@inproceedings{stahl-wachsmuth-2023-identifying,
title = "Identifying Feedback Types to Augment Feedback Comment Generation",
author = "Stahl, Maja and
Wachsmuth, Henning",
editor = "Mille, Simon",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-genchal.5/",
pages = "31--36",
abstract = "In the context of language learning, feedback comment generation is the task of generating hints or explanatory notes for learner texts that help understand why a part of text is erroneous. This paper presents our approach to the Feedback Comment Generation Shared Task, collocated with the 16th International Natural Language Generation Conference (INLG 2023). The approach augments the generation of feedback comments by a self-supervised identification of feedback types in a multitasklearning setting. Within the shared task, other approaches performed more effective, yet the combined modeling of feedback type classification and feedback comment generation is superior to performing eedback generation only."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stahl-wachsmuth-2023-identifying">
<titleInfo>
<title>Identifying Feedback Types to Augment Feedback Comment Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Stahl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Henning</namePart>
<namePart type="family">Wachsmuth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the context of language learning, feedback comment generation is the task of generating hints or explanatory notes for learner texts that help understand why a part of text is erroneous. This paper presents our approach to the Feedback Comment Generation Shared Task, collocated with the 16th International Natural Language Generation Conference (INLG 2023). The approach augments the generation of feedback comments by a self-supervised identification of feedback types in a multitasklearning setting. Within the shared task, other approaches performed more effective, yet the combined modeling of feedback type classification and feedback comment generation is superior to performing eedback generation only.</abstract>
<identifier type="citekey">stahl-wachsmuth-2023-identifying</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-genchal.5/</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>31</start>
<end>36</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Feedback Types to Augment Feedback Comment Generation
%A Stahl, Maja
%A Wachsmuth, Henning
%Y Mille, Simon
%S Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F stahl-wachsmuth-2023-identifying
%X In the context of language learning, feedback comment generation is the task of generating hints or explanatory notes for learner texts that help understand why a part of text is erroneous. This paper presents our approach to the Feedback Comment Generation Shared Task, collocated with the 16th International Natural Language Generation Conference (INLG 2023). The approach augments the generation of feedback comments by a self-supervised identification of feedback types in a multitasklearning setting. Within the shared task, other approaches performed more effective, yet the combined modeling of feedback type classification and feedback comment generation is superior to performing eedback generation only.
%U https://aclanthology.org/2023.inlg-genchal.5/
%P 31-36
Markdown (Informal)
[Identifying Feedback Types to Augment Feedback Comment Generation](https://aclanthology.org/2023.inlg-genchal.5/) (Stahl & Wachsmuth, INLG-SIGDIAL 2023)
ACL