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Preface

We are excited to present the Proceedings of the 16th International Natural Language Generation
Conference (INLG 2023). This year is the first time since the Covid-19 pandemic that the event will
run mainly in-person again, from 11 to 15 September 2023 in Prague, Czech Republic. A novel aspect
of this year’s INLG is that, for the first time in its history, it is held jointly with the 24th Annual Meeting
of the Special Interest Group on Discourse and Dialogue (SIGDial 2023). INLG-SIGDIAL 2023 was
locally organized by Charles University, thanks to the tireless efforts of the local chair Ondfej Dusek and
his team.

The INLG conference is the main international venue for presentation of novel research and discussion
of the computational task of Natural Language Generation (NLG) and its broad range of applications,
including mainly data-to-text, text-to-text, and image-to-text approaches. Also this year, INLG consisted
of several events.

The conference took place from 13 to 15 September. For the main track, we received a total of 98
conference submissions, 4 ARR submissions, and 4 demo paper submissions. After review by at least
three program committee members and a meta review from the area chairs, 19 were accepted as long
papers, 17 as short papers, and 4 as demo papers.

INLG, jointly with SIGDIAL, featured four keynote speakers, being:

 Barbara Di Eugenio, University of Illinois, Chicago, USA

Emmanuel Dupoux, Ecole des Hautes Etudes en Sciences Sociales, France

* Ryan Lowe, OpenAl, USA

Elena Simperl, King’s College London, UK

The Generation Challenge, i.e., a set of shared tasks, was a track of the main conference also this year. It
was chaired by Simon Mille. Details about the challenge and the proceedings will appear in a companion
proceedings volume.

The main event was preceded by two days of workshops held jointly with SIGDIAL2023, of which two
focussed on NLG, being the workshop on “Multimodal, Multilingual Natural Language Generation and
Multilingual WebNLG Challenge” and a hackathon on practical “LLM-assisted data-to-text generation”.

The event received sponsorship from: Liveperson and Luxai (Platinum), Apple (Gold), Furhat (Silver),
and Bloomberg and Ax Semantics (Bronze).

It is also important to mention that the 16th INLG would not be possible without the help of the Area
Chairs and Program Committee members for their reviewing contributions for whom we express our
gratitude, and the expertise of SIGGEN representatives Raquel Hervas and Emiel van Miltenburg.

C. Maria Keet

Hung-yi Lee

Sina Zarrief3

INLG 2023 Program Chairs
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Guided Beam Search to Improve Generalization
in Low-Resource Data-to-Text Generation

Nicolas Garneau
Department of Computer Science
University of Copenhagen, Denmark
and Université Laval, Canada

Abstract

In this paper, we introduce a new beam search
algorithm that improves the generalization of
neural generators to unseen examples, espe-
cially in low-resource data-to-text settings. Our
algorithm aims to reduce the number of omis-
sions and hallucinations during the decoding
process. For this purpose, it relies on two re-
gression models to explicitly characterize fac-
tual errors. We explain how to create a new
dataset to train these models given an original
training set of less than a thousand data points.
We apply our approach in the low-resource, le-
gal setting using the French Plum2Text dataset,
as well as in English using WebNLG. We ob-
serve in our experiment that this combination
improves the faithfulness of pre-trained neural
text generators using both human and automatic
evaluation. Moreover, our approach offers a
level of interpretability by predicting the num-
ber of omissions and hallucinations present in
a given generation with respect to the input
data. Finally, we visualize our algorithm’s ex-
ploration of the hypothesis space at different
steps during the decoding process.

1 Introduction

Data-to-text generation is commonly referred to
as the task of verbalizing a structured input also
known as a table of values. The table may con-
tain several types of values such as text, numbers,
categories, etc. In our study, we are specifically
interested in improving the faithfulness of neural
data-to-text generators. The relevance of their gen-
erations can be evaluated with respect to the cover-
age of the input table, i.e. to what extent the model
omits values from the table. Moreover, neural text
generators unfortunately have the tendency to hal-
lucinate facts from the training set. Hence, genera-
tions can also be evaluated based on the number of
hallucinated facts produced by the model (Dusek
et al., 2018; Ji et al., 2022). The tendency of neural
data-to-text generators to omit values and/or hal-
lucinate facts can be exacerbated in low-resource
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Luc Lamontagne
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settings. The models may overfit the training set,
and bring generalization to unseen data points at
stake.

In this paper, we propose to improve the faithful-
ness of data-to-text neural generators by reducing
the number of hallucinations and omissions during
the generation process, without having to re-train
the generation models. This perspective has many
incentives, especially since models are becoming
larger and larger, thus harder to train (Brown et al.,
2020; Hoffmann et al., 2022). To this end, we
propose a modified version of the beam search
algorithm specifically for the data-to-text setting.
Meister et al. (2020) studied the behavior of the
beam search algorithm under a regularized frame-
work, showing that beam search enforces uniform
information density. That is, “it produces text with
evenly distributed surprisal, a feature that human
readers tend to prefer”. Inspired by this regulariza-
tion framework, we introduce two characterization
models that will guide the decoding algorithm by
promoting generated beams containing fewer hal-
lucinations and omissions.

The characterization of omissions and hallucina-
tions is crucial in the legal setting. Hence, we apply
our new decoding algorithm and analyze its bene-
fits on the task of verbalizing criminal docket files
using the Plum2Text dataset (Beauchemin et al.,
2020; Garneau et al., 2021b). Using automatic
and manual evaluation, we show that our algorithm
improves generalization in a low-resource setting,
especially on unseen data points. We also show that
our approach generalizes to other datasets, such as
WebNLG (Castro Ferreira et al., 2020). In the next
section, we introduce related work regarding the
mitigation of omissions and hallucinations for neu-
ral text generators. We then introduce the main
contribution of this paper in Section 3, a new de-
coding algorithm for the data-to-text setting. We
present the experiments and analysis in Section 4.
We assess the generalization of our approach in Sec-
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tion 5 by applying it on WebNLG (Castro Ferreira
et al., 2020). We conclude with our observations in
Section 6. The models, datasets, generations and
human evaluations are made publicly available?.

2 Related Work

In this section, we study current mitigation tech-
niques of omissions and hallucinations to improve
neural generators’ performance, limiting ourselves
to the data-to-text setting®. These techniques may
require changing the architecture and are enforced
either during training or during inference. We clas-
sify mitigation techniques as being “invasive” or
“non-invasive” to the generator. Invasive techniques
require fine-tuning, adding a new objective func-
tion, or modifying the inner architecture of the
generator.

In this paper, we focus on non-invasive tech-
niques, which consider the generator as a black box
and act either on the input or during the decoding
process. These techniques are appealing for the
fact that they do not require re-training the gener-
ator on the original training dataset. For example,
Shin et al. (2020) proposed AutoPrompt, a model
that learns how to create prompts for various sets
of tasks. They basically search for “trigger” tokens
using the gradient from the downstream task. Ac-
cording to their results, AutoPrompt outperformed
fine-tuning methods in cases where the training
dataset is small (i.e. 100-1000 samples). This
method, however, does not necessarily mitigate the
omission and hallucinations in the data-to-text set-
ting. Similarly, Prefix-Tuning (Li and Liang, 2021)
proposed a lightweight alternative to fine-tuning
for natural language generation tasks, which keeps
language model parameters frozen, but optimizes
a small continuous task-specific vector, called the
prefix. Then again, their method does not specifi-
cally mitigate omissions and hallucinations.

Ghazvininejad et al. (2017) proposed Hafez, a
method weighing the current beam state based on
a set of feature functions that take as input a tar-
get word, and sometimes the beam state (e.g. to
check for repetitions). These feature functions, in
our case, could be used to force the generation of
proper charges, decisions, and pleading, for exam-
ple. They added two terms to the standard Beam

*https://drive.google.com/drive/folders/
1gdgWXr7GXoww2dC83xcH3TXgwyB3ov4W?usp=sharing

20ne can see the mitigation as the optimization of the pre-
cision (reduce hallucination) and the recall (reduce omissions)
of a given data-to-text generator.

Search algorithm, given a current beam state and a
predicted word,;

score(bj, w) = scoregb-!_?) + logGen(w)+
aj [y (w); Dl TV @)

i

where score(b) is the score of the current beam
state, logGen(w) is the output logit of the genera-
tor, £ ( Dcare functions that scores word w weighted
by aj, and Vg is a predefined vocabulary. Simi-
larily, Mention Flags (Wang et al., 2021) tries to
identify the presence of tokens in the hypothesis
given a set of flags. Both methods face the same
problem since they operate on surface tokens.

