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Abstract

Language-capable robots must be able to effi-
ciently and naturally communicate about ob-
jects in the environment. A key part of com-
munication is Referring Form Selection (RFS):
the process of selecting a form like it, that, or
the N to use when referring to an object. Re-
cent cognitive status-informed computational
RFS models have been evaluated in terms of
goodness-of-fit to human data. But it is as yet
unclear whether these models actually select
referring forms that are any more natural than
baseline alternatives, regardless of goodness-of-
fit. Through a human subject study designed to
assess this question, we show that even though
cognitive status-informed referring selection
models achieve good fit to human data, they do
not (yet) produce concrete benefits in terms of
naturality. On the other hand, our results show
that human utterances also had high variabil-
ity in perceived naturality, demonstrating the
challenges of evaluating RFS naturality.

Keywords: Referring form selection (RFS),
computational models, naturalness, Givenness
Hierarchy, cognitive status

1 Introduction

Referring is a critical part of human communica-
tion, especially in situated, task-based interactions.
Humans use a variety of referring forms during ref-
erence production, including both definite descrip-
tions (e.g., The red box on the table) and concise
referring forms (e.g., this box, that, or it). While
more concise referring forms are less information-
rich, they allow speakers to express their inten-
tions more quickly, and allow their listeners in turn
to more quickly and effectively infer those inten-
tions (Gundel et al., 1993). The process of choosing
what type of referring form to use, known as Re-
ferring Form Selection, is an important first step in
the production of referring language (Krahmer and
Van Deemter, 2012).

∗The first three authors contributed equally to this work.

Figure 1: To investigate the naturalness of referring
forms, we conducted a study where participants watched
videos of human-human instruction tasks. After each
video, participants were shown a referring utterance that
could have followed as the next line in the dialogue, and
were asked to assess the naturalness of that utterance.

Yet despite the wide variety of referring forms
observed in human-human interaction, and the
critical role of Referring Form Selection in lan-
guage production, most research on generating
referring language has focused solely on definite
descriptions (Van Deemter, 2016; Krahmer and
Van Deemter, 2012). While generating effective
definite descriptions is a critical task, a speaker
solely relying on this referring form would be an
inefficient, unnatural, and annoying speaker. This
discrepancy is critical not just for the psycholinguis-
tics community, who seek to understand the cog-
nitive dynamics of language production, but also
for the Artificial Intelligence and Human-Robot
Interaction communities, who seek to enable ef-
ficient, natural, and humanlike communication in
task-based, situated domains (Tellex et al., 2013;
Jackson and Williams, 2022; Cakmak and Thomaz,
2012; Williams et al., 2015; Gervits et al., 2021).
As such, we argue that more attention to the prob-
lem of Referring Form Selection is needed across
multiple areas of cognitive science.
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Recently, a number of researchers have begun
to give the Referring Form Selection problem
additional consideration, using a variety of ex-
perimental and machine learning research tech-
niques (Same and van Deemter, 2020; Pal et al.,
2021; Chen et al., 2021; Han et al., 2022; Spevak
et al., 2022). For example, Chen et al. (2021) exam-
ined the features learned by deep learning models
of Referring Form Selection; Han et al. (2022) ad-
dressed the ecological validity of the contexts in
which Referring Form Selection is studied; Spe-
vak et al. (2022) studied how document planning
of task instructions could be designed for optimal
referring form selection; and Pal et al. (2021) and
Han et al. (2022) studied how models of cognitive
status could be used to enable cognitively informed
models of Referring Form Selection.

This last set of work is of particular interest:
Pal et al. (2021) and Han et al. (2022) leveraged
the well-validated (Gundel et al., 2010) Givenness
Hierarchy theory (Gundel et al., 1993), a linguistic
theory that captures the relation between different
referring forms and the cognitive status of referents
in listeners’ minds. For example, per this theory,
when a speaker uses this, one can infer they assume
their target referent to be activated in their listener’s
mind; when a speaker uses it, one can infer they
assume their target referent to be in focus.

