
Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges, pages 60–67
September 11–15, 2023. ©2023 Association for Computational Linguistics

60

Retrieval, Masking, and Generation: Feedback Comment Generation
using Masked Comment Examples

Mana Ihori and Hiroshi Sato and Tomohiro Tanaka and Ryo Masumura
NTT Computer and Data Science Laboratories, NTT Corporation

1-1 Hikarinooka, Yokosuka-Shi, Kanagawa 239-0847, Japan
mana.ihori@ntt.com

Abstract

In this paper, we propose a novel method, re-
trieval, masking, and generation, for feedback
comment generation. Feedback comment gen-
eration is a task in which a system generates
feedback comments such as hints or explana-
tory notes for language learners, given input
text and position showing where to comment.
In the conventional study, the retrieve-and-edit
method for retrieving feedback comments in
the data pool and editing the comments has
been thought effective for this task. However,
the performance of this method does not per-
form as well as other conventional methods be-
cause its model learns to edit tokens that do not
need to be rewritten in the retrieved comments.
To mitigate this problem, we propose a method
for combining retrieval, masking, and gener-
ation based on the retrieve-and-edit method.
Specifically, tokens of feedback comments re-
trieved from the data pool are masked, and this
masked feedback comment is used as a tem-
plate to generate feedback comments. The pro-
posed method should prevent unnecessary con-
version by using not retrieved feedback com-
ments directly but masking them. Our experi-
ments on feedback comment generation demon-
strate that the proposed method outperforms
conventional methods.

1 Introduction

Feedback comment generation is a task in which,
given an input text and position that shows where to
comment, a system generates feedback comments
such as hints or explanatory notes for non-native
language learners (Nagata, 2019). In this task, it
is not enough to simply point out or correct errors;
the system should also explain why they are wrong.
Such a system would be extremely beneficial for
language learners, but there is currently no effective
method for generating comments.

Conventionally, retrieval-based (Nagata, 2019),
simple generation (See et al., 2017), and retrieve-
and-edit (Hashimoto et al., 2018) methods have

been used for the feedback comment generation
task. With the retrieval-based method, the method
retrieves a feedback comment from the data pool
with maximum cosine similarity. Although the
modeling for this method is simple, the output is
not flexible; for example, this method often re-
trieves feedback comments that were correct as
hints or explanatory notes but focused on tokens
that are not in the input text. The simple genera-
tion method generates feedback comments directly
given the input text and position using an encoder-
decoder model. Since this method can generate
flexible feedback comments, it mitigates the prob-
lem with the retrieval-based method. However,
generating comments with simple generation is
more difficult than with the retrieval-based method
because this method should generate comments
from scratch. Thus, Hanawa et al. (2021) used
the retrieve-and-edit method that combines these
two methods for better performance. With this
method, the feedback comments retrieved with the
retrieval-based method are edited using the simple
generation method. However, the experimental re-
sults indicated that the retrieve-and-edit method did
not perform well because its model learned exces-
sive conversions and converted unnecessary tokens
(Hanawa et al., 2021).

To mitigate this problem, we consider extending
the retrieve-and-edit method with which unneces-
sary tokens in the retrieved feedback comments
are actively edited. Our idea to specify where to
edit the retrieved feedback comment is masking to-
kens that should be edited. By masking tokens that
should be edited, the method should be able to pre-
dict only masked tokens and not change the other
tokens in the retrieved feedback comments. Specif-
ically, we mask tokens in retrieved feedback com-
ments obtained with the retrieval-based method,
and the method outputs a feedback comment given
this masked feedback comment and the input text.
We can create a template for comment generation,

61

as the tokens of the retrieved feedback comment
that are irrelevant to the input text are eliminated.

