@inproceedings{rousseau-etal-2023-darbarer,
title = "Darbarer @ {A}uto{M}in2023: Transcription simplification for concise minute generation from multi-party conversations",
author = {Rousseau, Isma{\"e}l and
Fosse, Lo{\"\i}c and
Dkhissi, Youness and
Damnati, Geraldine and
Lecorv{\'e}, Gw{\'e}nol{\'e}},
editor = "Mille, Simon",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-genchal.17",
pages = "121--131",
abstract = "This document reports the approach of our team Darbarer for the main task (Task A) of the AutoMin 2023 challenge. Our system is composed of four main modules. The first module relies on a text simplification model aiming at standardizing the utterances of the conversation and compressing the input in order to focus on informative content. The second module handles summarization by employing a straightforward segmentation strategy and a fine-tuned BART-based generative model. Then a titling module has been trained in order to propose a short description of each summarized block. Lastly, we apply a post-processing step aimed at enhancing readability through specific formatting rules. Our contributions lie in the first, third and last steps. Our system generates precise and concise minutes. We provide a detailed description of our modules, discuss the difficulty of evaluating their impact and propose an analysis of observed errors in our generated minutes.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rousseau-etal-2023-darbarer">
<titleInfo>
<title>Darbarer @ AutoMin2023: Transcription simplification for concise minute generation from multi-party conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ismaël</namePart>
<namePart type="family">Rousseau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Loïc</namePart>
<namePart type="family">Fosse</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Youness</namePart>
<namePart type="family">Dkhissi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Geraldine</namePart>
<namePart type="family">Damnati</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gwénolé</namePart>
<namePart type="family">Lecorvé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This document reports the approach of our team Darbarer for the main task (Task A) of the AutoMin 2023 challenge. Our system is composed of four main modules. The first module relies on a text simplification model aiming at standardizing the utterances of the conversation and compressing the input in order to focus on informative content. The second module handles summarization by employing a straightforward segmentation strategy and a fine-tuned BART-based generative model. Then a titling module has been trained in order to propose a short description of each summarized block. Lastly, we apply a post-processing step aimed at enhancing readability through specific formatting rules. Our contributions lie in the first, third and last steps. Our system generates precise and concise minutes. We provide a detailed description of our modules, discuss the difficulty of evaluating their impact and propose an analysis of observed errors in our generated minutes.</abstract>
<identifier type="citekey">rousseau-etal-2023-darbarer</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-genchal.17</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>121</start>
<end>131</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Darbarer @ AutoMin2023: Transcription simplification for concise minute generation from multi-party conversations
%A Rousseau, Ismaël
%A Fosse, Loïc
%A Dkhissi, Youness
%A Damnati, Geraldine
%A Lecorvé, Gwénolé
%Y Mille, Simon
%S Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F rousseau-etal-2023-darbarer
%X This document reports the approach of our team Darbarer for the main task (Task A) of the AutoMin 2023 challenge. Our system is composed of four main modules. The first module relies on a text simplification model aiming at standardizing the utterances of the conversation and compressing the input in order to focus on informative content. The second module handles summarization by employing a straightforward segmentation strategy and a fine-tuned BART-based generative model. Then a titling module has been trained in order to propose a short description of each summarized block. Lastly, we apply a post-processing step aimed at enhancing readability through specific formatting rules. Our contributions lie in the first, third and last steps. Our system generates precise and concise minutes. We provide a detailed description of our modules, discuss the difficulty of evaluating their impact and propose an analysis of observed errors in our generated minutes.
%U https://aclanthology.org/2023.inlg-genchal.17
%P 121-131
Markdown (Informal)
[Darbarer @ AutoMin2023: Transcription simplification for concise minute generation from multi-party conversations](https://aclanthology.org/2023.inlg-genchal.17) (Rousseau et al., INLG-SIGDIAL 2023)
ACL