Previous work on cognitive status-informed
models of Referring Form Selection have largely
been evaluated in terms of fit to human data us-
ing objective metrics like accuracy and notably hu-
man evaluations of these computational model in
live human-robot interactions by Han and Williams
(2023). That is, previous researchers have only
assessed whether the referring forms predicted by
their models match the referring forms that people
actually use in human-human interactions.

While assessing fit to human data supports these
models as cognitive models, it obfuscates a key
dimension of Referring Form Selection: when a
human selects a Referring Form during Referring
Form Selection, there is no one “correct” form for
them to select. In many contexts, for example,
the N’ and that N’ may be relatively equally ap-
propriate. Even when an object is truly in focus,
warranting the use of the extremely concise it, the
use of the-N is not wrong; and in fact, in some such
cases, the use of the-N may be advantageous as it
is simply more natural sounding.

As such, while cognitive status-informed models

of Referring Form Selection have been shown to
achieve good fit to human data, (1) high goodness
of fit may be an unnecessarily aggressive bench-
mark, and (2) it is unclear whether the referring
forms selected by these models are actually any
more natural than those that would be produced if
simpler baseline models were used.

In this work, we thus compared the naturalness
of referring forms selected by cognitive status-
informed referring form selection models (specifi-
cally, that presented by Han et al. (2022)) to those
that would be selected by a variety of baselines,
including a random baseline, and a definite descrip-
tion baseline (in which a definite noun phrase the
N is always used).

To do so, we conducted an experiment in which
we modified a dataset of task-based referring ex-
pressions, systematically varied the referring forms
shown to participants, allowing us to collect natu-
ralness ratings for all possible referring forms that
could have been used in those referring expressions.
We then consider, for each of those referring expres-
sions, what referring form each of the compared
models would have predicted, and thus what the
perceived naturalness would have been. Averaging
these naturalness predictions for each model, we
are able to compare the overall naturalness of the
considered models.

As we will show, our results suggest that even
though cognitive status-informed referring selec-
tion models achieve good fit to human data, they
do not (yet) produce concrete benefits in terms of
naturality. But our results also demonstrate the
challenges of performing this type of evaluation, as
even the utterances produced by humans had high
variability in perceived naturality.

2 Related Work

Arnold and Zerkle (2019) argues that linguistic Re-
ferring Form Selection models generally fall into
two categories: rational and pragmatic. Rational
models (e.g. Aylett and Turk (2004); Frank and
Goodman (2012)) could explain the use of pro-
nouns from an egocentric perspective, i.e., in terms
of their ease of use in conversations. Pragmatic
models, on the other hand, could explain the use
of pronouns from an allocentric perspective, i.e., in
terms of the assumptions about interlocutors that
lead to their use. These allocentric accounts are
typically grounded in theoretical constructs like
cognitive status (Grosz et al., 1995). Although
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these pragmatic models vary in terms of the con-
structs they use to explain referring form choice
(e.g., givenness (Gundel et al., 1993), and focus
(Grosz et al., 1995; Brennan et al., 1987; Grosz
and Sidner, 1986), these models are all centered
around the assumption that referring form selection
is based on the status a referent has in a conversa-
tion or in the mind of conversational participants.

While both of these models make important con-
tributions to the literature, neither performs at ex-
ceptional levels when it comes to predicting which
specific referring forms to use. As Arnold and
Zerkle (2019) pointed out, rational models suggest
using reduced forms vastly more often than seen
in practice, and fail to predict referring forms that
are equally short. Furthermore, Arnold and Zerkle
(2019) and Grüning and Kibrik (2005) note that
both kinds of models focus on individual events
or factors, such as recency in conversation (Mann
et al., 1989), instead of developing a fully compre-
hensive model for all of what reference production
entails.