In this paper, we propose a novel method, re-
trieval, masking, and generation, for feedback com-
ment generation. It consists of three modules: re-
trieval, masking, and generation. First, the retrieval
module retrieves a feedback comment from the
data pool, as with the conventional retrieval-based
method. Next, the masking module executes binary
classification, i.e., masking or not, for each token
in the retrieved feedback comment. The masking
module learns to mask tokens of the retrieved com-
ment that are not in the reference feedback com-
ment. Finally, the generation module generates a
feedback comment given the input text and masked
feedback comment. To generate feedback com-
ments, the proposed method cascades the results of
each module, which means that the performance
of each module depends on the subsequent per-
formance of the module output. To mitigate this
potential problem, we introduce a multi-decoding
operation that uses not only the top result but also
the top k results. Our experiments on feedback
comment generation demonstrate that the proposed
method performs better than the above three con-
ventional methods.

2 Feedback Comment Generation

In feedback comment generation, given the input
text that has grammatical errors and position, a
system outputs a feedback comment. We define
the input text as X = {x1, · · · , xM} and feedback
comment as Y = {y1, · · · , yN}, where xm and
yn are tokens, and M and N are the number of
tokens in the input text and feedback comment, re-
spectively. The position represents the range of the
feedback target in character units and consists of
integers. We make X̃ emphasize the target charac-
ters by adding brackets to the input text on the basis
based of the given position. For example, when X
is “He agrees the opinion.” and the position is 3:13,
X̃ is “He «agrees the» opinion.” Note that in X̃ ,
the input text and position are not treated separately,
but the position is also treated as a token.

3 Retrieval, Masking, and Generation
Modules

The proposed method consists of three modules:
retrieval, masking, and generation. Figure 1 shows
an overview of the proposed method.

3.1 Retrieval Module
The retrieval module outputs a candidate of feed-
back comments, given the input text, position, and
data pool of feedback comments. To obtain the can-
didate, the module calculates the cosine similarity
between vectors of the input text X and feedback
comment Y selected from the data pool. Since
X does not include the position information, we
add it by converting the position into position label
P = {p1, · · · , pM}. The pm ∈ {0, 1} is the m-th
binary label represented by 1 if each token in the
input text is in the position range, and 0 otherwise.
For example, when X is {He, agrees, the, opinion,
.} and the position is 3:13, P is {0, 1, 1, 0, 0}.
Therefore, given the X , P , and selected Y , the
module outputs the cosine similarity between X
and Y , as

s = ret(X,P ,Y ;Θret), (1)

where ret() is the function of the retrieval module
and Θret is a trainable parameter set.

This module is constructed using a Transformer-
based encoder model. First, the module en-
codes X and Y into hidden representations Q =
{q1, · · · , qM} and R = {r1, · · · , rN} as

Q = TransformerEncoder(X;Θret), (2)

R = TransformerEncoder(Y ;Θret), (3)

where TransformerEncoder() is the Transformer
encoder that consists of an embedding layer,
scaled dot product multi-head self-attention layer,
and position-wise feed-forward network (Vaswani
et al., 2017). We also use a pre-trained BERT
that performs well for various natural language
understanding tasks (Devlin et al., 2018) as
TransformerEncoder() in the module.

Next, it multiplies Q and P to convert the hidden
representations into a single vector u as

u =

M∑
m=1

qm · pm. (4)

We also use r1, which is the embedding of the
[CLS] token at the beginning of the feedback com-
ment as a single vector of R.

Finally, we calculate the cosine similarity of u
and r1 as

ret(X,P ,Y ;Θret) =
u · r1
∥u∥∥r1∥

. (5)

The module outputs a candidate of the feedback
comment that has the highest similarity in the data
pool.

62

(a) Retrieval module

Retrieval module

Feedback
commentsInput text

I … with lifestyle.

Cosine similarity

<<about>> is not …

(b) Masking module (c) Generation module

Masking module

<<about>> is not … <<ask>> because …

1 0 0 0

is not …[MASK]

1 1

[MASK]

0

…

Generation module

I … <<with>> lifestyle. [SEP] [MASK] is not … [MASK] …

Input text Masked feedback comment

Generated feedback comment

<<with>> is not … <<effect>> …

Retrieved feedback comment

Figure 1: Overview of proposed method. Underlined words in input text represent position.

