Lip reading recognition aims to predict what
people are saying based on the movements of
their lips. Most previous works used continu-
ous images to represent lip movements and pre-
dict the corresponding textual contents, which
does not achieve good performance. In this
work, we explore a new approach to synthesiz-
ing audio through lip movements by introduc-
ing face landmarks for representing the motion
features of the face in 3D space and synthe-
sizing the corresponding audio results directly.
We propose the FaceLandmarks2Wav model
for a preliminary implementation of the above
idea. The experimental results confirm that
face landmarks can adequately represent facial
movement features, and the structure of Face-
Landmarks2Wav could synthesize speech re-
sults close to natural human voices, only using
the face landmarks sequence.

1 Introduction

The relationship between human speech lip move-
ments and pronunciation has been confirmed in
many previous studies (Cappelletta and Harte,
2012; Shaikh et al., 2010). Trained profession-
als can predict what others say by observing their
lip shape. People with hearing impairment use a
similar method to understand what others say when
communicating. Visual speech recognition uses the
relationship between lip movements and pronunci-
ation to predict what a speaker says by capturing
videos of their lip position. Related research has
many practical applications, such as assisting peo-
ple with acquired aphasia to communicate with
others.

Research related to computer lip recognition gen-
erally extracts lip gesture features from continuous
images of videos (Ma et al., 2022; Huang et al.,
2022; Wang et al., 2022). Early studies mainly
used image transformation methods to reduce the
dimensionality of feature vectors. (Min and Zuo,

2011) performed lip visual feature extraction based
on 3D-DCT and 3D-HMM models, which focused
on the primary information of images in the low-
frequency band. With the development of research
in computer vision, the extraction of lip movement
features in images using deep learning networks
such as CNN (Iezzoni et al., 2004; Fung and Mak,
2018; NadeemHashmi et al., 2018; Chung and Zis-
serman, 2016) has also received increasing atten-
tion. Noda et al. (2014) used a CNN-based multi-
layer network to extract feature sequences from lip
images and modeled them by GMM-HMM. Garg
et al. (2016) used LSTM networks to extract lip
movement in the temporal dimension information.

Current research has primarily used continuous
images of the speaker’s face to illustrate lip move-
ments. However, video is not the most intuitive
way to represent lip movements. The video sam-
ples contain much redundant information, requiring
a large-scale network to locate the speaker’s lips
and extract movement features accurately. Even
then, redundant information can also interfere with
model predictions. For example, the model relies
on the facial details of the speaker in the video and
may not make accurate estimations when encoun-
tering an unseen speaker, which is more common
when training the model with person-specific video
datasets. In addition, the possible facial rotation
of people while speaking can cause the camera to
not continuously capture the face of the picture,
which limits the application scenarios of lip recog-
nition research. To solve the problems in video
lip recognition, we introduce face landmarks to
represent facial movement states in lip recognition.
Face landmarks are a series of coordinate points
annotated on the human face, often used to track
the positional states of facial features.

In this study, we combine face landmarks in the
temporal dimension into a sequence to represent the
movement features of the face in three-dimensional
space. Extract facial movement features from fa-
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cial landmarks sequence by an encoder consisting
of multilayer convolutional neural networks and
LSTM, and use an autoregressive decoder to syn-
thesize the audio close to the speaker’s pronuncia-
tion.

2 Methods

We refer to the method used by Shen et al. (2018)
in the text-to-speech task. Our model does not
directly synthesize the audio waveform from the
lip movement sequence. Instead, it predicts the mel
spectrogram of the corresponding audio segment
and uses a vocoder to convert the mel spectrogram
to audio results. Assume that the lip movement
sequence are represented as L = (L1, L2, · · · , LT )
and the mel spectrogram are represented as M =
(M1,M2, · · · ,MT ′), and the mel spectrogram are
represented as follows:

S =(S1, S2, · · · , ST ), Si = (s1, · · · , sN ) (1)

L =(L1, L2, · · · , LT ′), Li = (P1, · · · , PF ) (2)

Where T and T ′ are the frame numbers of the lip
movement sequence and the mel spectrogram in the
same video clip, F is the number of 3D landmarks
in the facial feature part selected in the experiment.
N is the number of mel filters.

We can assume that the representation of the
target mel spectrogram in the t′ frame is highly
correlated with the lip movements of the speaker
at the exact moment. However, since there are
possibilities where different phonemes share the
same viseme, to determine the mel spectrogram of
the t′ frame, the model should also reference the
context of the lip movement feature. We model the
relationship between the mel spectrogram and lip
movements using Eq. (3).