Artificial Intelligence (AI) researchers develop-
ing Referring Form Selection Models have the
same problems (Ge et al., 1998; McCoy and Strube,
1999; Callaway and Lester, 2002; Poesio et al.,
2004; Kibble and Power, 2004; Kibrik, 2011; Kib-
rik et al., 2016). AI RFS models can be broadly
categorized as multi-factorial process modeling,
where the prediction of referring forms is ap-
proached as a problem of classification based on
various linguistic and contextual features. Much
like previous models, those discussed by Kibrik
(2011), Van Deemter et al. (2012) and Gatt et al.
(2014) opt for predicting pronoun use in general,
as opposed to predicting the use of specific refer-
ring forms. Additionally, models like those listed
above tend to be trained using purely textual do-
mains (e.g., Krasavina and Chiarcos (2007)’s) that
are very different from situated domains. Situated
domains are highly ambiguous, with large num-
bers of nearly identical objects, and require speak-
ers to make run-time decisions based on linguistic
features (like prosody) and non-linguistic features
(like physical distance) that may be assessed using
noisy sensors.

To fix these problems, Pal et al. (2020) presented
dynamic models of cognitive status based on the
Givenness Hierarchy (Gundel et al., 1993), which
they used to produce cognitive status-informed
RFS models. In addition to cognitive status, these

models included situated features like physical dis-
tance, leading to promising results (Pal et al., 2021).
Han et al. (2022) solved a number of external eco-
logical issues in the task environment that referring
form data was collected from, e.g., including re-
peated and non-present objects. This led to a wider
variety of referring forms collected. However, both
Pal et al. (2021) and Han et al. (2022) only evalu-
ated their work in terms of model goodness-of-fit
to human data1; that is, how well the model pre-
dicts the referring forms used by others. While
goodness-of-fit is a valuable metric, it obscures the
fact that when choosing a referring form, there are
often multiple referring forms that might be appro-
priate. As such, focusing on goodness-of-fit simul-
taneously risks underselling the performance of a
model and overselling the benefits of the model.
Because of the ecological validity and the wide
range of referring forms from Han et al. (2022)’s
model, we used it in this work.

3 Hypothesis

Due to the incorporation of cognitive statuses of
objects in listeners’ mind, we believe that referring
forms predicted by cognitive status-informed mod-
els will have higher perceived naturalness, com-
pared to random selection and compared to use of
definite descriptions alone.

4 Method

In order to evaluate the naturalness of different re-
ferring forms, we used a novel experimental design
in which we (1) collected naturalness ratings for
each of a large set of referring forms across a large
set of referring contexts, and (2) used these rat-
ings to determine the overall naturalness of several
competing models, by seeing what the naturalness
ratings would have been under the referring forms
selected by those models across those referring
contexts.

To collect naturalness ratings, we performed an
online experiment in which participants watched
a series of videos from a dataset of human-human
task based interactions. After each video, the partic-
ipant was shown, in text, the next utterance spoken

1In research performed in parallel, completed after, but
formally published before this work, we also conducted in-
person human evaluations of the naturalness of our referring
form selection model (Han and Williams, 2023). While that
work is beyond the scope of the present paper, readers may
want to consult that paper, which reinforces and adds nuance
to the result of this paper.
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Figure 2: The task environment by Bennett et al. (2017)
where a person instructs another person to re-configure
objects to the layout of smaller models on the near table.

in the video, and asked to evaluate its naturalness.
We will now step through (1) the specific stimuli

used in this experiment; (2) the experimental de-
sign that determined how these videos were shown
to participants; (3) how we systematically varied
the referring forms shown to participants and as-
sessed the naturalness of those referring forms; (4)
the overall experimental procedure; and (5) our
participant demographics.

4.1 Stimuli

The videos we showed to participants were those
collected by Bennett et al. (2017). This dataset con-
tains videos from an experiment involving dyadic
interactions in which one participant instructs an-
other participant in how to rearrange a set of boxes
and cans in order to match a desired configuration.
The task environment is shown in Figure 2.

We selected ten videos from Bennett et al.
(2017)’s dataset, and divided each into ten sub-
videos, each of which ended immediately before
the nth referring expression where n ∈ {1 . . . 10}.
That is, for each video, we constructed ten excerpts,
the first of which started at the beginning of the task
and ended immediately before the first referring ex-
pression, the second started at the beginning of the
task and ended immediately before the second re-
ferring expression, and so forth. All videos were
subtitled for clarity. Figure 3 left shows a video.