Training: The retrieval module is trained us-
ing dataset Dret = {(X1,P 1,Y,S1), · · · , (XC ,
PC ,Y,SC)}. Here, C is the number of the
input text and position, Y = {Y 1, · · · ,Y D}
is the data pool of feedback comments, Sc =
{sc,1, · · · , sc,D} is the sets of Levenshtein simi-
larities (Levenshtein et al., 1966) for c-th reference
feedback comment Y c, and sc,d is the Levenshtein
similarity of Y c and selected comment Y d. This
module is trained to approach the cosine similarity
of Xc and Y d for sc,d using mean squared error.
The training loss function Lret is defined as

Lret =
1

C ·D

C∑
c=1

D∑
d=1

(sc,d − ret(Xc,P c,Y d;Θret))
2
, (6)

Retrieval: The retrieval module outputs a can-
didate of feedback comment Ỹ with the highest
similarity per input text from the data pool Y as

Ỹ = arg max
Y ∈Y

ret(X,P ,Y ;Θret). (7)

3.2 Masking Module

The masking module executes binary classification,
i.e., masking or not, for each token in the retrieved
feedback comment that is output of the retrieval
module. Given the X , P , and Ỹ , the module
outputs the masking label L = {l1, · · · , lN}where
ln ∈ {0, 1} is the n-the binary label as

P (L|X,P , Ỹ ;Θmask)

=

N∏
n=1

P (ln|X,P , Ỹ ;Θmask), (8)

where Θmask is the trainable parameter set.
This module has a common architecture with the

retrieval module. Thus, we convert X and P into

a single vector u and convert Y into hidden repre-
sentations R = {r1, · · · , rN} with Eqs. (2), (3),
and (4). Next, we compute a binary classification
for each token in the retrieved comment by using
these vectors as

P (ln|X,P , Ỹ ;Θmask) = softmax(vn;Θmask),
(9)

vn = [uT, rTn]
T, (10)

where, softmax() is a linear transformational func-
tion with a softmax activation.

The final output is a masked feedback comment
with masked tokens labeled 1. The module masks
tokens of the retrieved comment that are not in the
reference feedback comment. It also replaces to-
kens that should be masked with the special token
[MASK]. The generation module should then pre-
dict the same number of tokens as the number of
masked tokens; however, the numbers of masked
tokens and tokens that should be generated are not
necessarily the same. Therefore, we use span-mask
denoising (Raffel et al., 2020), which replaces con-
secutive tokens with a single special token.

Training: The masking module is trained using
dataset Dmask = {(X1,P 1,Y,L1), · · · , (XC ,
PC ,Y,LC)}, where C is the number of input text
and position, and Lc = {Lc,1, · · · ,Lc,D} is the
label sets. Label set Lc,d is a set with label 1 for
tokens of the Y d selected from the data pool that
are not in the reference feedback comment Y c and
0 for all others. The training loss function Lmask is
defined as

Lmask

= −
C∑
c=1

D∑
d=1

logP (Lc,d|Xc,P c,Y d;Θmask).

(11)

63

Masking: The decoding problem is defined as

L̂ = arg max
L

P (L|X,P , Ỹ ;Θmask). (12)

Finally, the module outputs a masked feedback
comment Ȳ using L̂ and Ỹ as

Ȳ = MASK(Ỹ , L̂), (13)

where MASK() is the operation to mask tokens of
the retrieved feedback comment using span-mask
denoising. Note that when the output results are
all 0 (no tokens are masked), we directly use the
retrieved comment as the feedback comment.

3.3 Generation Module

The generation module outputs Y given the in-
put text X̃ = {x̃1, · · · , x̃m} and masked feed-
back comment Ȳ = {ȳ1, · · · , ȳn}. The input is
the concatenated sequence of the input text and
masked comment with a separator token, Z =
{x̃1, · · · , x̃m, [SEP], ȳ1, · · · , ȳn}. The generation
probability of Y is defined as

P (Y |Z;Θ) =
N∏

n=1

P (yn|y1:n−1,Z;Θgen),

(14)
where Θgen is the trainable parameter set.