Mt′ = f
(
Lk∈(t±δ),M<t′

)
(3)

The encoder refers to context information to ex-
tract lip movement features. The decoder uses
an autoregressive method to synthesize the corre-
sponding mel spectrogram frame by frame. The
model structure is shown in Fig. 1.

2.1 Input/Output Representation
2.1.1 Input Representation
FaceLandmarks2Wav model accepts face land-
marks as input. Each landmark contains three-
dimensional coordinate information. Therefore,
the tensor size of the model input is T × F × 3,

where F is the number of landmarks used in the
experiment, and T is the number of time steps of
the landmarks sequence, each training sample uses
90 continuous frames of image content.

2.1.2 Output Representation

The target synthesized by our model is the audio
content corresponding to the given video segment.
FaceLandmarks2Wav does not directly synthesize
audio results but predicts the corresponding mel
spectrogram. We sample the audio at a sampling
rate 16kHz, set the window size to 50ms, shift
distance per frame to 12.5ms, and set the number
of mel filters to 80. As the model obtained the
corresponding mel spectrogram, we use the Griffin-
Lim algorithm (Griffin and Lim, 1984) to transform
it into the corresponding audio wave.

2.2 Spatio-temporal Face Encoder

Previous studies (Bai et al., 2018; Xu et al., 2019)
have demonstrated the effectiveness of CNN for
feature extraction in the time domain. Therefore,
we stacked convolutional blocks to extract move-
ment features from face landmarks input. The input
dimension of the encoder is T × F × 3. Unlike
processing images, the number of face landmarks
F corresponds to different convolution channels,
which helps the convolution kernel respond to all
facial landmarks.

We set multiple convolution blocks in the en-
coder, and each convolution block increases the
number of channels used to represent facial fea-
tures. The number of channels of each convolu-
tion block is set according to the face landmarks
used in the experiment. Residual connections and
batch normalization are used between CNN blocks.
The last layer of convolutional blocks will sample
the three-dimensional coordinate information into
one dimension, and the encoder will permanently
preserve the time dimension. The convolutional
network’s final output size is T × F ′, and F ′ is the
number of features modeled by the encoder for a
single time step.

The encoder uses a bidirectional LSTM network
(Hochreiter and Schmidhuber, 1997) to extract
short-term contextual features. This method allows
the feature modeling of face landmarks to contain
more contextual information after the convolutional
network.
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Figure 1: FaceLandmarks2Wav model structure. The encoder uses a 2D convolutional network to extract high-level
lip movement features from landmarks. The decoder predicts the mel spectrogram corresponding to the audio result
autoregressively.

2.3 Attention-based Speech Decoder

To synthesize smoother and natural speech results,
our model refers to the method used in Tacotron2
by Shen et al. (2018). The Tacotron2 is a model
for synthesizing audio from text, which uses a
sequence-to-sequence network with an attention
mechanism to process the text features extracted by
the encoder and synthesize a mel spectrogram close
to the natural human voice. We use a Tacotron2-
like decoder to autoregressively synthesize the mel
spectrogram frame by frame from the facial move-
ment features encoded by the encoder. When the
decoder synthesizes the mel spectrograms output
of the Tk time step, it will refer to the decoder out-
put of Tk−1 time step and calculates the attention
together with the lip movement high-level features
extracted by the encoder.

The attention network contains a special location
layer (Chorowski et al., 2015), which accepts the
accumulated attention weights from previous time
steps as an additional condition, which can help the
attention network to calculate the attention weights
forward and prevent the decoder from falling into
repeated patterns. Such a decoder structure con-
tributes to more natural audio results for model
synthesis.

2.4 Loss Function

The optimization goal during model training is min-
imizing the hybrid loss between the synthetic mel
spectrogram and the ground truth for end-to-end
model training. The hybrid loss function is shown
in Eq. 4, and α is the weight used to adjust the loss

function and is set to 0.5 in the experiment.

Lall = α · L1 + LMSE (4)

3 Benchmark Datasets and Training
Details

3.1 Datasets
Accurate 3D face landmarks can be annotated on
faces using special devices such as the True Depth
camera on the iPhone. However, since face land-
mark is a novel way to describe lip movements,
there is no previous research on lip recognition us-
ing similar methods. To compare with those studies
using video data, we use the face landmarks extrac-
tor to extract the face landmarks from the existing
video dataset. Build the face landmarks dataset
based on the video dataset. We chose the Lip2Wav
dataset from Prajwal et al. (2020) as the source of
lip recognition video data, which collects about 120
hours of video data from Youtube, including facial
images of different speakers when they spoke and
divided them into different sub-datasets according
to the different speakers in the video. It is very suit-
able for the model to learn the lip synthesis style of
a specific speaker.