We selected videos that contained a wide range
of referring forms. As shown in Table 2, the dis-
tribution of referring forms in the original dataset
is extremely skewed, with the ⟨N⟩ and ⟨N⟩ taking
85%. In contrast, the first three referring forms in
the chosen videos approximately take 30% each.

4.2 Experimental Design

Each participant watched ten videos, each of which
was an excerpt from a different one of the ten
videos (i.e., video 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9),
and each of which ended at a different cutpoint,
(i.e., immediately before referring expression 0, 1,
2, 3, 4, 5, 6, 7, 8, or 9 in that video). The aver-
age length of the videos was 35.6 seconds. The
sequence of videos watched by each participant
was selected using a Graeco-Latin square design
(Grant, 1948) to ensure that each participant saw
ten different videos of ten different interactions of
ten different lengths while controlling for ordering
effects.

4.3 Manipulations and Measures

As mentioned above, at the end of each video, par-
ticipants were shown, in text, the utterance that im-
mediately followed where the video cut off. These
utterances were manipulated to vary the referring
form used in the expression, with the actual refer-
ring form from the video replaced by one of the fol-
lowing: {it, this, this-N’, that, that-N’, the-N’, N’}.
For example, if the original utterance was “Now
push box D to the left”, participants were shown
“Now push it to the left”, “Now push this box D to
the left” and so forth. These referring forms were
selected at random for each video according to a
pre-determined schedule. After being shown this
“next utterance”, participants were asked to rate its
naturalness on a 5-point Likert item, with 1 being
very unnatural and 5 being very natural.

4.4 Procedure

Participants first completed an informed consent
form, read their task instructions, and answered de-
mographic questions. Next, to ensure participants
could hear what was said in the videos and avoid
bots automatically filling out the questionnaires,
participants performed an audio/video check. If
participants passed this check, they proceeded to
watch ten videos based on their randomly assigned
Graeco-Latin square row, after each of which they
answered the naturalness questions. Finally, partici-
pants answered an attention check question (asking
the color of the walls in the task environment). This
experiment’s design and procedure were approved
by the authors’ institution.
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Figure 3: Left: The first video of ten videos that was playing and ended immediately before the first referring form.
Right: The map used for participants to select the object being referred to (here, Box C). After the selection, the
correct object would be similarly highlighted on the map.

4.5 Participants

361 participants were recruited globally from Pro-
lific (Palan and Schitter, 2018) with a requirement
that they must be fluent in English. 14 were ex-
cluded for failing the attention check, yielding 347
data points. The average age of the participants was
25.8 years (SD=7.06). The minimum age was 18,
and the maximum was 65. 164 (47.3%) participants
identified as female, and 175 (50.4%) identified as
male. Four (1.2%) participants identified as non-
binary and one (0.3%) identified as genderqueer.
Three (0.9%) participants declined to identify their
gender. Participants were asked to self-identify
in terms of race and ethnicity. The categories
with more than 5 participants are White/Caucasian
(192, 55.3%), Black/African (72, 20.7%), and Lat-
inx/Hispanic (31, 8.9%). All other racial or ethnic
identities comprised less than 1.7% (6 participants).
Each participant was paid USD $4.00 for their time.

5 Analysis

5.1 Data Matrix

All naturalness scores were aggregated into a
100 × 7 matrix, where each of the 100 rows rep-
resented a different video excerpt shown to par-
ticipants, and each of the 7 columns represented
a different referring form. For example, the first
cell in the matrix contained the average natural-
ness scores for the utterance following cutpoint 0
in video 0, when the referring expression in that
utterance was replaced with “it”. The remainder
of the first row contained the average naturalness
scores for the other possible referring forms used

following video 0 cutpoint 0. This data matrix
was then used to evaluate a set of Referring Form
Selection models, as described in the next section.

5.2 Models

To test our hypothesis, we compared five models us-
ing this data matrix. For each model, we considered
each row in the data matrix, and identified which
referring form the model would have predicted in
the referring context encoded by that row. We then
extracted the naturalness score from the column
associated with that prediction. This produced a
set of 100 naturalness scores for each model.