Anderson et al. (2017) also proposed to constrain
the beam search algorithm operating at the lexical
level using a finite-state machine that enforces the
use of a specific vocabulary in the image captioning
setting. However, their method does not scale well
when the input is composed of sentences, since
we don’t know apriori the vocabulary we want to
constrain. Balakrishnan et al. (2019) proposed a
constrained decoding technique that leverages tree-
structured meaning representations to control the
semantic correctness of the generated text. While
not explicitly characterizing omissions and halluci-
nations, their approach improved the faithfulness
of the generative models. The prior work closest to
ours is RANKGEN (Krishna et al., 2022), a rank-
ing model that can be incorporated into the beam
search scoring function during the decoding pro-
cess. However, their method is designed for open-
ended generation and does not yet scale to methods
having a constrained output such as data-to-text,
summarization, and machine translation.

Guerreiro et al. (2023) introduced DEHALLU-
CINATOR, a model that flags hypotheses once they
are fully generated so that they can be overwritten.
Our model differs from their approach since we are
guiding the exploration of the tree during decod-
ing. Finally, (Vijayakumar et al., 2016) introduced
Diverse Beam Search, an algorithm that promotes
diverse generations amongst groups of beams but
does not strictly reward or penalize beams for spe-
cific properties. To the best of our knowledge, no
method in the literature proposes a way that can
be adapted without major changes to handle both
omissions and hallucinations at the semantic level
during the decoding step. Moreover, none of the
methods can explicitly estimate the number of hal-
lucinations and omissions in the hypotheses. We



thus wish to fill this gap by proposing a guided
beam search algorithm to create more faithful neu-
ral data-to-text generations.

3 Guided Decoding by Predicting
Omissions and Hallucinations

In this section, we introduce a new decoding al-
gorithm that is designed to mitigate and explic-
itly characterize omissions and hallucinations for
data-to-text generation. To this end, we create two
predictive models: one predicting the number of
omitted values from the table, my, and the other
predicting the number of hallucinations, mp. These
models will thus weigh the current beam score to
promote generated sequences with few, or hope-
fully no omissions or hallucinations, enforcing se-
mantically accurate generations.

3.1 Characterization Models

The proposed models are designed to take as input
the table’s values, as well as the current generated
sequence, and output a real value as the following;

0i = Mo(Vi, Si) 2)
hi = mn(Vi, si) (3)

where 0; is the predicted number of omissions,
h; is the predicted number of hallucinations. mg is
the omission model, my, is the hallucination model,
V; is the set of table of values, and s;j is the current
generated sequence. To obtain these models, we
need to train them using a dataset that has as input
the table, the generated sequence as well as their
true labels, i.e. the number of omissions and hallu-
cinations in the sequence. We further detail in the
next section how we obtain such datasets from the
original training set using Plum2Text as an exam-
ple (Plum2Text’s training set contains around 1K
examples).

3.2 Training Data

We hereby propose to build one training dataset for
each model, O and H, based on the overlapping
table values across the original training examples.
It is important to note that each actual training
example is used in both O and H, labeled with
zero omission and zero hallucination respectively.
We create the other training examples as follows;

1. We randomly select two training instances (V;,
ri), and (Vj, rj) where rj and r;j are reference
texts of both examples

2. The set of omitted values O; for rj with re-
spect to V; correspond to the set difference
between Vi and Vj

3. Similarly, the set of hallucinated values Hj
for rj with respect to V; correspond to the set
difference between V;j and V;.

We formally describe the dataset creation in Al-
gorithm 1 and we illustrate in Figure 1 the construc-
tion of a training example, created from two origi-
nal examples taken from the Plum2Text dataset.

Algorithm 1 Creating Datasets O and H

O ~{} [Csét of omissions
H-{} [Csét of hallucinations
for (Vi, ri), (Vj, rj) in the training set do
Oi « Vi\V;j [Csét diff. between V; and Vj
Hi « Vj\V; [sdt diff. between Vj and Vi
O « O i, rj), Gil}
H « H Vi, ry), [Hil}
end for
return O, H

Using Plum2Text, the omissions dataset O con-
sists of 12,460 examples using an 80%—20% split
resulting in train and test sets of 9,968 and 2,492
examples respectively. The hallucination dataset
H consists of 30,473 examples also using an 80%-—
20% split resulting in train and test sets of 24,378
and 6,095 examples respectively. With respect
to the training architecture, we used the multi-
lingual version of BERT (Devlin et al., 2019) of
178M parameters available in the HuggingFace li-
brary®. We used the mean squared error loss and
AdamW (Loshchilov and Hutter, 2019) as the opti-
mizer with a learning rate of 0.001. We used a batch
size of 10 on a GeForce 2080Ti Nvidia graphic
card. To automatically evaluate the architectures,
we considered several metrics: mean squared er-
ror (MSE), root mean square error (RMSE), mean
average error, R?, and accuracy defined as follows;

1
lifp—t<0.5
a= ~"P7% (4)
0 otherwise

where p is the prediction and t is the true value.
As we can see in Table 1, both models achieve
high performance across all metrics on the test set.

3We used the multilingual BERT (Devlin et al., 2019) be-
cause it provides a version with a pre-trained classification
head, whereas CamemBERT (Martin et al., 2020) does not.



Table 1 Table 2
Accusation: Provision 320.14 (1) a) Accusation: Provision 265 (1) a)
Every person commits an offence who : A person commits an assault when :
(a) operates a conveyance while his or her ability to drive (a) without the consent of another person, he applies
is impaired to any degree by the effect of alcohol or a force intentionally to that other person, directly or
v drug or by the combined effect of alcohol and a drug; indirectly;
o<
! Plea Plea
Pleaded not guilty -
Decision Decision
Declared guilty Declared guilty
! ==
Reference 1 Reference 2
“PER pleaded not guilty on a count of impaired driving “PER is accused on a count of assaulting another person
r.
! and was declared guilty.” by applying force intentionally and was declared guilty.”
Omitted: Omitted:
Ol- 1. Provision 265 (1) a) 1. Provision 320.14 (1) a)
Hallucinated: 2. Guilty plea
H 1. Provision 320.14 (1) a) Hallucinated:
i 2. Guilty plea 1. Provision 265 (1) a)

Figure 1: Given two training instances from Plum2Text, each with their respective table and reference, we pair the
table from the first example with the reference of the second one and vice versa. This creates in total four training
instances, two in each dataset O and H. The first two “omitted” training instances are Vj, r; paired with the omitted
value “Provision 265 (1) a)”, and Vj, rj paired with the 2 omitted values “Provision 320.14 (1) a)” and “Guilty plea”.
The same procedure applies for the creation of the hallucinated training instances.

We also show the distribution of predicted vs ac-
tual values in Figure 2 using confusion matrices.
The regression model on the omissions tends to
underestimate the number of omissions in a given
generation. The regression model on the halluci-
nations seems more balanced except for the cases
where there are one or two hallucinations, underes-
timating them.

Models
Metric Omission Hallucination
MSE 0.05 0.05
RMSE 0.23 0.22
MAE 0.10 0.08
R2 0.99 0.99
Accuracy 0.96 0.97

Table 1: Performance of both omission and hallucina-
tion models on Plum2Text w.r.t the mean squared error
(MSE), the root mean squared error (RMSE), the mean
average error (MAE), R?, and accuracy.

3.3 Guided Decoding for Omission and
Hallucination Mitigation

In order to mitigate omissions and hallucinations,
we propose the following weighted beam search
score bj;

bi = score(bi—1) + log(Gen(wi)) + @i  (5)

where score(bj—1) is the previous beam’s score,
log(Gen(w;)) is the score for word w; provided
by the generator, and @ is the following function
based on the omission and hallucination scores o;
and h;j obtained from the characterization models:

Pi =w-(Vi—0j)—y-hi (6)
where w and y are parameters to weigh the omis-
sions and hallucinations respectively. While the
hallucinations h; are treated as a penalty on a beam
score, the omissions are treated as a reward: vj cor-
responds to the actual number of values in the table,
whereas 0j is the number of detected omissions. If
zero omissions are detected, the current beam will
get a reward of w - v;j.

In our experiments, w and y are initialized to 1
and we perform a grid search over a set of values
between 0.0 and 5.0 to find the optimal ones de-
pending on the use case. The number of beams b
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Predicted label
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Predicted label
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Figure 2: Confusion matrices of the predicted omis-
sions and hallucinations by the regression models on
the Plum2Text test set.

parameterizes the original beam search algorithm.
During the generation process, omission rewards
and hallucination penalties are cumulated at each
step. Regardless of the values of w and y, we ap-
ply a final processing step to fully reevaluate the
ranking of the candidates w.r.t the generator’s fi-
nal log-likelihood and the omission/hallucination
models using values of 1 for both w and y. This is
motivated by the fact that the models, trained on
full sentences, may provide more accurate predic-
tions and thus result in a better candidate ranking.

