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Abstract

Generative language technologies have become
integral to everyday communication, shap-
ing social interactions and informing critical
decision-making processes in areas such as re-
cruitment, healthcare, and education. However,
they often struggle to grasp the "long tail" of
data distributions — concepts less frequently
observed during training — which could have
significant repercussions. These models may
marginalize underrepresented groups by failing
to comprehend preferred communication styles,
such as code-switching, or perpetuating soci-
etal biases like gender bias. Sectors like health-
care, education, and law, requiring personaliza-
tion and exhibiting nuanced linguistic features,
are also particularly affected when pre-trained
models misconstrue or overlook "long tail" data
concepts. While methods like distillation of
smaller language models, active learning, and
other bias mitigation strategies can augment tra-
ditional training techniques, a careful statistical
analysis is essential for their effective applica-
tion. This tutorial offers a comprehensive exam-
ination of how to develop equitable, robust, and
inclusive language technologies using statisti-
cal tools from Domain Adaptation (DA) that
catalyze positive social change. We will delve
into strategies for bias mitigation, explore how
to measure bias, and examine open problems
in creating culturally-grounded and inclusive
language technologies. Accompanying code
notebooks and packages will be provided.1

1 Introduction

Large language models are increasingly deployed
in critical areas of our daily life. Applications can
improve health literacy (Ufuk, 2023), offer new
avenues for improved education (Kasneci et al.,
2023), and yield new legal technologies (Chalkidis
et al., 2020). Meanwhile, as the complexity of
these models increases, robust decision making,

1https://github.com/anthonysicilia/
AACL2023-DA4GenerativeAI

Figure 1: DA theory quantifies key properties of text
data to inform us about model generalization; e.g., it
can identify the long tail to promote equitable text gen-
eration for underrepresented groups.

algorithm design, and evaluation become more
and more important. It is vital that under-served
demographics are not left behind in the wake of
this technological wave – e.g., by supporting user-
specific behaviors like code-switching (Harring-
ton and Egede, 2023), low resource languages like
American Sign Language (Inan et al., 2022), and
equitable language use (Mayfield et al., 2019).

While we still have much to learn about new
generative technologies (Rogers et al., 2020), what
we do know can be alarming. For example, these
models typically fail to learn infrequent data con-
cepts in the long tail of text distributions (Kand-
pal et al., 2022). Indeed, this can lead to unfortu-
nate, unintended outcomes such as social inequities
(Bolukbasi et al., 2016), abysmal lexical diversity
(Shekhar et al., 2019), or hard to resolve toxicity
issues (Xu et al., 2021). All this is to say, without
doubt, our use of machine learning as a tool has
outpaced our understanding of this tool in many
ways. For robust, responsible deployment of gen-
erative AI, we need a principled means of analysis.
This tutorial aims to meet this demand, proposing
domain adaptation (DA) theory as a mechanism to
study the nuanced data issues that plague our mod-
els; e.g., the linguistic and societal biases induced
by long tailed data. We cover statistical tools for:
1. training generative models with reinforcement

learning, multi-agent techniques, distillation,
traditional supervision, and more;

https://github.com/anthonysicilia/AACL2023-DA4GenerativeAI
https://github.com/anthonysicilia/AACL2023-DA4GenerativeAI
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Figure 2: Overview of planned topics. Application of
DA to text generation enables more than just obvious
applications (e.g., model transfer). This tutorial focuses
on these new emerging applications for generative AI.

2. evaluating the equity, human-likeness, inclusiv-
ity, and robustness of generative models;

3. and, decision making in small data regimes –
e.g., model and dataset selection strategies.

Our accessible presentation of these tools can help
to enable more robust deployment of generative AI.

While DA theory first appeared at ∗ACL venues
over a decade ago (Blitzer et al., 2007), recently,
more and more contemporary works have seen the
benefit of carefully analyzing impacts of data-shift
on their models. This is for good reason. DA theory
allows us to answer complex questions like:
• Will a pre-trained model generalize to my data?

• Can I improve generalization without much data?