The five models we compared were (1) a Ran-
dom baseline; (2) a Definite Description baseline;
(3) a Human baseline; (4) Han et al. (2022)’s cog-
nitive status-informed model where utterance-level
temporal distance is used instead of object-level
temporal distance; (5) A modified model trained
with the physical distance being the furthest. This
is in line with the data that the cognitive status
model was trained on. Ideally, reference-level tem-
poral distance would be utilized for both the CS
model and the RF model, as it is more accurate
on an object-mention-per-object-mention basis, but
this would create conflict between the two models.

5.2.1 Random Model

The Random Model served as our first baseline.
Under this model, a referring form was selected
at random: for each row in our data matrix, the
naturalness score from a random column was used.
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Figure 4: The visualization of the decision tree model
used in the HanRFS condition, adapted from Han et al.
(2022) with temporal distance at utterance level.

5.2.2 Definite Description Model
The Definite Description Model served as our sec-
ond baseline. Under this model, The N’ was always
used: for each row in our data matrix, the natural-
ness score from the The N’ column was extracted.

5.2.3 Human Model
The Human Model serves as our third baseline. Un-
der this model, the referring form actually used by
participants in the dataset was used. For example,
if for a particular cutpoint in a particular video, the
utterance following the cutpoint actually contained
“that tower”, then the naturalness score from the
That N’ column was extracted.

5.2.4 Cognitive Status-Informed Model
(HanRFS)

For our fourth baseline, we used the cognitive
status-informed model presented by Han et al.
(2022) (under MIT licence). This model is a deci-
sion tree based machine learning model, shown in
Figure 4, and uses three features: cognitive status,
temporal distance, and physical distance.

Cognitive status was predicted using Pal et al.
(2020)’s Bayesian cognitive status engine, which
itself makes predictions based on an object’s lin-
guistic status and previously inferred cognitive sta-
tus. That is, for a referring form to be predicted

Far Left Quad: 6 On Vertical Line
between Far
Quads: 5

Far Right Quad:
6

On Left Horizon-
tal Line: 4

At Line Intersec-
tion: 3

On Right Hori-
zontal Line: 4

Near Left Quad:
2

On Vertical Line
between Near
Quads: 1

Near Right Quad:
2

Table 1: Codes for physical distance.

at cutpoint t, we fed each referring form from cut-
points 0 . . . t− 1 (if any) to Pal’s cognitive status
engine. This produced a distribution over cognitive
status that the target referent should have at time t.
We then used the most likely cognitive status from
this distribution as the feature passed to Han et al.
(2022)’s decision tree.

Temporal distance was calculated as recency of
mention: a target referent’s temporal distance was
calculated as the number of utterances since the
utterance where the object was mentioned.

Physical distance was calculated in terms of
qualitative distance-to-object. Han et al. (2022)’s
original model was trained in a tabletop environ-
ment, and as such, they operationalized physical
distance by assigning a set of distance scores 1-6
to each area in a 3 × 3 grid on the tabletop. We
elected to do the same, breaking the task environ-
ment shown in the video into a 3 × 3 grid, and
assigning a distance score 1-6 to each quadrant as
shown in Table 1.

5.2.5 Modified Cognitive Status-Informed
Model (HanRFS-RD)

Since the location of objects could have an impact
on the choice of referring form and their perceived
naturalness, we decided to include another baseline,
HanRFS-RD (Remapped Distances), in which all
physical distances were set to the furthest possible
value (6), since all objects in Bennett et al. (2017)’s
environment were further than any object used to
train the decision tree model.

5.3 Data Analysis

To compare the predictions made by each of our
five models, we used the Bayesian statistical frame-
work (Wagenmakers et al., 2018), given its capa-
bility to quantify evidence both for and against a
hypothesis, compared to the Frequentist approach.
Specifically, we used JASP 0.17.1 (JASP Team,
2022) to run Bayesian statistical tests.