5

4 Experiments

In our experiment, we use CriminelBART, a gener-
ative model introduced by Garneau et al. (2021a).
We only analyze the vanilla and guided versions of
CriminelBART since other methods proposed in the
literature do not explicitly mitigate omissions and
hallucinations. We trained CriminelBART on the
train set of Plum2Text, and we begin by automati-
cally evaluating different versions of the weighted
beam search using a grid search over the hyper-
parameters previously introduced. We then manu-
ally evaluate the performance of our new algorithm
in Section 4.2. To assess the generalization per-
formance of our algorithm, we added examples
with 37 new provisions from the Criminal Code
of Canada having no or very few occurrences in
the original training set. Furthermore, we quali-
tatively analyze the behavior of our algorithm in
Section 4.3.

4.1 Guided Decoding

In order to find the best generation model using
the weighted decoding algorithm aforementioned,
we performed a grid search exploration with the
following hyper-parameters:

1. w, the weight for omission detection.
2.y, the weight for hallucination detection.

3. B, the number of beams.

Values

Omission — 0.0,0.1,0.2,0.5,1.0,2.0,5.0
Hallucination -y | 0.0, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0
Beam size - 3 5, 10, 15

Parameters \

Table 2: Hyper-parameters search on the omission and
hallucination weight (w and y respectively) and the
beam size 3.

Table 2 provides the values tried for each hyper-
parameter. Among the 147 combinations, the best
model uses weights of 0.2 for both omissions and
hallucinations and a beam size of 15.

Evaluation results are presented in Table 3
for both the best-performing model using guided
decoding and the original version of Criminel-
BART. We considered BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Banerjee
and Lavie, 2005), BertScore (Zhang et al., 2020)
dubbed as BScore, NLI (Dusek and Kasner, 2020),



and RANK (Garneau and Lamontagne, 2021). It
has been shown that RANK highly correlates with
human judgment (CITE), so we used this metric
in the cross-validation step to select the best hyper-
parameters, ®, y, and 3, for each model. The re-
sults indicate that guided CriminelBART outper-
forms the original CriminelBART on 6 automatic
evaluation metrics out of 9. The guided version of
CriminelBART obtains similar performance with
respect to BLEU-1, METEOR, and NLI.

The guided version of CriminelBART using the
post-processing step described in the previous sec-
tion obtains similar performance but we observe
an interesting two-point gain on the RANK met-
ric, improving from 0.76 to 0.78, over the original
version limited to 0.72. It is important to note that
RANK tends to have the highest correlation score
with respect to human evaluation. Overall, we can
conclude that the guided version of CriminelBART
obtains better performance than the original one by
up to 6 points with respect to the RANK metric.
We also note that the number of predicted halluci-
nations and omissions also considerably decrease,
going from 0.28 and 0.24 to 0.11 and 0.11 respec-
tively. In the next section, we manually evaluate
the generations.

4.2 Human Evaluation

In this section, we further analyze the generaliza-
tion performance of both models by considering
45 table values that are either not in the training
set or appear rarely. We hired three annotators that
followed the same evaluation procedure introduced
by Garneau et al. (2022) to manually assess the
performance of both models. For our application,
these table values correspond to legal provisions
from the Criminal Code of Canada (CCC). From
these 45 provisions, we added 37 new ones that
we selected by skimming through the whole CCC.
These are listed in Appendix A. We list down in
Table 4 the whole set of provisions considered in
this manual evaluation. We decided to not manu-
ally evaluate examples where other provisions were
found often in the training set because both models
are having a similar performance for these frequent
cases.

We manually evaluated the generations of both
the original version of CriminelBART and the
model using guided beam search. We recruited
three evaluators from a Faculty of Law that as-
signed a score between 1 to 10, 1 corresponding
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to a generation completely off-track, and 10 be-
ing a perfect generation. We used Krippendorff’s
alpha coefficient (Krippendorff, 2004) to analyze
the inter-annotator agreement which is 0.69. We
can see from Table 4 that the guided version of
CriminelBART achieves better generalization per-
formance on unseen provisions with an average
score of 7.4, compared to the original version with
a score of 3.9. That is, guided CriminelBART pro-
duces generations that verbalize the good provi-
sion with some hallucinations and/or omissions,
whereas the original version mostly generates on-
theme or off-track descriptions. It seems like the
hallucination and omission models enable better ex-
ploration of the generation tree than regular beam
search using maximum log-likelihood estimation.
This can lead to better generations when using a
higher number of beams (Meister et al., 2020). We
specifically discuss and illustrate this phenomenon
in Section 4.3.

Comparing CriminelBART and Guided Criminel-
BART, we found that for 10 out of 45 generations,
the original version of CriminelBART generated
commonly seen provisions such as 320.14 (driving
under the influence), 266 (assault and battery), or
151 (sexual interference). We provide an example
in Table 5 where the guided CriminelBART gen-
erated the good provision, but the original version
generated unrelated content with respect to the in-
put. There is one particular case where the original
version produced a better generation which is on
provision 345, “Stopping mail with intent” (see Ta-
ble 4). Indeed, the guided version of CriminelBART
produced a generation not capturing the act of steal-
ing mail, while the original version did. In every
other case, the original version attempted at gen-
erating meaningful content as being “on-theme”,
but most of the time the guided version was able
to generate the right provision, with some factual
errors, having a score above 5.

4.3 Beam Search Analysis

To better understand the behavior of our approach,
we analyze the different steps in the beam search
algorithm of both models for one generation in-
volving table value “provision 431”: Attack on-
premises, residence or transport of internationally
protected person. We illustrate in Figure 3 the
paths taken by the two versions of beam search.
The starting point, where the algorithms respec-
tively branched on their own, is illustrated in blue.



BLEU Rates
W Yy B \ 1 2 3 4 ROUGE METEOR BScore NLI RANK | Hal. Om.
00 00 5 \0.73 0.58 0.47 041 0.42 0.38 0.78 0.34 0.72 |0.28 0.24
02 02 15 |0.73 059 048 043 044 0.38 079 034 0.76 |[0.13 0.11
Post processing | 0.73 0.58 0.48 0.42 0.43 0.37 0.79 034 0.78 |0.11 0.11

Table 3: Automatic evaluation results of the best performing original CriminelBART (0w = 0.0,y = 0.0, B =5),
the best-performing model using the weighted beam search algorithm (w = 0.2, y = 0.2, B = 15), and that same

model using the post-processing finalization step.

0. h. 0. h. 0. h. 0. h. 0. h. 0. h.
1 1 1 1 1 1 1 1 1 1 1 1
0.99 | 0.94 0.99 | 0.96 1.00 | 1.00 1.00 | 0.86 1.00 | 1.01 1.00 | 1.00
, thereby committing the criminal act
assault and battery against PER under Section 266(a) of the Criminal
Code.
premises, a person enjoying
the or on the DATE: to international protection, in such a
LOC, LOC, exercised way as to endanger the life or
| liberty of that person, thereby
committing the criminal act
an attack against official provided for in Section 268 of the
CriminelBART Criminal Code.
Section 431 0, h, 0, h, 0, h, 0, h, 0, h,
0.99 | 0.97 0.98 | 0.94 0.64 | 0.28 0.32 | 0.12 0.00 | 0.04

Figure 3: Analysis of CriminelBART using the original (orange) and the guided (green) beam search algorithms on
the generation of provision 431 (translated in English): “Attack on-premises, residence or transport of internationally
protected person.”. The predicted number of omissions (0;) and hallucinations (h;) are presented at each timestep.

The original beam search algorithm is illustrated in
yellow, while the guided beam search is illustrated
in green. Each time step in the figures may be an
aggregation of several generation steps, for easier
understanding. Each time step is associated with
the predicted number of omissions and hallucina-
tions, oj and h; respectively, with respect to their
associated models.

In this particular example, the models start with
omitted and hallucinated values of one regarding
the initial generation “the or on the DATE, at LOC,
LOC, exercised”*. The decoding algorithm branch
out on the next token, generating “assault” for the
original version and “an” for the guided one. It
is only with two generation steps that the guided
beam search obtains lower predicted values in
terms of omissions and hallucinations (0.64 and
0.28 respectively). The final generation obtains

“DATE, PER and LOC are special tokens from the
Plum2Text" ™ dataset where dates, persons, and locations have
been anonymized.

scores of omissions and hallucinations of 0.00 and
0.04. The original version of the beam search on
the other hand clearly omits to generate the proper
provision, and hallucinates the provision of “as-
sault”, ending with both omission and hallucina-
tions scores of 1.0. Finally, the original version of
CriminelBART obtains a human evaluation score of
1.0, compared to the guided version having 8.33.