This module is constructed using a Transformer-
based encoder-decoder model. First, the encoder
converts the Z into hidden representations H as

H = TransformerEncoder(Z;Θgen). (15)

Next, the decoder computes the generation prob-
ability of a token from the preceding tokens and the
H . The predicted probabilities of the n-th token
yn are calculated as

P (yn|y1:n−1,Z;Θgen) = softmax(wn;Θgen).
(16)

The hidden representations wn are calculated using
H and y1:n−1 = {y1, · · · , yn−1} as

wn = TransformerDecoder(y1:n−1,H;Θgen),
(17)

where TransformerDecoder() is the Transformer
decoder that consists of an embedding layer, scaled
dot product multi-head self-attention and source
target attention layers, and a position-wise feed-
forward network (Vaswani et al., 2017).

Training: The generation module is trained using
datasetDgen={(Z1, Y 1),· · · ,(Z |Dgen|, Y |Dgen|)}.
The training loss function Lgen is defined as

Lgen = −
∑

(Z,Y)∈Dgen

logP (Y |Z;Θgen). (18)

Decoding: The decoding problem is defined as

Ŷ = arg max
Y

P (Y |Z;Θgen). (19)

3.4 Multi-Decoding

Since the proposed method cascades the output of
three modules, the performance of each module is
directly related to that of the next module. However,
it is difficult to fully guarantee the output of each
module. When only the top output is used, we
might not be able to take full advantage of each
module. To mitigate this problem, we use multi-
decoding to generate a feedback comment with
high confidence.

In the multi-decoding operation, the top k feed-
back comments per input text are first retrieved
using the retrieval module. Next, masking is exe-
cuted on each token of k retrieved comments using
the masking module. Then, the duplicated ones for
the same input text are excluded. When only the
unmasked tokens remain, the comment is stored as
a candidate feedback comment. Next, given each
masked feedback comment and the input text, the
generation module outputs the feedback comment
per masked comment. As a result of this process,
multiple feedback comments are generated for a
single input text, including the candidates that are
outputted in the masking module. Thus, we extract
only one feedback comment from these comments
using Algorithm 1. In this algorithm, lev() is the
function to calculate Levenshtein similarity.

In the feedback comment generation task, the
special output token <NO_COMMENT> indicates
that a system cannot generate any reliable feedback
comment. In this study, unreliable feedback com-
ments are converted into <NO_COMMENT> in
accordance with the following rules.

• Feedback comments in which bracketed to-
kens in the comment are not in the input text.

• Feedback comments include “ the preposition
is not necessary,” but the input text does not
have the preposition.

64

Algorithm 1 Multi-decoding operation

Require: X, candidates = {Ŷ 1,· · · ,Ŷ k}
1: all_ave = 0, all_cnt = 0
2: for i← 0 to k do
3: ave = 0, cnt = 0
4: for j ← 0 to k do
5: if i ̸= j then
6: ave = ave+ lev(Ŷ i, Ŷ j)
7: if Ŷ i = Ŷ j then
8: cnt = cnt+ 1
9: end if

10: end if
11: end for
12: ave = ave+ lev(Ŷ i,X)
13: ave = ave/k
14: if all_cnt < cnt then
15: all_cnt = cnt

16: Yc = Ŷ i

17: flag = 0
18: else if cnt = all_cnt then
19: flag = 1
20: end if
21: if all_ave < ave then
22: all_ave = ave

23: Ya = Ŷ i

24: end if
25: end for
26: if flag = 1 then
27: Y = Ya

28: else
29: Y = Yc

30: end if
31: return Y

4 Experiments

4.1 Datasets

We used a dataset provided by Generation Chal-
lenge 2022 that contains input text, position, and
feedback comments. The dataset has 4,868 sen-
tences in a training set, 170 sentences in a val-
idation set, and 215 sentences in a test set. In
the dataset, the errors in the input text only cover
preposition uses. The three modules of the pro-
posed method require individual datasets for train-
ing; thus, we created datasets for each module from
this provided dataset.

