@inproceedings{surya-etal-2023-zero,
title = "A Zero-Shot Approach for Multi-User Task-Oriented Dialog Generation",
author = "Surya, Shiv and
Jo, Yohan and
Biswas, Arijit and
Potamianos, Alexandros",
editor = "Keet, C. Maria and
Lee, Hung-Yi and
Zarrie{\ss}, Sina",
booktitle = "Proceedings of the 16th International Natural Language Generation Conference",
month = sep,
year = "2023",
address = "Prague, Czechia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.inlg-main.14",
doi = "10.18653/v1/2023.inlg-main.14",
pages = "196--205",
abstract = "Prior art investigating task-oriented dialog and automatic generation of such dialogs have focused on single-user dialogs between a single user and an agent. However, there is limited study on adapting such AI agents to multi-user conversations (involving multiple users and an agent). Multi-user conversations are richer than single-user conversations containing social banter and collaborative decision making. The most significant challenge impeding such studies is the lack of suitable multi-user task-oriented dialogs with annotations of user belief states and system actions. One potential solution is multi-user dialog generation from single-user data. Many single-user dialogs datasets already contain dialog state information (intents, slots), thus making them suitable candidates. In this work, we propose a novel approach for expanding single-user task-oriented dialogs (e.g. MultiWOZ) to multi-user dialogs in a zero-shot setting.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="surya-etal-2023-zero">
<titleInfo>
<title>A Zero-Shot Approach for Multi-User Task-Oriented Dialog Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiv</namePart>
<namePart type="family">Surya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohan</namePart>
<namePart type="family">Jo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arijit</namePart>
<namePart type="family">Biswas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandros</namePart>
<namePart type="family">Potamianos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th International Natural Language Generation Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="given">Maria</namePart>
<namePart type="family">Keet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hung-Yi</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sina</namePart>
<namePart type="family">Zarrieß</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Prague, Czechia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Prior art investigating task-oriented dialog and automatic generation of such dialogs have focused on single-user dialogs between a single user and an agent. However, there is limited study on adapting such AI agents to multi-user conversations (involving multiple users and an agent). Multi-user conversations are richer than single-user conversations containing social banter and collaborative decision making. The most significant challenge impeding such studies is the lack of suitable multi-user task-oriented dialogs with annotations of user belief states and system actions. One potential solution is multi-user dialog generation from single-user data. Many single-user dialogs datasets already contain dialog state information (intents, slots), thus making them suitable candidates. In this work, we propose a novel approach for expanding single-user task-oriented dialogs (e.g. MultiWOZ) to multi-user dialogs in a zero-shot setting.</abstract>
<identifier type="citekey">surya-etal-2023-zero</identifier>
<identifier type="doi">10.18653/v1/2023.inlg-main.14</identifier>
<location>
<url>https://aclanthology.org/2023.inlg-main.14</url>
</location>
<part>
<date>2023-09</date>
<extent unit="page">
<start>196</start>
<end>205</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Zero-Shot Approach for Multi-User Task-Oriented Dialog Generation
%A Surya, Shiv
%A Jo, Yohan
%A Biswas, Arijit
%A Potamianos, Alexandros
%Y Keet, C. Maria
%Y Lee, Hung-Yi
%Y Zarrieß, Sina
%S Proceedings of the 16th International Natural Language Generation Conference
%D 2023
%8 September
%I Association for Computational Linguistics
%C Prague, Czechia
%F surya-etal-2023-zero
%X Prior art investigating task-oriented dialog and automatic generation of such dialogs have focused on single-user dialogs between a single user and an agent. However, there is limited study on adapting such AI agents to multi-user conversations (involving multiple users and an agent). Multi-user conversations are richer than single-user conversations containing social banter and collaborative decision making. The most significant challenge impeding such studies is the lack of suitable multi-user task-oriented dialogs with annotations of user belief states and system actions. One potential solution is multi-user dialog generation from single-user data. Many single-user dialogs datasets already contain dialog state information (intents, slots), thus making them suitable candidates. In this work, we propose a novel approach for expanding single-user task-oriented dialogs (e.g. MultiWOZ) to multi-user dialogs in a zero-shot setting.
%R 10.18653/v1/2023.inlg-main.14
%U https://aclanthology.org/2023.inlg-main.14
%U https://doi.org/10.18653/v1/2023.inlg-main.14
%P 196-205
Markdown (Informal)
[A Zero-Shot Approach for Multi-User Task-Oriented Dialog Generation](https://aclanthology.org/2023.inlg-main.14) (Surya et al., INLG-SIGDIAL 2023)
ACL