5 Generalization of the Approach

We illustrate the generalization of our proposed
approach to improve the beam search algorithm
to other data-to-text settings by using WebNLG, a
well-known dataset in the NLP community. To this
end, we used the same methodology described in
Section 3.3:

» From the original WebNLG training dataset,
we build two datasets, O and H. Training
instances of these datasets consist of a set of
triplets each containing a table, a generation,



Provision CriminelBART Guided CriminelBART
46 1.00 8.00
57 3.00 8.00
58 2.33 7.00
83.04 2.67 8.00
83.08 3.00 8.00
83.21 5.33 8.00
83.181 1.00 8.00
123 1.00 8.00
148 7.67 8.67
150 3.67 8.33
170 2.33 5.00
173 2.33 8.33
202 1.00 4.67
218 1.00 5.67
243 4.33 6.67
245 2.00 7.33
253 6.00 8.00
267 6.33 8.00
270.1 3.33 8.67
318 7.00 8.33
342 8.67 9.00
342.1 2.33 9.67
344 4.00 8.67
345 7.67 1.00
347 1.00 6.00
351 7.00 9.00
354 3.00 8.00
355 5.00 7.67
356 1.00 7.67
364 1.00 8.67
368 7.33 9.00
374 4.67 5.00
382.1 8.33 4.00
398 8.00 6.00
402.2 8.00 8.33
406 3.33 8.00
431 1.00 8.33
432 5.00 4.33
437 1.00 4.33
438 5.67 8.33
439 2.33 8.33
445.1 3.00 9.00
446 2.33 8.67
467.111 8.33 8.67
810.2 2.33 5.67
Average 3.9 7.4

Table 4: Human evaluation of the original version of
CriminelBART and the one using guided beam search
on the 45 unseen provisions.

and the associated number of omissions or
hallucinations.

* Using the previously created datasets, we train
two models to predict the number of omis-
sions and hallucinations given the input table
and its corresponding generation.

» We use the trained models to predict, during
the decoding process, the number of omis-
sions and hallucinations and weigh the beams
accordingly.

» We apply the finalization step to select the best
hypothesis.

The omission dataset O of WebNLG consists
of 20,448 examples resulting in train and test sets
of 16,358 and 4,090 examples respectively using
an 80%-20% split. The hallucination dataset H
consists of 20,600 examples resulting in train and
test sets of 16,480 and 4,120 examples respec-
tively also using an 80%—-20% split. Similar to
the Plum2Text setting, we trained the English ver-
sion of BERT (Devlin et al., 2019) available in the
HuggingFace library using the same hyperparame-
ters previously selected. For the actual data-to-text
generation task we trained BART (Lewis et al.,
2020) on the training set of WebNLG and evalu-
ated it on the test set after performing a grid-search
over the guided beam search hyperparameters. \We
used the same automatic evaluation metrics as with
Plum2Text. We can see from Table 6 that the guided
version of BART on WebNLG improves the per-
formance on 6 metrics out of 9. Considerable im-
provements are made regarding NLI and RANK,
two metrics that were proven to be correlated with
manual evaluation of WebNLG test instances (Gar-
neau et al., 2022). Similar to the Plum2Text case,
using the post-processing step to re-rank candi-
dates improved the generations for almost all met-
rics. While the hallucination and omission rates
are already low, using the guided version of BART
slightly improves them.

6 Conclusion

In this paper, we introduced a new guiding mech-
anism for the beam search algorithm in the data-
to-text generation setting. We presented how to
train two models, one to predict the number of
omissions, and the other for the number of halluci-
nations. These predictors are used not only to mit-
igate the number of omissions and hallucinations



Provision: 123: Influencing a municipal officer; is guilty of an indictable offence and liable

to imprisonment for a term not exceeding five years or is guilty of an offence punishable on

Input Data summary conviction if he influences or attempts to influence a municipal officer to do any of
the things referred to in paragraphs (1)(a) to (d): by threats or deception.
CriminelBART On the LABELD, PER is arrested for driving with more than 80 mg of alcohol per 100 ml of
Score: 1.0 blood.
i G_uided On or about LABELD, at LOC, LOC, willfully attempted to influence a municipal official,
C”Sr?:'onrg!%%RT thereby committing the criminal act under section 120(a) of the Criminal Code.

Table 5: Comparing the generation of the original CriminelBART and the model using guided beam search on
provision 123: “Influencing a municipal officer”. The original version of CriminelBART generates one of the most
common provisions, 320.14 (driving under the influence) resulting in a score of 1.0, whereas the model using guided
beam search generates a description about the right provision resulting in a score of 8.0.

BLEU Rates
w Yy B \ 1 2 3 4 ROUGE METEOR BScore NLI RANK | Hal. Om.
00 00 5 \0.81 0.71 0.64 058 0.55 0.54 094 0.63 0.64 \0.11 0.00
02 02 15 |0.83 0.73 0.65 0.59 0.53 0.54 094 0.68 0.65 |0.10 0.00
Post processing | 0.84 0.74 0.66 0.60 0.54 0.54 094 0.68 0.66 |0.10 0.00

Table 6: Automatic evaluation results of the best performing BART model on WebNLG (w = 0.0,y = 0.0, 3 = 5)
and the best-performing BART model using the weighted beam search algorithm (w = 0.2, y = 0.5, B = 10).

but also to favor the exploration of the possible gen-
eration space. This new mechanism improves the
generation quality with respect to automatic evalu-
ation metrics and shows significant generalization
improvement regarding unseen data points during
human evaluation. Moreover, our mechanism of-
fers a new degree of a posteriori interpretability
given a list of potential hypotheses, since the char-
acterization models provide estimates of the num-
ber of omissions and hallucinations. Finally, we
showed that our approach generalizes not only to
Plum2Text, a challenging low-resource dataset but
also to a well-known dataset such as WebNLG.
In future works, it would be interesting to investi-
gate the identification of omitted values and hallu-
cinated tokens. The identification of omitted values
is easier to perform since we already provide a way
to build such a dataset and train a model accord-
ingly. However, identifying the hallucinated tokens
requires a sequence-to-sequence tagger and its re-
spective training set, which most likely can only be
obtained with manual annotations.

Ethics Statement

The scope of this work is to improve the faithful-
ness of neural data-to-text generators. Faithfulness
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is extremely important in the legal field since we
do not want to generate false accusations about
litigants. There is a potential risk to using neural
data-to-text generators in production, and we pro-
vided not only improve their performance but also
analyzed their behavior. In the end, the purpose of
this work is largely motivated by the ethical use of
neural text generators and a better understanding
of their implications.
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A New Unseen Provisions ence a municipal officer to do anything men-
tioned in paragraphs (1)(a) to (d) is guilty of

List of the 37 new unseen provisions and their as- an indictable offence and liable to imprison-

sociated texts.

* 46 (1) a): “High treason. Every person com-
mits high treason who, in Canada, wages war
against Canada or does any act preparatory
thereto;”

57 (2): “Misrepresentation in relation to a
passport. Every person who, in Canada or
elsewhere, for the purpose of obtaining a pass-
port for himself or herself or for another per-
son or for the purpose of obtaining a mate-
rial alteration or addition to such a passport,
makes a written or oral statement that he or
she knows to be false or misleading is guilty.”

58 (1) a): “Fraudulent use of citizenship cer-
tificate. Every person who, while in Canada
or outside Canada, as the case may be, uses a
certificate of citizenship or a certificate of nat-
uralization for a fraudulent purpose is guilty
of an indictable offence and liable to impris-
onment for a term not exceeding two years or
is guilty of an offence punishable on summary
conviction;”

83.04 a): “Using or possessing property for
terrorist purposes. Any person who: directly
or indirectly uses property, in whole or in part,
for or to facilitate a terrorist activity is guilty
of an indictable offense punishable by impris-
onment for not more than ten years;”

83.08 (1) a): “Freezing of property. No person
in Canada and no Canadian outside Canada
shall: knowingly deal with property owned or
controlled, directly or indirectly, by a terrorist
group;”

83.21 (1): “Instructing a person to carry out
an activity for a terrorist group. Every person
who knowingly directs, directly or indirectly,
any person to carry out any activity for the
benefit of, at the direction of, or in associa-
tion with a terrorist group for the purpose of
enhancing the ability of any terrorist group
to facilitate or carry out a terrorist activity is
guilty of an indictable offence and liable to
imprisonment for life.”

123 (2): “Influencing a municipal officer. Ev-
ery person who influences or attempts to influ-

12

ment for a term not exceeding five years or is
guilty of an offence punishable on summary
conviction:”

148 a): “Assisting prisoner of war to escape.
Every one who knowingly: aids a prisoner
of war in Canada to escape from a place of
confinement is guilty of an indictable offence
and liable to imprisonment for a term not ex-
ceeding five years or is guilty of an offence
punishable on summary conviction;”

170: “Father, mother or guardian who pro-
cures. A parent or guardian of a person under
the age of eighteen years who causes that per-
son to engage in sexual acts prohibited by this
Act with a third party is guilty of an indictable
offence and liable to imprisonment for a term
not exceeding fourteen years and to a mini-
mum punishment of one year.”