• Is my corpus even large enough to measure bias
and other language errors of a model?
Despite its utility, the use of DA theory is

not wide spread – a quick keyword search on
aclanthology provided less than 10 papers at
∗ACL venues (excluding our own), which employ
DA theory2 or related techniques. This tutorial
aims to bring awareness to emerging applications
of DA theory to equitable, inclusive, and robust
generation in an accessible way – connecting DA
to more contemporary works whenever applicable.

2 Overview of Topics

We give a presentation plan next. For most topics,
we highlight application areas or detailed questions
we aim to address (see: ⋆ and italicized text), and
also provide potential reading lists (see: s).
1. Inclusive Generation: Setup and Motivation

• Language Models and Data Sources
⋆ Which end-users are left behind?
s Brown et al. (2020)

• Example: Summarizing Medical Records
⋆ Are domains with limited data impacted?

2We distinguish between more common DA applications,
and theoretical foundations; e.g., as in Redko et al. (2020).

s Phan et al. (2023)
• Example: Personalized Education
⋆ Can we personalize generative models for
individualized student experiences?
s Hu et al. (2008)

• Example: Assistive Legal Technologies
⋆ Can generative models be robust to specifi-
cation (e.g., locality) in legal applications?
s Abdallah et al. (2023)

• Example: Inclusive and Accessible Dialogue
⋆ Can generative models support users with
different preferences and capabilities?
s Sicilia et al. (2023); Inan et al. (2022)

2. Domain Adaptation Theory: The Basics
• Learning Theory and Adaptation Bounds
s Redko et al. (2020)

• Classifier-based Statistical Distances
s Ben-David et al. (2010); Sicilia et al.
(2022a);

• Measuring Model Data-Efficiency
s Shalev-Shwartz and Ben-David (2014); Si-
cilia et al. (2021c)

• Domain Adaptation for Generative Models
s Sicilia and Alikhani (2022)

3. Inclusive Text-Generation Algorithms
• Adversarial Training for Domain Alignment
⋆ Application Areas: Unsupervised and Semi-
supervised Summarization
s Ganin et al. (2016); Chen and Chen (2019)

• Other Ways to Align: Semantics and Tokens
⋆ Application Areas: Out-of-Domain Machine
Translation and Low Resource Languages
s Štefánik et al. (2023); Phan et al. (2023)

• Adapters and Adapter Soups
⋆ Application Area: Adapting Language Mod-
els to New Domains without Training
s Chronopoulou et al. (2022, 2023)

• Augmentation with Generative Models
⋆ Applications: Semi-supervised Question-
Answering, Accessible Dialogue, Counseling
s Yang et al. (2017); Parthasarathi et al.
(2020); Shen et al. (2020); Inan et al. (2022)

• Instance Weighting for Generative AI
⋆ Applications: Out-of-Domain Machine
Translation and Personalized Dialogue
s Wang et al. (2017); Welch et al. (2022)

• Domain Adaptive MLM Objectives
⋆ Applications: Mental Health Risk Predic-
tion and other Healthcare Tasks
s Aragon et al. (2023); Lu et al. (2023)
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4. Computational Techniques (Activity)
• Confidence intervals and significance
⋆ Is my test set large enough?
s Shalev-Shwartz and Ben-David (2014)

• Uncertainty and Confidence for Fairness
⋆ Is my model fair to protected demographics?
Do I even have enough data to determine this?
s Ethayarajh (2020)

• Transferring Models across Text-Genres
⋆ How can I pick datasets when transferring
models to small data regimes like medicine?
s Blitzer et al. (2007); Atwell et al. (2022)

• Supplementing Expertise with Bronze labels
⋆ What’s the best annotation protocol when
(domain expert) gold labels are too expensive?
s Hao and Paul (2019); Elsahar and Gallé
(2019); He et al. (2021)

5. Equitable Text-Generation
• Bias, Representational Harm, & Task Success
s Mayfield et al. (2019); Harrington and
Egede (2023)