Retrieval module: The dataset for the retrieval
module consists of the input text, position, feed-
back comment selected from the data pool, and
Levenshtein similarity. The input text and posi-
tion are the same as the provided dataset. Also,
the Levenshtein similarity is calculated using refer-
ence feedback comments and selected comments
from the data pool (feedback comments in the train-
ing data of the provided dataset). In the provided
dataset, there are many low-similarity combina-
tions of the reference feedback comment and se-
lected comments. Thus, the dataset would be un-
balanced if we used all combinations for training.
To prevent this problem, we randomly removed
samples so there would be less than five with the
same first decimal place value of similarity. Finally,
we divided the dataset into 139,687 sentences in a
training set and 5,001 sentences in a validation set.

Masking module: The dataset for the masking
module consists of the input text, position, feed-
back comments selected from the data pool, and
masking labels. We use the sets of input text, po-
sition, and selected comments that were created
in the retrieval module for the masking module to
prevent data imbalance. To make masking labels,
we took a word-by-word alignment for all com-
ments and reference feedback comments. We then
labeled tokens that were not in the reference feed-
back comments as 1 and others as 0 for the selected
comments. Finally, there were 139,687 sentences
in a training set and 5,001 sentences in a validation
set, the same as the dataset of the retrieval module.

Generation module: The dataset for the gener-
ation module consists of the sequence that was
concatenated with the input text and masked feed-
back comments, and reference feedback comments.
The input text and masked feedback comment are
connected using a separator token [SEP]. To create
the dataset, we used the datasets of the retrieval
and masking modules. First, we extracted the top
five and five random feedback comments per in-
put text by using the Levenshtein similarity in the
dataset of the retrieval module. Next, we extracted
the masked feedback comments that correspond to
the above ten feedback comments from the dataset
of the masking module. Then, we deleted the du-
plicated masked comments. Finally, these input
text and masked feedback comments were concate-
nated into a single sequence and paired with the
reference comment. In addition, we divided the

65

dataset into 48,309 sentences in a training set and
1,000 sentences in a validation set.

4.2 Setup
We implemented the proposed method (with
all three modules); the retrieval-and-generation
method, which is the proposed method without the
masking module and regarded as the retrieve-and-
edit method; the retrieval module only, regarded
as the retrieval-based method; and the generation
module only, regarded as the simple generation
method. We also used the pointer-generator net-
work (See et al., 2017) provided by Generation
Challenge 2022 as a baseline for comparison. We
converted the comments generated with all meth-
ods into <NO_COMMENT> when they met the
rules discussed in Subsection 3.4.

These methods were fine-tuned using a pre-
trained model. The retrieval and masking modules
used a pre-trained BERT (Devlin et al., 2018) (bert-
based-cased from the HuggingFace Transformers
library (Wolf et al., 2020)). The generation module
used a pre-trained T5 (Raffel et al., 2020) (t5-base
from the HuggingFace Transformers library (Wolf
et al., 2020)). We fine-tuned these pre-trained mod-
els using the dataset constructed in Subsection 4.1
and used the RAdam optimizer (Liu et al., 2019)
with the mini-batch size set to 64. In the multi-
decoding operation, we set k to seven. We also
fine-tuned only the generation module using the
provided dataset and the retrieval and generation
method using the dataset that had unmasked feed-
back comments in the dataset for the generation
module. Note that only the pointer-generator net-
work was not pre-trained.

4.3 Results
Table 1 lists the experimental results of the feed-
back comment generation. The values represent
BLEU scores (Papineni et al., 2002), where preci-
sion is calculated by dividing the sum of BLEU for
each generation by the number of expected feed-
back comments, and recall is calculated by dividing
the sum of BLEU for each generation by the num-
ber of generations excluding <NO_COMMENT>.
The precision and recall results are then used to
calculate F1.