173 (2): “Exhibitionism. Any person who,
in any place whatsoever, for sexual purposes,
exhibits his or her genitals in front of a person
under the age of sixteen years is guilty of:”

202 (1) a): “Gambles, bookmaking, etc. Ev-
ery person commits an offence who: uses or
knowingly permits to be used any premises un-
der his control for the purpose of registering
or recording bets or selling a pool bet;”

218: “Abandonment of child. Whoever un-
lawfully abandons or exposes a child under
the age of ten years, so that the life of such
child is actually endangered or exposed to be
endangered, or the health of such child is ac-
tually permanently endangered or exposed to
be endangered, is guilty of:”

243: “Suppression of part. Whoever in any
way causes the corpse of a child to disappear
with the intention of concealing the fact that
its mother gave birth to it, whether the child
died before, during or after birth, is guilty:”

245 (1): “Administering deleterious substance.
Whoever administers or causes to be admin-
istered to any person any poison or other de-
structive or deleterious substance, shall be
guilty of:”



« 270.1 (1): “Disarming a peace officer. Every
person commits an offence who takes or
attempts to take a weapon from the possession
of a peace officer acting in the performance
of his or her duties, without the consent of the
peace officer.”

« 318 (1): “Advocacy of genocide. Anyone who
advocates or foments genocide is guilty of an
indictable offence and liable to imprisonment
for a term not exceeding five years.”

e 342 (3): “Unauthorized use of credit card
data. Any person who fraudulently and with-
out the appearance of right has in his pos-
session or uses data, whether genuine or not,
relating to a credit card, including a personal
authenticator, which would enable the use of
the same or the obtaining of services con-
nected with its use, traffics in such data or
allows another person to use the same, shall
be guilty:”

» 342.1 (1) a): “Unauthorized use of computer.
Every person who fraudulently and without
colour of right, directly or indirectly, obtains
computer services is guilty of an indictable
offence and liable to imprisonment for a term
not exceeding ten years or is guilty of an of-
fence punishable on summary conviction;”

« 345: “Stopping the mail with intent to rob.
Anyone who stops a mail transport with the in-
tention of stealing or searching it is guilty of a
criminal act and liable to life imprisonment.”

e 347 (1): “Criminal rate of interest. Notwith-
standing any other federal law, any person
who enters into an agreement or arrangement
to charge interest at a criminal rate or charges
interest, even partially, at a criminal rate is
guilty of:”

« 351 (1): “Possession of burglary tools. Who-
ever, without lawful excuse, has in his pos-
session any instrument which may be used to
break into any place, motor vehicle, vault or
safe, knowing that the instrument has been
used or is intended to be used for such pur-
pose, is guilty of:”

e 354 (2): “Possession of motor vehicle with
identification number obliterated. In proceed-
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ings under subsection (1), evidence that a per-
son is in possession of a motor vehicle, or
any part thereof, the identification number of
which has been wholly or partly removed or
obliterated is, in the absence of any evidence
to the contrary, proof that it was obtained by
the commission in Canada of an offence pun-
ishable on indictment;”

356 (1) a): “Theft of mail. Every person com-
mits an offence who: steals anything sent by
mail after it has been deposited in a post of-
fice and before it is delivered, or after it has
been delivered but before it is in the posses-
sion of the addressee or any person who may
reasonably be regarded as authorized by the
addressee to receive the mail;”

364 (1): “Fraudulent obtaining of food and
lodging. Any person who fraudulently obtains
food, drink, or other commodities in any es-
tablishment dealing in them is guilty of a sum-
mary conviction offense.”

368 (1) a): “Using, possessing or trafficking
in a forged document. Every person commits
an offence who, knowing or believing that a
document is counterfeit, as the case may be:
uses, treats or acts with respect to it as if it
were genuine;”

374 (a): “Unauthorized drafting of document.
Any person who, with intent to defraud and
without lawful authority, makes, subscribes,
draws, signs, accepts or endorses a document
in the name of or on behalf of another per-
son, by proxy or otherwise, is guilty of an
indictable offence and liable to imprisonment
for a term not exceeding fourteen years;”

382.1 (1) a): “Insider trading. Every person
who knowingly sells or buys securities, even
indirectly, using confidential information that
he or she holds as a shareholder of the is-
suer of the securities in question is guilty of
an indictable offence and liable to imprison-
ment for a term not exceeding ten years or is
guilty of an offence punishable on summary
conviction;”

398: “Falsifying record of employment. Every
person who, with intent to mislead, falsifies a
record of employment by any means, including



the punching of a time clock, is guilty of a
summary conviction offence.”

402.2: “ldentity theft. Every person commits
an offense who obtains or has in his or her
possession identifying information about an-
other person with the intent to use that infor-
mation to commit an indictable offence, one
of the elements of which is fraud, deceit or
falsehood.”

406 a): “Infringement of Trade-mark. For the
purposes of this Part, a person who, without
the consent of the owner of the trade-mark,
makes or reproduces in any manner that trade-
mark or a mark so nearly resembling it as to
be likely to mislead;”

431: “Attack on the official premises, private
dwelling or means of transport of an interna-
tionally protected person. Any person who
makes an attack accompanied by violence
on the official premises, private dwelling or
means of transportation of an internationally
protected person in such a manner as to be
likely to endanger the life or liberty of that
person shall be guilty of an indictable offence
punishable by imprisonment for a term not
exceeding fourteen years.”

432 (1): “Unauthorized recording of a mo-
tion picture. Whoever, without the consent of
the manager of the cinema, records a cine-
matographic work - as that term is defined in
section 2 of the Copyright Act - that is shown
in a cinema, or its soundtrack, is guilty of:”

437: “False alarm. Any person who willfully,
without reasonable cause, by shouting, ring-
ing bells, using a fire alarm, telephone or
telegraph, or in any other manner, sounds or
spreads or causes to be sounded or spread a
fire alarm, is guilty.”

438 (2): “Obstructing salvage of wreck. Every
person who wilfully prevents or hinders, or
wilfully seeks to prevent or hinder, the salvage
of a wreck is guilty of an offence punishable
on summary conviction.”

439: “Disturbance of marine signals. Every
person who moors a ship or boat to a signal,
buoy or other landmark used for navigation
is guilty of an offence punishable on summary
conviction.”
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» 467.111: “Recruitment of members by crimi-
nal organization. Whoever recruits a person
to be a member of a criminal organization-or
invites, encourages, coerces, or solicits a per-
son to be a member of a criminal organization-
for the purpose of increasing the ability of the
organization to facilitate or commit a crimi-
nal act under this or any other federal law is
guilty of an indictable offense and liable:”
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Abstract

Multiple business scenarios require an au-
tomated generation of descriptive human-
readable text from structured input data. This
has resulted into substantial work on fact-to-
text generation systems recently. Unfortu-
nately, previous work on fact-to-text (F2T)
generation has focused primarily on English
mainly due to the high availability of relevant
datasets. Only recently, the problem of cross-
lingual fact-to-text (XF2T) was proposed for
generation across multiple languages along-
with a dataset, XALIGN for eight languages.
However, there has been no rigorous work
on the actual XF2T generation problem. We
extend XALIGN dataset with annotated data
for four more languages: Punjabi, Malayalam,
Assamese and Oriya. We conduct an exten-
sive study using popular Transformer-based
text generation models on our extended multi-
lingual dataset, which we call XALIGNV2.
Further, we investigate the performance of dif-
ferent text generation strategies: multiple vari-
ations of pretraining, fact-aware embeddings
and structure-aware input encoding. Our ex-
tensive experiments show that a multi-lingual
mT5 model which uses fact-aware embeddings
with structure-aware input encoding leads to
best results (30.90 BLEU, 55.12 METEOR and
59.17 chrF++) across the twelve languages. We
make our code and dataset publicly available?®,
and hope that this will help advance further
research in this critical area.

1 Introduction

Fact-to-text (F2T) is a natural language generation
(NLG) task where input is structured data (like
facts?) and output is its natural language descrip-
tion. F2T systems have been shown to be effec-
tive in many applications like automated dialog
'https://github.com/blitzprecision/

XAlignVv2
2 fact is a triple composed of subject, relation and object.