• Defining Bias and Equity in Text-Generation
s Hendricks et al. (2018); Das and Balke
(2022); Sicilia and Alikhani (2023)

• Representation Learning and Bias Projection
⋆ Applications: Mitigating Social Bias in Text
Embedding and Masked Language Modeling
s Vargas and Cotterell (2020); Yu et al.
(2023); Kumar et al. (2023)

• Data Augmentation and Interventions
⋆ Applications: Toxicity Reduction in Masked
Language Models and Equitable Distillation
s Sun et al. (2019); Thakur et al. (2023)

• Reinforcement Learning and Self-Play
⋆ Applications: Morality, Toxicity, and Bias in
Language Models; Bias in Dialogue Systems
s Liu et al. (2022); Madanagopal and Caver-
lee (2023); Sicilia and Alikhani (2023)

6. Future Work: TBA, Time Permitting

3 Tutorial Type and Length

This tutorial is meant to be a cutting-edge tutorial
and is meant to fill up a 3 hour time slot.

Cutting Edge While DA theory has been well
studied in ML theory communities, practical ap-
plication for inclusivity, equity, and robustness of
generative AI is an emerging area. Indeed, most of
the reading-list has been published in ∗ACL venues
across the last few years. While similar areas have

been discussed in past tutorials (e.g., transfer learn-
ing and learning with limited data), the focus of
this tutorial is on more rigorous theoretical aspects
of DA and how these techniques can be applied
in the, perhaps, unexpected area of equitable and
inclusive generation. Our tutorial will also pay
particular attention to large language models.

Timing We anticipate each of the 6 numbered
top-level sections will take roughly 20 minutes,
leaving extra time for questions and longer sections.
Every 2 sections can be followed by a break.

4 Prerequisite Knowledge

Some familiarity with text-generation techniques
and related tasks is recommended. The tutorial
content will be accessible to Senior undergraduate,
masters, and PhD students. In particular, we as-
sume no attendee will have experience with DA
theory, and plan to explain adaptation bounds and
their distribution distances in an accessible way,
giving preference to visualizations and high-level
descriptions (over detailed equations). If desired,
attendees can expound these topics themselves af-
ter the tutorial, using take-home resources pro-
vided during the talk or on the tutorial website
(e.g., python packages, papers, surveys, etc.).3

5 Related Tutorials

No tutorial on DA theory for inclusive and eq-
uitable generation has been provided at an ∗ACL
venue. With that said, recent tutorials have related
motivation and complementary coverage.

Dyer et al. (2016); Church et al. (2022) and
multiple other tutorials have previously considered
deep neural networks for NLP. Deep networks have
become a dominating trend and, as noted, their
complexity poses issues for confident, responsible
decision making as it pertains to training and de-
ploying these models for generative applications.
Our tutorial complements these existing tutorials,
and pays careful attention to tools from DA theory
specifically designed for large language models (Si-
cilia et al., 2022a). Our hope is to make application
of these models more robust.

Chien (2019) present a tutorial on Deep
Bayesian techniques, Ruder et al. (2019) present
a tutorial on transfer learning, Yang et al. (2022)
present a tutorial on learning with limited data, and

3https://github.com/anthonysicilia/
AACL2023-DA4GenerativeAI

https://github.com/anthonysicilia/AACL2023-DA4GenerativeAI
https://github.com/anthonysicilia/AACL2023-DA4GenerativeAI
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Fisch et al. (2022) present a tutorial on uncertainty
estimation. These tutorials set the stage for our pro-
posed tutorial, since DA theory provides rigorous
solutions to many of the problems posed within
these topics. As such, we do expect some topical
overlap, but all of the techniques and solutions we
present to attendees are likely to be new. Attendees
that were/are interested in these previous tutorials
will benefit from seeing how DA theory can be
applied to solve their problems in a new way.