The table shows that the proposed method with
multi-decoding outperformed the other methods.
Specifically, the performance of the proposed
method improved using multi-decoding. With
the proposed method, we believe that the multi-

Method Precision Recall F1
pointe-generator 0.334 0.334 0.334
retrieval 0.424 0.422 0.423
generation 0.464 0.464 0.464
retrieval-and-generation 0.482 0.482 0.482
+ multi-decoding 0.480 0.480 0.480
proposed 0.483 0.481 0.482
+ multi-decoding* 0.495 0.493 0.494

* This is our best result, although it differs from officially
published results.

Table 1: Results of feedback comment generation.

decoding improved the probability of generating
a feedback comment that was close to the cor-
rect comment because the method could generate
different feedback comments by using different
masked comments. It generated different feedback
comments for the same input text using different
masked comments, as shown in Table 2. The ta-
ble shows that these comments were generated by
predicting mask tokens of masked feedback com-
ments. These results indicate that masking tokens
in the retrieved feedback comments are important
for rewriting these comments for the input text.

With the retrieval-and-generation method, when
we used different retrieved feedback comments for
the same input text, it generated the same feed-
back comment, as shown in Table 3. Therefore,
even if we used multi-decoding for this method,
the performance would almost be the same without
multi-decoding. We assume it would be difficult
to rewrite the retrieved feedback comment for the
input text with this method. It also performed bet-
ter than the generation module. This indicates that
a large amount of training data was effective, not
the use of retrieved feedback comments without
masking.

The retrieval module underperformed the other
methods. This is because it often retrieved com-
ments that were correct as feedback comments but
focused on tokens that were not in the input text,
as was the problem with the conventional study.

4.4 Ablation Study
Table 1 shows that the performances of the pro-
posed method and retrieval-and-generation method
were equivalent. We believe that the performance
of the masking module adversely affected the per-
formance of the proposed method because the pro-
posed method cascades the results of three modules.
Thus, at the inference, we compared the final re-
sults using predicted masking with correct masking.
Table 4 shows the results, and the proposed method

66

Input text Reference
After all , as a student , he or she needs
to put the study at the first place .

«At» is not the correct <preposition> to be used with the set phrase formed using
«the first place» meaning “to prioritize something”. ‘In’ is the <preposition> to be
used with the <noun> «place».

Retrieved Masked Generated
The <preposition> «at» is normally
used to indicate a relatively short period
of time such as the time of day. Look
up the <noun> «time» in a dictionary to
learn the appropriate <preposition> to
be used to indicate a period.

The <preposition> «at» is normally
used to indicate [MASK] relatively
short period [MASK] time [MASK]
the time [MASK] day. Look up the
<noun> «time» in a dictionary to learn
the [MASK] <preposition> to [MASK]
used to indicate [MASK] period.

The <preposition> «at» is normally
used to indicate a relatively short period
of time such as the time of day. Look
up the <noun> «place» in a dictionary
to learn the appropriate <preposition>
to be used to indicate a place.

Using the <preposition> «in» makes the
expression literally mean “to have in
one hand”. Look up the <noun> «hand»
in a dictionary to learn the appropriate
<preposition> to be used to form an <id-
iom> introducing one of two ideas.

[MASK] the <preposition> [MASK]
the expression [MASK] Look up the
<noun> [MASK] in a dictionary to learn
the [MASK] <preposition> to [MASK]
used to [MASK]

«At» is not the appropriate <prepo-
sition> to be used with the <noun>
«place» to express “to put something in
the first place”. Look up the <noun>
«place» in a dictionary to learn the ap-
propriate <preposition> to be used.

Table 2: Example of proposed method’s output. Underlined words in input text represent position. Bold words in
masked comments mean that they were edited but not masked. Red words in generated comments mean that they
were not in masked comments.

Input text Reference
... colleagues is totally different with the way ... The <preposition> «with» is often used to indicate concor-

dance. Consult a ...
Retrieved Generation
«In» is not the <preposition> used with ’bad’ to qualify the
subsequent ...

The <preposition> «with» is often used to indicate concor-
dance. Consult a ...

«to» is not the correct <preposition> to be used to refer to the
target. Look ...

