@inproceedings{trebuna-dusek-2023-visuallm,
title = "{V}isua{LLM}: Easy Web-based Visualization for Neural Language Generation",
author = "Trebu{\v{n}}a, Franti{\v{s}}ek and
Dusek, Ondrej",
editor = "Keet, C. Maria and
Lee, Hung-Yi and
Zarrie{\ss}, Sina",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-demos.3",
pages = "6--8",
abstract = "VisuaLLM is a Python library that enables interactive visualization of common tasks in natural language generation with pretrained language models (using HuggingFace{'}s model API), with tight integration of benchmark datasets and fine-grained generation control. The system runs as a local generation backend server and features a web-based frontend, allowing simple interface configuration by minimal Python code. The currently implemented views include data visualization, next-token prediction with probability distributions, and decoding parameter control, with simple extension to additional tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="trebuna-dusek-2023-visuallm">
<titleInfo>
<title>VisuaLLM: Easy Web-based Visualization for Neural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">František</namePart>
<namePart type="family">Trebuňa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondrej</namePart>
<namePart type="family">Dusek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Keet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>VisuaLLM is a Python library that enables interactive visualization of common tasks in natural language generation with pretrained language models (using HuggingFace’s model API), with tight integration of benchmark datasets and fine-grained generation control. The system runs as a local generation backend server and features a web-based frontend, allowing simple interface configuration by minimal Python code. The currently implemented views include data visualization, next-token prediction with probability distributions, and decoding parameter control, with simple extension to additional tasks.</abstract>
<identifier type="citekey">trebuna-dusek-2023-visuallm</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-demos.3</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>6</start>
<end>8</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T VisuaLLM: Easy Web-based Visualization for Neural Language Generation
%A Trebuňa, František
%A Dusek, Ondrej
%Y Keet, C. Maria
%Y Lee, Hung-Yi
%Y Zarrieß, Sina
%S Proceedings of the 16th International Natural Language Generation Conference: System Demonstrations
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F trebuna-dusek-2023-visuallm
%X VisuaLLM is a Python library that enables interactive visualization of common tasks in natural language generation with pretrained language models (using HuggingFace’s model API), with tight integration of benchmark datasets and fine-grained generation control. The system runs as a local generation backend server and features a web-based frontend, allowing simple interface configuration by minimal Python code. The currently implemented views include data visualization, next-token prediction with probability distributions, and decoding parameter control, with simple extension to additional tasks.
%U https://aclanthology.org/2023.inlg-demos.3
%P 6-8
Markdown (Informal)
[VisuaLLM: Easy Web-based Visualization for Neural Language Generation](https://aclanthology.org/2023.inlg-demos.3) (Trebuňa & Dusek, INLG-SIGDIAL 2023)
ACL