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1 Introduction

Robots are one of the archetypes of AI systems
we imagine, and the realization of such robots op-
erating in the real world with language interfaces
has long been a dream of us. This vision we have
dreamed of is rapidly becoming a reality with the
contribution of recent advancements in large lan-
guage models (LLMs). However, there are still
many problems that the research community needs
to tackle in order for LLMs and other NLP tools to
work in the real world.

This introductory tutorial aims to help re-
searchers who will start language and robotics
(LangRobo) research in the future by summariz-
ing three points: awareness of the community’s
issues, recent approaches for these issues, and re-
maining problems. This tutorial requires only ba-
sic NLP knowledge: language modeling and basic
NLP task definition. We arrange this tutorial in-
volving not only NLP researchers but also robotics
researchers in order to raise issues that are relevant
to actual robotics problems.

The connection between NLP and robotics is
a challenge that has been tackled in the field of
robotics for many years; we have faced the diffi-
culties of the problem many times. There are sev-
eral difficulties in connecting NLP and robotics,
but the following three are particularly problem-
atic:

1. The great difference in granularity between
language and robot behavior

2. Robotics tasks involving real-world control
often do not allow for language ambiguity

3. Language expressions themselves are often
ambiguous and require background knowl-
edge or commonsense reasoning to under-
stand them correctly

While the language expressions used for robots
are only a few dozen words at most, robots have

countless events to consider, such as their motion
trajectories and interactions with things in the real
world. In other words, in the field of robotics,
there are countless events to be considered out-
side the language framework, and it is impossi-
ble to consider all of them in the model. An-
other important point to consider is the ambigu-
ity of language expressions. Humans often make
omissions when utilizing language, and in prac-
tice, such omissions are often very important in
actual robot tasks. The omission is closely related
to multimodal information obtained from the inter-
action, such as eye gaze and motions. It is nearly
impossible to address these issues with NLP alone
or robotics alone.

Many recent works have suggested that deep
learning or LLMs can provide solutions to these
problems. This tutorial summarizes the recent ap-
proaches to the language and robotics problem us-
ing such learning-based approaches. The goal of
this tutorial is to share the discussion on how these
problems can be solved in the future.

2 Tutorial Content

As the tutorial contents, a researcher who has been
working in robotics for a long time will first intro-
duce classic language utilization problems in their
field. He also explains how these problems have
been solved in recent years by deep learning and
LLMs. In the second part, a researcher who has
been working in the fields of language and im-
age processing will explain the recent research on
coreference and grounding problems in the real
world. It is also mentioned that the recent ad-
vancement of vision and language research. In the
last lecture part, a researcher who has been work-
ing in the human-robot interaction research field,
including dialogues, will discuss the collaboration
between users and robots and the issues of lan-
guage understanding and situation understanding
necessary for such collaboration. Finally, many
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unresolved robot problems will be touched upon,
and future language and robotics research direc-
tions will be discussed.

2.1 Language Use in Robotics Field
(Nakamura)

In the research field of robotics, navigation and
manipulation have been major issues. They used
numerical representations (e.g., coordinates and
joint angles that indicate the robot’s position)
as the main focus. On the other hand, logi-
cal planning frameworks have been widely ap-
plied to robotics, such as STanford Research In-
stitute Problem Solver (STRIPS) (Fikes and Nils-
son, 1971) and Planning Domain Definition Lan-
guage (PDDL) (Fox and Long, 2003). They have
been proposed as frameworks for planning in a vir-
tual space, mainly in the block world, using a pro-
graming language-like description. Due to the ad-
vancement of deep learning since the 2010s, a sys-
tem was built in 2018 to interpret human instruc-
tions given in natural language to perform pick-
ing tasks (Hatori et al., 2018). The advancement
of large language models (LLMs) is leading sev-
eral frameworks for interpreting natural languages
such as GaTo (Reed et al.), Say Can (Brohan et al.,
2023), and RT-1 (Brohan et al., 2022). In addition,
research on generative models of human motion,
such as the human motion diffusion model (Tevet
et al., 2022), is developing, which is expected to
enable robots to cooperate with humans in un-
structured environments. In this tutorial, we will
give an overview of these studies.

2.2 Language Understandings in the
Real-world (Kurita)

Recent remarkable advancements in natural lan-
guage processing have enabled a comprehensive
understanding of texts in the context of syntac-
tic and semantic analyses, question-answering,
summarization, translation, and even dialogue
tasks. However, such models often face challenges
when dealing with multimodal contexts in the real
world. In this tutorial, we explain how current
models struggle to handle real-world contexts and
provide an overview of language grounding tech-
nologies from four perspectives.