One important concept to understand in the
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Table 2: Referring form distribution across conditions

it the ⟨N ′⟩ ⟨N ′⟩ this that this ⟨N ′⟩ that ⟨N ′⟩
Original 0.12 0.54 0.31 0.00 0.00 0.01 0.02
Random 0.13 0.16 0.08 0.14 0.13 0.16 0.21
The ⟨N ′⟩ 0.00 1.00 0.00 0.00 0.00 0.00 0.00
Human 0.28 0.29 0.29 0.01 0.02 0.04 0.07
HanRFS 0.30 0.32† 0.00† 0.00 0.00 0.27 0.10
HanRFS-RD 0.30 0.60† 0.00† 0.00 0.00 0.00 0.10
†The two models by Han et al. (2022) merged ⟨N⟩ with the ⟨N⟩

Bayesian approach is the Bayes factor (BF), de-
fined as the ratio of the likelihood of given data
being observed under each of two competing hy-
potheses, H1 and H0. For example, a Bayes Factor
of BF10=5 indicates a favor of H1 that the data are
five times more likely under H1 than under H0.

To help the decision-making process, we used
the widely-accepted classification scheme (Lee
and Wagenmakers, 2014). For evidence favor-
ing H1, Bayes factor values are categorized as
anecdotal (BF10 ∈ (1, 3]; inconclusive), weak
(BF10 ∈ (3, 10]), moderate (BF10 ∈ (10, 30]),
strong (BF10 ∈ (30, 100]), extreme (BF10 ∈
(100,∞)). When evidence favors H0, these thresh-
olds are inverted, and we can use BF01 for easier
interpretation (Note the subscript is 01 rather than
10). For example, BF10 = 1/5 = 0.2 can be ex-
pressed as BF01 = 5.

6 Results

6.1 Model comparisons

Table 2 shows the distribution of the referring forms
across the five conditions. The distribution of ran-
dom referring forms, by definition, roughly follows
a uniform distribution, with deviance due only to
sampling noise. The ⟨N⟩ condition contains only
itself. For the model condition, it predicts 30%
of it, 31% of the ⟨N⟩, 27% of this, and 10% of
that ⟨N⟩. On the other hand, for the fixed phys-
ical distance model, 30% of it, 60% of the ⟨N⟩,
and 10% of that ⟨N⟩ was predicted, in line with
the expected changes by increasing physical dis-
tance to its maximum value. Note that Han et al.
(2022) took a descriptivist view (Frege, 1892; Rus-
sell, 2001; Nelson, 2002) and merged bare nouns
(⟨N⟩) with definite nouns (the ⟨N⟩).

6.2 Naturalness in Referring Form Selection

As seen from Figure 5, the mean naturalness scores
are approximately the same in all five conditions
and, surprisingly, the actual referring forms were
only rated slightly higher: Random (M=3.427,
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Figure 5: Mean naturalness ratings. Error bars show
95% credible intervals. Results favor no difference
across conditions.
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Figure 6: A raincloud plot (Allen et al., 2019) for natu-
ralness ratings, combining a cloud of points with a box
plot and a one-sided violin plot.

SD=0.977), The ⟨N ′⟩ (M=3.513, SD=0.752),
HanRFS (M=3.559, SD=0.837), HanRFS-RD
(M=3.534, SD=0.859), and Human (M=3.621,
SD=0.814). Out of all of these, the Human baseline
performed marginally better (M=3.621), followed
by HanRFS (M=3.559), HanRFS-RD (M=3.534),
The ⟨N ′⟩ (M=3.513) and Random (M=3.427); how-
ever, due to the SD value being greater than 0.75 for
all models, there is no statistically significant dif-
ference between them. Figure 6 shows the raw data
points with boxplots and distribution estimation.

To see whether there is a difference, we con-
ducted a Bayesian one-way analysis of variance
(ANOVA) (Rouder et al., 2012) on the naturalness
data. This analysis revealed strong evidence against
the effect of different referring form selections and
the actual referring forms (BF01 = 28.358), i.e.,
favoring H0. This means that the data are around
28.358 times more likely under models that did not
include an effect than under those that did. Thus,
the hypothesis is not supported: the referring forms
predicted by the cognitive status-informed model
were not perceived as more natural.
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7 Discussion

7.1 Naturalness is in the Eye of the Beholder

We hypothesized that the cognitive status-informed
RFS model’s predictions would be more natural.
However, results showed that all RFS models are
equally natural, with extremely high variability in
perceived naturality even for human-generated re-
ferring expressions. There are a variety of possible
explanations for these observations.