Tripodi and Pelillo (2016) present a tutorial on
game theory, Belinkov et al. (2020) present a tu-
torial on interpretability, and Lucic et al. (2022)
present a tutorial on reproducible ML. Each of
these tutorials shares a common theme with our pro-
posed tutorial: making NLP more robust through
principled analyses. Similar to these tutorials, we
will provide the tools for NLP practitioners apply-
ing ML to rigorously justify their decision making
processes and algorithm designs.

Finally, Chang et al. (2019) present a tutorial on
bias and fairness in NLP. Our tutorial complements
this previous tutorial in topic, but presents a new
perspective: the application of DA theory to this
area with a focus on large generative models.

6 Instructors

Anthony Sicilia is a 5th year Ph.D student, special-
izing in applications of learning theory and domain
adaptation theory to NLP problems such as inclu-
sivity, equity, and robustness. He has experience
in practical deployment of NLP systems, leading
an Alexa Prize TaskBot team (focused on inclusiv-
ity and collaboration) to 3rd place overall in this
international contest. He has published 4 papers
on robust NLP at ∗ACL venues, which are present
in the reading list: Atwell et al. (2022); Sicilia and
Alikhani (2022); Sicilia et al. (2022b); Sicilia and
Alikhani (2023). He also received a best paper
award at UAI 2022 for his work on novel PAC-
Bayesian DA theory for multiclass neural-networks
(Sicilia et al., 2022a). His work spans application
of DA theory to diverse areas such as: analysis of
the impact of data-shift on parsers and sentiment
classifiers, dialogue management and generation
in non-cooperative multi-objective environments,
causal analysis of the impact of model/dataset prop-
erties on discourse analysis, human-like dialogue
management and generation, equitable dialogue
management and generation, evaluation of both
human-likeness and equity in dialogue, and quan-

tification of linguistic and social biases in large
language models. Previously, he also applied learn-
ing theory in vision, especially small-data medi-
cal applications with a primary focus on bias miti-
gation and robust model evaluation (Sicilia et al.,
2021a,b,c; Zhao et al., 2022).

Malihe Alikhani is an expert in natural lan-
guage processing (NLP) and machine learning.
Alikhani’s research interests center on using repre-
sentations of communicative structure to improve
ethical and practical machine learning models. One
of the main focuses of her recent research has been
on studying formal methods of machine learning
for designing equitable and robust NLP tasks. This
includes using tools from learning theory for effi-
cient dialogue management, text generation, classi-
fication and measuring and mitigating biases in gen-
eration and classification tasks (Atwell et al., 2022;
Sicilia and Alikhani, 2022; Sicilia et al., 2022b;
Atwell et al., 2021; Sicilia and Alikhani, 2023; Si-
cilia et al., 2022a). Her work in these areas have re-
ceived three best paper awards at UAI 2022, ACM
UMAP 2022 and INLG 2021.

She has designed several task-oriented dialogue
systems and conversational QA models (Khalid
et al., 2020b,a; Sicilia et al., 2022b). Her work has
explored data-driven modeling of inferential links
in text and imagery (Alikhani and Stone, 2019),
neural controllable description generation mod-
els for images (Alikhani et al., 2020b), datasets
and models of coherent diagram interpretation
(Alikhani and Stone, 2018; Hiippala et al., 2021)
and interpretation of multimodal pointing actions in
human-robot collaboration (Alikhani et al., 2020a).
She has worked on distributional semantic ap-
proaches for modeling lexical aspect of verbs in En-
glish and six other languages (Kober et al., 2020).
She has also been involved in various projects for
studying the cognitive science of language use (Per-
saud et al., 2017) and formal language and au-
tomata, including probabilistic models of success
runs in Markov independent trials (Alikhani et al.,
2015). Alikhani has collected several corpora anno-
tated by crowdworkers and expert linguists in the
area of discourse, multimodality, dialogue, human–
robot interaction and psycholinguistics (Alikhani
and Stone, 2019; Hiippala et al., 2021; Alikhani
and Stone, 2018; Alikhani et al., 2019a, 2020a).
She has designed software for annotation, formal
and ML models for studying communicative intents
and the context of human-machine communication
(Alikhani et al., 2019b; Khalid et al., 2020b).
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