We chose the Media Pipe Face Mesh model
(MPFM) proposed by Grishchenko et al. (2020)
as the face landmarks extractor. The MPFM model
could provide 478 3D landmark coordinates of the
whole face range. This model also optimizes the
face landmarks labeling of continuous images and
reduces the jitter of landmarks between frames.
Those features make the MPFM model more suit-
able for labeling face landmarks on video data.
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After getting the face landmarks on the video
data, we normalize the sequence of time-series
face landmarks using Eq.(5). This function will
make the coordinates of the face landmarks have
appropriate sparsity.

c← 1

3n

n∑
i=1

3∑
j=1

pij

m← max
(
||pij − c||

)
p′
ij ←

1

m
(pij − c)

(5)

Since the video in the Lip2Wav dataset is cap-
tured by fixed camera position, some of the video
clips cannot contain the range of the human face,
and this part of the samples can not be used in train-
ing. To ensure that the encoder can better model
the lip-movement contextual features, we set the
video window to 90 frames, and this means that
only face landmarks extractors can recognize 90
consecutive face frames will be used as samples for
model training. The video lip-synthesis model used
for comparison was also trained using the same
data range, and the number of samples contained
in each sub-dataset is shown in Table 1.

Table 1: The number of samples in each sub-dataset
when using different face landmarks extractors.

sub-datasets Media Pipe
FaceMesh

Face
Alignment

chem 753,834 572,198
chess 787,963 547,220

eh 819,065 739,483

3.2 Details of Training

We use the pre-trained face landmarks extraction
model to recognize and mark faces in the video
data frame by frame. When using Media Pipe Face
Mesh, the video mode will be turned on to reduce
the jitter of landmarks. Our model sets a multi-
layer convolutional network in the encoder, which
finally represents the movement features of each
frame as a high-dimensional feature vector as the
hidden dimension of the encoder. Taking the ex-
periment with 80 lip landmarks as an example, we
sequentially set the number of channels of the con-
volutional block in the encoder to 120, 240, and
320, and the final hidden dimension is set to 384.

The batch size during model training is set to 32.
The learning rate will increase linearly to 0.001 at

the beginning of training and gradually decay in
subsequent iterations. We used Adam (Kingma and
Ba, 2014) as the optimizer and trained the model
with about 600,000 iterations. The choice of these
parameters was derived from the good results ob-
tained during the experiments.

3.3 Evaluation Metrics

We measure whether the audio synthesized by the
model is close to the natural human voice regarding
intelligibility and audio quality. We will use the
following three metrics to compare our model with
previous studies: Short-Term Objective Intelligibil-
ity (STOI) (Taal et al., 2010), Extended Short-Term
Objective Intelligibility (ESTOI) (Jensen and Taal,
2016), and Perceptual Evaluation of Speech Qual-
ity (PESQ) (Rix et al., 2001). In addition to the ob-
jective audio quality, we will compare the model’s
resource consumption and convergence time during
the training process and demonstrate the compre-
hensive advantages of the unique solution of using
face landmarks to represent lip movements from
many aspects.

4 Results and Disscussion

This section presents a comparative analysis to eval-
uate the performance differences between Face-
Landmarks2Wav and previous deep-learning mod-
els that use videos for lip-speech recognition. We
choose the Lip2Wav as the baseline model (Pra-
jwal et al., 2020), a lip-speech model that can syn-
thesize audio results close to natural human voice
from facial videos. We trained different models on
the same dataset using similar settings and com-
pared the differences in the number of parameters,
Multiply-Accumulate operations (MACs), and con-
vergence time of the models during training. The
results are shown in Table 2. We used a smaller
batch size when training Lip2Wav due to the lim-
ited video memory capacity of the graphics card
used, and even so, the FaceLandmarks2Wav also
has more advantages in terms of convergence time
and other metrics.

Table 2: Comparison of model details and training time.

Models Lip2Wav Ours
Batch Size 16 32
Parameters 39.8 M 31.9 M

MACs 709.3 G 178.4 G
Single Iteration 1.4 sec 0.4 sec
Convergence ∼ 140 hours ∼ 50 hours
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During training, we record the attention image
generated by the FaceLandmarks2Wav. The hori-
zontal and vertical axes of the image represent the
time steps of the decoder and the encoder, respec-
tively. The values represent the degree of atten-
tion paid to the encoder’s specific time step when
the decoder’s attention module produces the corre-
sponding time step results. Figure 2 shows how the
attentional alignment of the model changes during
the training process. The attention image gradually
forms a diagonal image as the training progresses,
meaning that the decoder refers to the lip features
extracted by the encoder at nearby moments when
synthesizing the audio results, consistent with the
assumption of Eq 3. The attention image at the
end of training is shown in Figure 2f, implying
that the model could already learn the high-level
features of facial motion from the input face land-
marks sequence and synthesize the corresponding
audio based on these features.