<English> Elon Musk (born 28 June 1971)isa |
South African-Canadian-American veteran
__businessman, investor, engineer, and inventor. |
<hindi> TeH 7% (4 28 T 1971) T Gl

SRR, IR SMTaPRD &1

" 9
<Elon_Musk, nationality, South_Africa> <bengali> ST Wmﬁé? ;%W%
<Elon_Musk, nationality, Canada> S s " S a8 | :
<Elon_Musk, nationality, USA> ( RINCIPIR, AT ¢ TG J
<Elon_Musk, date_of_birth, 28_June_1971> | |y eor <g|[1jarati> el 43 (% 28 et 1971) M e[EHEL
<Elon_Musk, occupation, engineer> U1[E51-3(SUA-21 R 541 Ulte GELIU(d, AsLRASIR,
<Elon_Musk, occupation, entrepreneur> L %12 39 2045 B,

<Elon_Musk, occupation, inventor> o e = =
<Elon_Musk, occupation, investor> e QI e el

55 OsTHlwEuT, wseSLTeaTy,
QU WETT WM MID &6vor® LI LILImeTy
DLEUMIT.

English Facts

<punjabi> MBS HA (FEH 28 76 1971)
fooma, frftatng, w3 & 1

Figure 1: XF2T example from XALIGNV2: Generating
English, Hindi, Bengali, Gujarati, Tamil and Punjabi
sentences to capture semantics from English facts.

systems (Wen et al., 2016), domain-specific chat-
bots (Novikova et al., 2017), open domain question
answering (Chen et al., 2020), authoring sports
reports (Chen and Mooney, 2008), financial re-
ports (Plachouras et al., 2016), news reports (Lep-
panen et al., 2017), etc. Recently, several English
F2T systems have been proposed, but lack of train-
ing data in low-resource languages (LRLS) implies
that there are hardly any such systems for LRLSs.
Across many business domains, there is abun-
dance of facts (or key-value stores) in English, and
consumers want to access that information in their
own regional languages. For example, users want
product descriptions, weather report, match report,
financial report in various LRLs. Another related
problem is to automatically populate first sentence
for LRL Wikipedia pages using facts from English
Wikidata. If such facts were in LRLs and there
were models to do F2T in those LRLS, we could
leverage those. However, neither exist. Even LRL
facts on Wikidata are very sparse. Another ap-
proach could be to do F2T in English and then
translate the output to LRLs. But our experiments
show that this leads to poor quality primarily due
to lack of robust translation systems for LRLS.
Specifically, we focus on the F2T problem of
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[ Dataset [ Languages | AM ]| 1] [ F/l [ 1P| [ IT| [ X-Lingual |
WikiBio en A 728K 19.70 1740 26.1 No
E2E en M 50K 5.43 945 20.1 No
WebNLG 2017 en M 25K 2.95 373 22.7 No
fr-de Bio fr, de A 170K, 50K 8.60, 12.6 1331, 1267 29.5,26.4 No
TREX en A 6.4M 1.77 642 79.8 No
WebNLG 2020 en, ru M 40K, 17K 2.68, 2.55 372,226 23.7 Yes
KELM en A 8M 2.02 663 21.2 No
WITA en A 55K 3.00 640 18.8 No
WikiTableT en A 1.5M 51.90 3K 115.9 No
GenWiki en A 1.3M 1.95 290 215 No
XALIGN en+7LR A 0.45M 2.02 367 19.8 Yes

[ XALGNV2 [ en+1ILR | A | O055M | 198 | 374 | 197 [ Yes |

Table 1: Statistics of popular Fact-to-Text datasets: WikiBio (Lebret et al., 2016), E2E (Novikova et al., 2017),
WebNLG 2017 (Gardent et al., 2017), WebNLG 2020 (Ferreira et al., 2020), fr-de Bio (Nema et al., 2018),
KELM (Agarwal et al., 2021), WITA (Fu et al., 2020), WikiTableT (Chen et al., 2021), GenWiki (Jin et al., 2020),
TREX (Elsahar et al., 2018), XAlign (Abhishek et al., 2022), and XALIGNV2 (ours). Alignment method could be
A (automatic) or M (manual). [l|=number of instances. F/I=number of facts per instance. |P|=number of unique

relations. | T|=average number of tokens per instance.

generating LRL person biographies (like a sen-
tence on Wikipedia page) from English Wikidata
facts. While millions of English person entities ex-
ist on Wikidata, there are a total of only 168K (non-
unique) person Wikidata entries across 11 LRLs
of our interest. As an extreme, Assamese has only
1.7K person entries! Even worse, average number
of facts per entity on Wikidata in LRLs (10.39) is
less than half of that of English (22.8). Monolin-
gual F2T for LRLs suffers from lack of training
data. Translating English output (using English
F2T) to LRLs leads to poor results. This neces-
sitates us to build cross-lingual F2T generation
(XF2T) systems, wherein the input is a set of En-
glish facts and output is a sentence capturing the
fact-semantics in the specified LR language, as in-
troduced in our previous work (Abhishek et al.,
2022).

In (Abhishek et al., 2022), we proposed trans-
fer learning and distance supervision based meth-
ods for cross-lingual alignment for aligning En-
glish Wikidata facts with equivalent text from LRL
Wikipedia pages. In that paper, we used such align-
ment methods to contribute the X ALIGN dataset
which consists of sentences from LR language
Wikipedia aligned with English fact triples from
Wikidata. It contains data for the following eight
languages: Hindi (hi), Telugu (te), Bengali (bn),
Gujarati (gu), Marathi (mr), Kannada (kn), Tamil
(ta) and English (en). In that paper, we focused on
dataset creation and not much on the XF2T task.
In this paper, we extend this dataset to four more
LR languages: Punjabi (pa), Malayalam (ml), As-
samese (as) and Oriya (or). Fig. 1 shows an XF2T
example from our extended dataset, XALIGNV 2.
Further, we rigorously investigate models for the
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XF2T problem. First, we experiment with standard
existing Transformer-based multi-lingual encoder-
decoder models like the vanilla Transformer, In-
dicBART and mT5. Next, we explore performance
across various training setups: bi-lingual, translate-
output, translate-input and multi-lingual. Further,
we systematically explore various strategies for im-
proving XF2T generation like multi-lingual data-
to-text pre-training, fact-aware embeddings, and
structure-aware encoding. Overall, we make the
following contributions in this work.

* We extend the XALIGN dataset with an-
notated XF2T data corresponding to four
more LR languages, leading to a new dataset,
XALIGNV?2.

« We rigorously experiment with multiple
encoder-decoder models, training setups, pre-
training methods, and input representations
toward building a robust XF2T system.

« We find that a multi-lingual mT5 model
which uses fact-aware embeddings along with
structure-aware input encoding leads to best
results. Our best small-scale model achieves
an average BLEU of 29.27, METEOR of
53.64, and chrF++ of 57.30 for XF2T across
12 languages. We make the code and dataset
publicly available?.

2 Related Work

Multi-lingual and Cross-lingual NLG: Recently
there has been a lot of work on multi-lingual
and cross-lingual NLG tasks like machine trans-
lation (Chi et al., 2021; Liu et al., 2020), question
generation (Chi et al., 2020; Mitra et al., 2021),




news title generation (Liang et al., 2020), and sum-
marization (Zhu et al., 2019; Taunk et al., 2023)
thanks to models like XNLG (Chi et al., 2020),
mMBART (Liu et al., 2020), mT5 (Xue et al., 2021),
etc. In this work, we investigate effectiveness of
multiple modeling techniques for the XF2T task.
Further, from a knowledge graph (KG) and text
linking perspective, our work is related to tasks
like entity linking (link mention in a sentence to
a KG entity) (Botha et al., 2020) and fact linking
(linking sentence to a set of facts) (Kolluru et al.,
2021). As against this, XF2T is the problem of gen-
erating a sentence given a set of facts. XF2T is also
related to graph-to-text (Ribeiro et al., 2021) where
our fact triples about an entity can be mapped to a
star-like graph, but no cross-lingual graph-to-text
methods exist unfortunately.

F2T Datasets: Several F2T datasets have been
proposed in the literature: WikiBio (Lebret et al.,
2016), E2E (Novikova et al., 2017), WebNLG
2017 (Gardent et al., 2017), WebNLG 2020 (Fer-
reira et al., 2020), fr-de Bio (Nema et al., 2018),
KELM (Agarwal et al., 2021), WITA (Fu et al.,
2020), WikiTableT (Chen et al., 2021), Gen-
Wiki (Jin et al., 2020), TREX (Elsahar et al., 2018)
and XAlign (Abhishek et al., 2022). These datasets
contain text from various domains like people,
sports, restaurants, airports, politicians, artists, etc.
Also, these datasets vary widely in terms of statis-
tics like the number of instances, number of facts
per instance, number of unique relations and aver-
age number of tokens per instance. All of these are
English only except fr-de Bio (which has French
and German), WebNLG 2020 (which has English
and Russian) and XAlign (which has English and 7
other LR languages). Both fr-de Bio and WebNLG
2020 propose multi-lingual but not cross-lingual
F2T tasks. Unlike other datasets, X ALIGN and our
dataset, XALIGNV?2 are cross-lingual. Our pro-
posed dataset, XALIGNV 2, contains 12 languages,
has 0.55M instances, 374 unique relations, avg 19.7
tokens/instance and avg 1.98 facts/instance. Table 1
shows basic statistics of popular F2T datasets.