First, humans may regularly generate unnatural
sounding referring expressions. If so, human-level
naturality may merely be a “low bar” that NLG
research should seek to surpass.

Second, humans may vary dramatically in their
perceptions of what is “natural”. If so, human
judgment may be a poor way to assess referring
form naturality.

Third, our experimental paradigm may have
been unsuccessful in measuring the naturality of
referring forms on their own. Referring forms are
always used in the context of a larger utterance,
which itself may be viewed as natural or unnatu-
ral. To mitigate this concern, we specifically asked
participants about the naturalness of the referring
forms used in the utterance they were shown. How-
ever, it is possible that participants either did not
follow these instructions, or were simply unable to
adjudicate the naturalness of these forms without
considering the broader context of their use. For ex-
ample, in the utterance “And while you’re there can
you knock over the blue tower”, participants rated
the usage of blue tower (⟨N⟩) as very natural. The
separation of the naturalness of the referring form
from its context of use is remarkably challenging
because, without context, using concise referring
forms becomes no longer useful.

Finally, our results may be due to the global pop-
ulation reflected in our sample. While participants
were required to be fluent in English, most par-
ticipants indicated that English was their second
language. This may have led to significant variation
in our naturalness ratings.

Takeaway 1: Future work needs to better sepa-
rate the perceived naturalness of a referring form
from its context, such as dialog. To confirm this,
one may need to measure the naturalness of the con-
text as a controlling factor, or may need to be par-
ticularly aggressive about reminding participants
that they are rating only the referring form itself.

7.2 How Far is Far?

We included the modified HanRFS-RD model with
remapped distances because of the differences be-
tween what is considered “close” and “far” in our
analyzed dataset versus the dataset on which Han
et al. (2022)’s model was trained on. This raises
a larger question, however, of how to model refer-
ent distances in a task-agnostic way. Physical dis-
tance is clearly an important factor, and is known
to play a role in differentiating referring forms like
“this” vs “that”, as well as differentiating the use of
abstract versus precise deictic gestures (Stogsdill
et al., 2021). Yet what is considered near versus
far is highly task dependent, depending not only on
the overall size of the space, but also on the physi-
cal affordances and explorability of the space. For
example, Han et al. (2022)’s model was created in
a space that was smaller than Bennett et al. (2017).
But moreover, while in Bennett et al. (2017)’s ex-
periment objects were out of immediate reach of
the participants, in Han et al. (2022)’s experiment,
objects were reachable without walking around,
i.e., no farther than 60cm (2 feet) away, and in fact
were touched and manipulated by participants. In
other task environments, other features may also
become relevant. In large-scale open-world envi-
ronments, for example, many referents are non-
visible (or may not even be known to exist) when
they are referred to.

Takeaway 2: Future work needs to understand
how referring form selection models can encode
physical distance features in a way that is agnostic
of, or relative to, the size of a task environment;
should consider inclusion of a suite of distance
features sensitive to different types of task environ-
ments; and should consider features related to but
distinct from distance, like reachability, manipula-
bility, and visibility.

8 Conclusions

To go beyond the focus on goodness-of-fit in cogni-
tive status-informed computational referring form
selection model evaluation, we conducted a human-
subjects study to explore the naturalness ratings of
the predictions. Surprisingly, results did not reveal
an improvement in naturalness over random base-
lines, and in fact suggest that human perceptions
of even human-generated referring forms are in-
credibly varied and not significantly different from
those random baselines. Our results suggest several
directions for future work, and new technical and
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methodological considerations that must be made.

Supplementary Materials Availability State-
ment: All videos, data, and analysis scripts are
available at https://osf.io/z2wyt/. All data
was anonymized, replacing participants’ names
with automatically assigned numerical identifiers.
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