The first perspective focuses on vision and
language tasks with a single image. Examples
of such tasks include image captioning on MS-
COCO (Bernardi et al., 2016) and visual question
answering (Antol et al., 2015). We discuss the

strengths and limitations of these existing tasks,
particularly their reliance on limited contextual in-
formation from images. We further introduce the
referring expression comprehension or simply “vi-
sual grounding” task (Kazemzadeh et al., 2014;
Plummer et al., 2015; Yu et al., 2016; Mao et al.,
2016), which specifies the target object from a
referred expression and the relation to the open-
vocabulary object detection task.

The second perspective is obtained through
videos. We concentrate on the first-person videos
here as they are obtained through the motion of
the camera wearer. Recently, a large-scale first-
person perspective video dataset of Ego4D was
proposed (Grauman et al., 2022). This can be ex-
tended for robots that navigate in scenes and re-
lated language tasks. Although the model learning
from videos enriches the model perspectives in the
real-world, image frames in videos are constrained
to the preset viewpoints when they are recorded.

The third perspective involves 3D scenes and
virtual worlds that provide rich contextual infor-
mation about the captured scenes. Unlike the
previous perspectives, this perspective allows the
“embodied” experience for the agents in the envi-
ronments. Examples of such enriched scenes have
been proposed, such as ScanNet (Dai et al., 2017)
and Matterport 3D (Chang et al., 2017). 3D refer-
ring expression comprehension (Chen et al., 2020)
and 3D-QA (Azuma et al., 2022) are also inter-
esting spatial understanding with language expres-
sions. These environments also enable visually-
grounded interactive textual understanding tasks.
One example is vision and language navigation
(VLN) (Anderson et al., 2018), where an agent
navigates in environments based on visual and
textual information. An interesting approach for
VLN is a captioning model from navigation paths.
Fried et al. (2018) introduced the speaker-model
for generating captions for the paths the agent nav-
igates in environments. Several studies used this
speaker model for the training dataset augmenta-
tion (Tan et al., 2019; Hao et al., 2020). Kurita
and Cho (2021) used the speaker model for rank-
ing the possible action candidates during naviga-
tion. Recently, Habitat simulator (Manolis Savva*
et al., 2019; Szot et al., 2021) enables continuous
navigation on VLN (Krantz et al., 2020). AI2Thor
is another virtual environment that enables object-
interactive tasks. This is used in the instruction
following task of ALFRED (Shridhar et al., 2020).
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The final perspective is robotics. Among re-
cent studies, SayCan (Ahn et al., 2022) uses large
language models for ranking the possible action
candidates during the episode, while Liang et al.
(2022) uses large language models for decom-
posing instructions to perceptions and actions ex-
pressed in executable Python code format. Indeed,
this perspective is still ongoing, and further elabo-
rations are desired.

2.3 Interactive Robots (Yoshino)
When we focus on the interaction between robots
and humans, from an engineering perspective, it is
important to understand what robots can achieve
in cooperation with humans. From a scientific per-
spective, it is also important to investigate the re-
lationship between real-world nature, physicality,
and linguistic expressions. For example, Visual
Question Answering (VQA) (Antol et al., 2015) or
Audio Visual Scene-aware Dialogue (AVSD) (D ’
Haro et al., 2020; Alamri et al., 2019) is a typi-
cal case. Information exchange in a language tied
(grounded) to the real world and interaction con-
text is important for real-world language robotics.
The use of multimodal data in the real world is
important to solve this grounding challenge (Kot-
tur et al., 2021). Discussions about the physicality
of robots are also essential (Ahuja and Morency,
2019; Yazdian et al., 2022).

When we try to collaborate with a robot through
actual interaction, the challenge is bridging the
language interaction to real-world interaction, in-
cluding actuation and grounding, using implicit
knowledge or common sense about physical phe-
nomena or social relationships (Xia et al., 2020).
Conventionally such implicit knowledge is hand-
crafted as ontology; however, the building is costly
because the robot requires prerequisite knowledge,
common sense, and unspoken knowledge for each
task and environment (Tanaka et al., 2023). Some
recent works utilizing LLM indicate that LLMs
can be used as such implicit world knowledge (Wu
et al., 2023).