F2T Generation: Training F2T models requires
aligned data with adequate content overlap. Some
previous studies like WebNLG (Gardent et al.,
2017) collected aligned data by crowdsourcing,
while others have performed automatic alignment
by heuristics like TF-IDF. In (Abhishek et al.,
2022), we explored two unsupervised methods to
perform a cross-lingual alignment. We leverage the
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“transfer learning from Natural Language Inference
task” based method for this work.

Initial F2T methods were template-based and
were therefore proposed on domain-specific data
like medical (Bontcheva and Wilks, 2004), cook-
ing (Cimiano et al., 2013), person (Duma and
Klein, 2013), etc. They align entities in RDF
triples with entities mentioned in sentences, ex-
tract templates from the aligned sentences, and
use templates to generate sentences given facts for
new entities. Template-based methods are brittle
and do not generalize well. Recently, Seg-2-seq
neural methods (Lebret et al., 2016; Mei et al.,
2016) have become popular for F2T. These in-
clude vanilla LSTMs (Vougiouklis et al., 2018),
LSTM encoder-decoder model with copy mecha-
nism (Shahidi et al., 2020), LSTMs with hierar-
chical attentive encoder (Nema et al., 2018), pre-
trained Transformer based models (Ribeiro et al.,
2021) like BART (Lewis et al., 2020) and T5 (Raf-
fel et al., 2020). Vougiouklis et al. (2018) proposed
a method which uses feedforward neural networks
to encode RDF triples and concatenate them as
the input of the LSTM decoder. Variations of
LSTM encoder-decoder model with copy mech-
anism (Shahidi et al., 2020) or with hierarchical
attentive encoder (Nema et al., 2018) have also
been proposed. Recently, pretrained Transformer
based models like BART (Lewis et al., 2020) and
T5 (Raffel et al., 2020) have been applied for mono-
lingual English Fact-to-Text (Ribeiro et al., 2021).

Richer encoding of the input triples has also been
investigated using a combination of graph convo-
lutional networks and Transformers (Zhao et al.,
2020), triple hierarchical attention networks (Chen
et al., 2020), or Transformer networks with special
fact-aware input embeddings (Chen et al., 2020).
Some recent work also explores specific F2T set-
tings like plan generation when the order of occur-
rence of facts in text is available (Zhao et al., 2020)
or partially aligned F2T when the text covers more
facts than those mentioned in the input (Fu et al.,
2020). However, all of these methods focus on En-
glish fact to text only. Only recently, we proposed
the XF2T problem in our previous paper Abhishek
et al. (2022) but in that work, our focus was on
problem formulation and dataset contribution. In
this paper, we extensively evaluate multiple meth-
ods for the XF2T generation task.



Train+Validation

M [ Manually Labeled Test
[T 1

[FT K IAITITT T T
hi | 75K | 57K | 25.3/5/99 [2.0 ] 0.81] 4 [842] 11.1/5/24 [ 2.1
mr | 50K | 19K | 20.4/5/94 [2.2 | 0.61| 4 | 736 12.7/6/40 | 2.1
te | 61K | 24K | 15.6/5/97 | 1.7 0.56 | 2 | 734 | 9.7/5/30 | 2.2
ta | 121K | 57K | 16.7/5/97 | 1.8 0.76 | 2 | 656 | 9.5/5/24 | 1.9
en | 104K | 133K | 20.2/4/86 | 2.2 [ 0.74| 4 | 470 | 17.5/8/61 | 2.7
gu | 35K | 9K | 23.4/5/99 |1.8[ 050 3 [530 | 12.7/6/31 | 2.1
bn | 131K | 121K | 19.3/5/99 | 2.0 0.64 | 2 | 792 | 8.7524 | 1.6
kn | 88K | 25K | 19.3/5/99 | 1.9 | 054 | 4 | 642 | 10.4/6/45 | 2.2
pa | 59K | 30K | 32.1/5/99 | 2.1| 054 | 3 | 529 13.4/5/45 | 2.4
as | 27K | 9K [19.23/5/99 |1.6| - | 1 |637|16.22/5/72 | 2.2
or | 28K | 14K [16:88/5/99 | 1.7| - | 2 | 242 | 13.45/7/30 | 2.6
ml | 146K | 55K | 15.7/5/98 |1.9|052] 2 |615] 9.2/6/24 | 1.8

Table 2: Basic Statistics of XALIGNV2. |l|=# in-
stances, [T|=avg/min/max word count, |F|=avg #facts,
|V|=Vocab. size, k=Kappa score, |A|=#annotators. For
Train+Validation, min and max fact count is 1 and 10
resp across languages.*

3 XALIGNV2: Data Collection,
Pre-processing and Alignment

Data Collection and Pre-processing: We start by
gathering a list of 95K person entities from Wiki-
data each of which has a link to a corresponding
Wikipedia page in at least one of our 11 LR lan-
guages. This leads to a dataset D where every
instance d; is a tuple [entitylD, English Wikidata
facts, LRL, LRL Wikipedia URL for the entitylD [
We extract facts (in English) from the 20201221
WikiData dump for each entity in D using the Wiki-
Data API3. We gathered facts corresponding to
only the following Wikidata property (or relation)
types that capture most useful factual information
for person entities: Wikibaseltem, Time, Quan-
tity, and Monolingualtext. We retain any support-
ing information associated with the fact triple as a
fact qualifier. This leads to overall [0.35M data
instances across all the 12 languages. Also, for
each language, we gather sentences (along with sec-
tion information) from 20210520 Wikipedia XML
dump using same pre-processing steps as described
in (Abhishek et al., 2022).

Fact-to-Text Alignment: For every (entity e, lan-
guage I) pair, the pre-processed dataset has a set F
of English Wikidata facts and a set of Wikipedia
sentences Sgy in that language. Next, we use a two-
stage automatic aligner as proposed in (Abhishek
et al., 2022) to associate a sentence in Sg; with a
subset of facts from F¢;. We run this aligner for the
new four LR languages to obtain the corresponding
Train+Validation part of XALIGNV2.

*https://query.wikidata.org/

4For or, K is not reported since we did not get redundant
judgments done due to lack of available annotators. For as, K
is not reported since we had only one annotator.
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Manual Annotations for Ground-Truth Data:
We need manually annotated data for evaluation of
our XF2T generation. Again, we follow the same
procedure as outlined in (Abhishek et al., 2022)
to get annotations for the new four languages
in XALIGNV2. Detailed annotation guidelines
are also mentioned here!. Our annotator pool is
selected from the National Register of Translators®.
Annotators were in age range 25 to 40 years;
46% females and 54% males; occupations varied
as linguists, editors, translators, freelancers;
qualifications varied as BA, MA, MSc, LLB,
PhD. We report details of this test part of our
XALIGNV?2 dataset in Table 2. On average, a
sentence can be verbalized using [ZThct triples.
XALIGNV2 Dataset Analysis: Table 2 shows the
dataset statistics. Figs. 2 and 3 show fact count
distribution. We observe that a large percent of sen-
tences contain more than one fact across languages.
Also, the distribution is similar across languages
and data subsets. Finally, Table 3 shows top 10
frequent fact relations across all the languages.

4  XF2T Approaches

In this section, we first discuss our input repre-
sentation. Next, we discuss various Transformer-
based methods, different training setups, multiple
pretraining methods, and discussion on fact-aware
embeddings.

Structure-aware Input encoding: Each input
instance consists of multiple facts F =
{f,f,,...,Tn} and a section title t. A fact f;
is a tuple composed of subject s;, relation rj, ob-
ject oj and m qualifiers Q = g1, 02, ...,dm. Each
qualifier provides more information about the fact.
Each of the qualifiers {q; }Jf';l can be linked to the
fact using a fact-level property which we call as
qualifier relation qr;. For example, consider the
sentence: “Narendra Modi was the Chief Minister
of Gujarat from 7 October 2001 to 22 May 2014,
preceded by Keshubhai Patel and succeeded by
Anandiben Patel.” This can be represented by a
fact where subject is “Narendra Modi”, relation
is “position held”, object is “Chief Minister of Gu-
jarat” and there are 4 qualifiers each with their qual-
ifier relations as follows: (1) q1="7 October 2001”,
qry="start time”, (2) g>="22 May 2014”, qr,="end
time”, (3) gz="Keshubhai Patel”, qrs="replaces”,
and (4) g4="Anandiben Patel”, qrs="replaced by”.