After the training, we compared the synthetic
audio quality and intelligibility scores of the two
models on the validation set, and the results are
shown in Table 3. Compared with Lip2Wav, Our
FaceLandmarks2Wav has a significant advantage
in STOI and PESQ scores, and the ESTOI scores
of Lip2Wav are relatively better. While synthesiz-
ing high-quality audio, FaceLandmarks2Wav has
shorter training time, inference time, and smaller
model sizes than Lip2Wav. Therefore, in scenar-
ios sensitive to video memory usage and requir-
ing high real-time performance, Our approach of
synthesizing audio using face landmarks has more
advantages.

Discussion. The above experiments prove that
using face landmarks can represent the attributes
of facial movement well. The experimental results
show that using the FaceLandmarks2Wav model
can synthesize natural and smooth speech results,
and the synthesized audio is not inferior to the
model using video data as input in terms of intelli-
gibility and quality. Our proposed model structure
can converge faster during the training process, and
the requirements for the training environment are
further reduced. The small model size allows it
to be trained in environments with limited hard-
ware, such as wearable devices. We also imple-
mented corresponding ablation studies to compare
the effect of face landmarks extracted differently
on model performance.

Table 3: Performance comparison between our model
and previous lip speech synthesis studies. The column
of total result shows the arithmetic mean of the results
of different sub-datasets.

Sub-dataset Metrics Models
Lip2Wav Ours

chem
STOI 0.414 0.478

ESTOI 0.212 0.193
PESQ 1.130 1.149

chess
STOI 0.168 0.217

ESTOI 0.101 0.073
PESQ 1.143 1.151

eh
STOI 0.256 0.367

ESTOI 0.012 0.009
PESQ 1.302 1.318

total
result

STOI 0.279 0.354
ESTOI 0.105 0.092
PESQ 1.192 1.201

5 Ablation Studies

As an initial study of using face landmarks to rep-
resent facial movement features, the effect of dif-
ferent ranges of face landmarks on the ability to
represent facial motion features is one of our pri-
mary concerns, and we designed the corresponding
ablation studies to explore this question.

We also try to use the Face Alignment Net-
work (FAN) proposed by Bulat and Tzimiropoulos
(2017) as an alternative face landmarks extractor,
which can annotate 68 2D-landmarks in the whole
face range and provide a way to estimate the depth
information.

Table 4: Train the model with different ranges of land-
marks. Training is performed on the chem sub-dataset.
WF stands for "Whole Face".

Extractor MPFM MPFM FAN
Contents WF Lips WF

Landmarks 478 80 68
Channel 600, 680, 720 120, 240, 320

Embedding 768 384 384
STOI 0.348 0.478 0.372

ESTOI 0.109 0.193 0.103
PESQ 1.048 1.149 1.034

The results of the ablation studies are shown in
Table 4, which also shows the model embedding
parameters for different settings of the number of
landmarks. Surprisingly, the training results us-
ing only the lip landmarks are superior to those
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Figure 2: Attention alignment images for FaceLandmarks2Wav

(a) Alignment image at 40K iterations (b) Attention image at 60K iterations (c) Alignment image at 80K iterations

(d) Attention image at 100K iterations (e) Attention image at 120K iterations (f) Alignment image at end of training

using the whole-face range landmarks. This phe-
nomenon is because the target audio synthesized
by the model is most closely associated with the lip
movements, and the input contains less additional
information, making it more advantageous to train
directly on the lip content. The experimental results
do not show significant differences for different ex-
tractors using different numbers of landmarks to
represent the full-face range of motion features.

On the other hand, when using the same face
landmarks extractor, the performance of 3D land-
marks is significantly better than that of 2D land-
marks, indicating that even the depth information
estimated by the extractor still provides more ef-
fective facial motion information to the encoder.
This phenomenon is important for our future work,
which means that the ability of face landmarks for
facial motion representation could be further im-
proved if landmark annotation is performed directly
on real faces using a custom device.

6 Conclusion and Future Work

In this study, we initially explored the possibility
of an innovative approach to characterize facial
motion using face landmarks. We proposed Face-
Landmarks2Wav, a model that synthesizes corre-
sponding lip reading audio based on face landmarks
and compared it with Lip2Wav, the lip reading
model that uses video data to synthesize audio re-
sults. Experimental results show that our proposed
model structure can synthesize relatively natural

and smooth audio structures and be trained in a
lower hardware environment. We also performed
ablation studies, showing that audio results synthe-
sized only using the lip range are even better than
those using the whole face range. In future work,
we hope to directly obtain the depth information
of lip movement through 3D camera equipment,
and more accurate face landmarks information will
help further improve the model’s performance.
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