In addition to the above, there are still other
research areas in robotics where language should
play an important role, such as the robot’s inten-
tions, subjective experience (Yuguchi et al., 2022),
desires and preferences, and memory mecha-
nisms (Peller-Konrad et al., 2022). This tutorial
will also discuss the future direction of language
and robotics research.

3 Tutorial Format

Our tutorial consists of three lectures and one dis-
cussion. Each lecture has 40 mins talk with 10
mins short break from different viewpoints: lan-
guage use in robotics, NLP in the real world, and
interactive robots. After 30 mins coffee break, we
will have a discussion about the future direction of
the language and robotics research field.

During the lecture session, we open a question-
answering form such as Dory, and participants put
their questions and comments or vote for them.
Based on the questions raised on the form, we have
40 mins open discussion with tutorial participants.

4 Reading List

This tutorial is introductory, and we do not as-
sume special knowledge of participants if they
have learned natural language processing. How-
ever, if you have never learned, reading papers
about Transformer (Vaswani et al., 2017) and dif-
fusion model (Ho et al., 2020) will emphasize your
understanding. This tutorial will use the robot
operating system 2 (ROS2). Online tutorial of
ROS21 will emphasize your understanding.

5 Technical Requirements

We will use online communication systems such
as Dory2 to encourage discussion. It is expected
to have devices that have internet access during the
tutorial. We will open our slides and materials on
our webpage3 before the tutorial.

6 Instructors

We have three instructors from different research
fields: robotics and control, vision and language,
and human-robot interaction. The bibliography of
each instructor follows.

6.1 Yutaka Nakamura
Yutaka Nakamura is a Team Leader at the Insti-
tute of Physical and Chemical Research (RIKEN)
and an Affiliate Professor at Osaka University. He
received his degree, Dr. Eng., from Nara Institute
of Science and Technology (NAIST) in 2004. He
worked at Osaka University as an assistant profes-
sor and an associate professor. Since 2020, he has

1https://docs.ros.org/en/foxy/
Tutorials.html

2https://dory.app
3https://github.com/riken-grp/

langrobo-tutorial
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been working at Guardian Robot Project (GRP) of
RIKEN as the team leader of Behavior Learning
research team. He is working on areas of robotics,
control, and human-robot interaction.

6.2 Shuhei Kurita
Shuhei Kurita is a Research Scientist at Center
for Advanced Intelligence Project (AIP), RIKEN.
He received his Ph.D. in informatics from Ky-
oto University in 2019. He is a visiting re-
searcher in New York University for Assoc. Prof.
Kyunghyun Cho from 2020. His paper “Neural
Joint Model for Transition-based Chinese Syntac-
tic Analysis"" was selected as the outstanding pa-
per of ACL2017 (Kurita et al., 2017). He is work-
ing on natural language understanding in the real-
world expressed in images, 3D scenes and photo-
realistic simulator. He has actively published pa-
pers in natural language processing, learning rep-
resentations and computer vision venues.

6.3 Koichiro Yoshino
Koichiro Yoshino is a Team Leader at the Institute
of Physical and Chemical Research (RIKEN) and
an Affiliate Professor at Nara Institute of Science
and Technology (NAIST). He received his Ph.D.
in informatics from Kyoto University in 2014. He
worked at Kyoto University as a postdoc and at
NAIST as an assistant professor. Since 2020,
he has been working at Guardian Robot Project
(GRP) of RIKEN as the team leader of Knowledge
Acquisition and Dialogue research team. From
2019 to 2020, he was a visiting researcher at
Heinrich-Heine-Universität Düsseldorf, Germany.
He is working on spoken and natural language
processing areas, especially robot dialogue sys-
tems. Dr. Koichiro Yoshino received several hon-
ors, including the best paper award of IWSDS2020
and the best paper award of the 1st NLP4ConvAI
workshop. He is a member of IEEE Speech
and Language Processing Technical Committee
(SLTC), a member of Dialogue System Technol-
ogy Challenge (DSTC) Steering Committee, an
action editor of ACL Rolling Review (ARR), and
a board member of SIGdial. He is a member of
ACL, IEEE, SIGDIAL, IPSJ, JSAI, ANLP and
RSJ.

7 Ethical Statement

Data used in Language and Robotics often con-
tain personal identification codes such as facial

images. The multimodal and interaction data used
by the authors in this tutorial are discussed and re-
viewed by the ethics committee, if necessary, in
accordance with the code of ethics of the organi-
zation to which they belong.
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