The <preposition> «with» is often used to indicate concor-
dance. Consult a ...

Table 3: Example of retrieval-and-generation method’s output. Underlined words in input text represent position.

Method Precision Recall F1
proposed 0.483 0.481 0.482
with correct masking 0.539 0.539 0.539

Table 4: Results using predicted or correct masking.

with correct masking was significantly improved
in performance. Table 5 also shows the generated
feedback comments using predicted and correct
masked feedback comments. The predicted mask-
ing was wrong. Although the generated feedback
comment using the correct masked comment was
the same as the reference feedback comment, using
the predicted masked comment was different. In
addition, when we used predicted masking, the pro-
posed method also edited tokens other than those
in the masked comments. We assume its model
determined that predicting only the masked tokens
would generate unnatural feedback comments. In
other words, when the wrong masked feedback
comment was used, the generation task was more
difficult than using correct masking. Therefore, it
is inferred that the design of the masking module is
important for the proposed method, and we should
improve this for future work.

5 Conclusion

In this paper, we proposed a novel method, re-
trieval, masking, and generation, for feedback com-
ment generation. The proposed method has three
modules, retrieval, masking, and generation, and
generates feedback comments by cascading each
module output. First, the retrieval module extracts
an example of feedback comments appropriate for
the input text from the data pool. Next, the mask-
ing module masks tokens of the retrieved example
that are not in the reference feedback comment. Fi-
nally, given a concatenated sequence of the input
text and masked feedback comment, the generation
module outputs the feedback comment in the gener-
ation module. With this three-module method, the
performance of each module depends on the subse-
quent performance of the module output. Since it
is difficult to guarantee the perfect performance of
each module, we use a multi-decoding operation
that uses not only the top result but also the top k
results for each decoding. Our experimental results
indicate that the proposed method outperforms the
three conventional methods.

67

Input text Reference Retrieved
... please keep consider about that. The <verb> «consider» is a <transitive

verb> when used to express “to think
about” and does not need the <preposi-
tion> «about».

Since the <verb> encounter is a <tran-
sitive verb> when used to express “to
meet someone”, a <preposition> does
not need to precede the <object>.

Masked Generation
Predicted Masking [MASK] the <verb> [MASK] is <tran-

sitive verb> when used to [MASK] a
<preposition> does not need to pre-
cede the [MASK]

When the <verb> «consider» is used as
a <transitive verb> in a sense of “care
for someone”, a <preposition> is unnec-
essary.

Correct Masking [MASK] <verb> [MASK] is a <tran-
sitive verb> when used to express “to
[MASK] does not need [MASK]

The <verb> «consider» is a <transitive
verb> when used to express “to think
about” and does not need the <preposi-
tion> «about».

Table 5: Example of proposed method using predicted or correct masking. Underlined words in input text represent
position. Bold words in masked comments mean that they were edited but not masked. Red words in generated
comments mean that they were not in masked comments.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kazuaki Hanawa, Ryo Nagata, and Kentaro Inui. 2021.
Exploring methods for generating feedback com-
ments for writing learning. In Proc. Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 9719–9730.

Tatsunori B Hashimoto, Kelvin Guu, Yonatan Oren, and
Percy S Liang. 2018. A retrieve-and-edit framework
for predicting structured outputs. In Proc. Advances
in Neural Information Processing Systems (NeurIPS),
page 10052–10062.

Vladimir I Levenshtein et al. 1966. Binary codes capa-
ble of correcting deletions, insertions, and reversals.
In Soviet physics doklady, pages 707–710.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019. On the variance of the adaptive learning rate
and beyond. In Proc. International Conference on
Learning Representations (ICLR).

Ryo Nagata. 2019. Toward a task of feedback comment
generation for writing learning. In Proc. Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3206–3215.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proc. the Associ-
ation for Computational Linguistics (ACL), pages
311–318.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits

of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 21:1–
67.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proc. Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 1073–1083.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. Advances in neural information
processing systems (NIPS), pages 5998–6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proc. Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations
(EMNLP), pages 38–45.