Shttps://www._ntm.org. in/languages/
english/nrtdb.aspx
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hi
written or signed

occupation, date of birth, position held, cast member, country of citizenship, award received, place of birth, date of death, educated at, languages spoken

mr
award received

occupation, date of birth, position held, date of death, country of citizenship, place of birth, member of sports team, member of political party, cast member,

te
at

occupation, date of birth, position held, cast member, date of death, place of birth, award received, member of political party, country of citizenship, educated

ta
party

occupation, position held, date of birth, cast member, country of citizenship, educated at, place of birth, date of death, award received, member of political

en
political party

occupation, date of birth, position held, country of citizenship, educated at, date of death, award received, place of birth, member of sports team, member of

qu
citizenship

occupation, date of birth, cast member, position held, award received, date of death, languages spoken written or signed, place of birth, author, country of

bn

occupation, date of birth, country of citizenship, cast member, member of sports team, date of death, educated at, place of birth, position held, award received

kn

occupation, cast member, date of birth, award received, position held, date of death, performer, place of birth, author, educated at

pa
position held

occupation, date of birth, place of birth, date of death, cast member, country of citizenship, educated at, award received, languages spoken, written or signed,

as
party

occupation, date of birth, cast member, position held, date of death, place of birth, country of citizenship, educated at, award received, member of political

or
signed, educated at

occupation, date of birth, position held, cast member, member of political party, place of birth, date of death, award received, languages spoken, written or

ml

occupation, cast member, position held, date of birth, educated at, award received, date of death, place of birth, author, employer

Table 3: Top-10 frequent fact relations across languages.

Each fact f; is encoded as a string and
the overall input consists of a concatena-
tion of such strings across all facts in F.
The string representation for a fact f; is

“[SisHR O O} [Rgr;, Olg], RIgr;, O, ...

[R[gF;,, [QIg],,” where [SLIRLIQA[dre special
tokens. Finally, the overall input with n facts is
obtained as follows: “generate [language] f1 >
... F, (I [H]” where “[language]” is one of our 12
languages, [T ik the section title delimiter token,
and t is the section title.

Standard Transformer-based Models: For
XF2T generation, we train multiple popular multi-
lingual text generation models on Train+Validation
part of our XALIGN dataset. We use a basic
Transformer model, mT5-small, and the In-
dicBART (Dabre et al., 2021) for the XF2T task.
We do not experiment with mBART (Liu et al.,
2020) and Muril (Khanuja et al., 2021) since their
small sized model checkpoints are not publicly
available. We train these models in a multi-lingual
cross-lingual manner. Thus, we train a single
model using training data across languages without
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any need for translation.

Bi-lingual, Multi-lingual & Translation models:
Next, we experiment with different training setups.
We first build bilingual models, where input is
in English and output could be in any of the 12
languages. A drawback with this approach is the
need to maintain one model per language which is
cumbersome.

Further, we also train two translation based mod-
els. In the “translate-output” setting, we train a
single English-only model which consumes En-
glish facts and generates English text. The En-
glish output is translated to desired language at
test time using IndicTrans (Ramesh et al., 2021).
In the “translate-input” setting, English facts are
translated to LR language and fed as input to train
a single multi-lingual model across all languages.
While translating if mapped strings for entities
were present in Wikidata they were directly used.
A drawback with these approaches is the need for
translation at test time.

Pretraining approaches: Pretraining has been a
standard method to obtain very effective models




even with small amounts of labeled data across sev-
eral tasks in natural language processing (NLP).
Domain and task specific pretraining has been
shown to provide further gains (Gururangan et al.,
2020). We experiment with the following four
pretraining strategies on top of the already pre-
trained encoder-decoder model before finetuning
it on XALIGNV?2 dataset. (1) Multi-lingual pre-
training: Wang et al. (2021) provide a noisy, but
larger corpus (542192 data pairs across 15 cate-
gories) crawled from Wikipedia for English F2T
task. The dataset is obtained by coupling noisy
English Wikipedia data with Wikidata triples. We
translate English sentences from the Wikipedia-
based Wang et al. (2021)’s data to our LR lan-
guages. Thus, the multi-lingual pretraining data
contains [6.3M data pairs. For translating sen-
tences, we use IndicTrans (Ramesh et al., 2021). (2)
Translation-based pretraining: Translation is a pre-
liminary task for effective cross-lingual NLP. Thus,
in this method, we pretrain mT5 on translation
data corresponding to English to other language
pairs with [0.25M data instances per language. (3)
Two-stage pretraining: This combines the above
two methods. In the first stage, we do translation-
based pretraining. In the second stage, we perform
multi-lingual pretraining. (4) Multi-task pretrain-
ing: This method also involves training for both
translation as well as XF2T tasks. Unlike the two-
stage method where pretraining is first done for
translation and then for XF2T (multi-lingual pre-
training), in this method we perform the two tasks
jointly in a multi-task learning setup.

Fact-aware embeddings: The input to mT5 con-
sists of token embeddings as well as position em-
beddings. For XF2T, the input is a bunch of facts.
Facts contain semantically separate units each of
which play a different role: subject, relation, object.
We extend the standard mT5 input with specific
(fact-aware) role embeddings. Specifically, we use
four role IDs: ROL1 for subject, ROL2 for relation
and qualifier relation, ROL3 for object and qualifier
tokens, and ROLO for everything else, as shown in
Fig. 4. These are randomly initialized and learned
while training. We hope that this explicit indication
of the role played by each token in the input facts,
will help the model for improved XF2T generation.

We also experimented with (1) separate role em-
beddings for qualifier relation and qualifier, and (2)
adding fact id embeddings, i.e., if the input contains
K facts, we have K fact IDs, and all tokens corre-

20

sponding to a fact gets the same fact ID embedding.
However, these did not lead to better results and
thus we do not report those results.

5 Experiments

Implementation Details for Reproducibility:
We closely follow Abhishek et al. (2022)’s
data-collection and XF2T alignment method for
the creation of cross-lingual fact-to-text dataset for
four additional languages. All XF2T generation
approaches were run on a machine equipped with
four 32GB V100 GPUs. For all experiments, we
use IndicNLP (Kakwani et al., 2020) to convert
the low-resource languages of XALIGNV 2 to the
unified Devanagari script. All Transformer models
have 6 encoder and 6 decoder layers. For Vanilla
Transformer, we follow the standard architecture
and hyper-parameters suggested by Vaswani
et al. (2017). For other methods, we optimize
cross entropy loss using AdamW with constant
learning rate of 3e-5 with L2-norm weight decay
of 0.001, batch size of 20 and dropout of 0.1. We
closely follow (Dabre et al., 2021) for finetuning
IndicBart.

When applicable, we pretrain for 7 epochs. For

multi-lingual pretraining, we use full validation set.
In two-stage pretraining, we save best checkpoint
of first stage (translation task) on validation set of
translation task and use it to initialize model param-
eters for second stage. For multi-task pretraining,
we create new validation set by combining vali-
dation set of translation task and XF2T task. We
finetune for 30 epochs and use beam search with
width of 4.
Evaluation Metrics: We use overall BLEU
scores (Ramesh et al.,, 2021) for evaluating
the multi-lingual models for English-Indic fact-
sentence pairs. Following previous work, we also
use METEOR (Banerjee and Lavie, 2005) and
chrF++ (Popovi€, 2017). PARENT (Dhingra et al.,
2019) relies on the word overlap between input
and the prediction text. Since the input and predic-
tion in XF2T are in different languages, we cannot
compute PARENT scores.

6 Results and Analysis

Since XF2T is a very recently proposed task, there
are not many baseline methods to compare with. In
this section, we will present results using methods
described in Section 4. Due to lack of space, we
show per language results only for our best model,
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Figure 4: English facts being passed as input to mT5’s encoder with token, position and (fact-aware) role embeddings.

but present language-wise results for other models  Bi-lingual, Multi-lingual & Translation models:
in the Appendix. For other comparisons and anal-  Table 5 shows results when mT5 model is trained
ysis, we show average across all languages while  using various bi-lingual, multi-lingual and
pointing out any interesting per-language insights.  translation-based settings. We observe that across
all settings, the initial setting of training a single

l [[BLEU [ METEOR [ chrF++ |

Vaa Trarstormer 12193 T 5021 1 5089 multi-lingual cross-lingual model is the best on
IndicBART 2378 | 5080 [ 5388 average across all metrics. That said, for Bengali, a
mT5 28.13 53.54 57.27

bi-lingual model, i.e., a model specifically trained
Table 4: XF2T scores on XALIGNV?2 test set using  for en — bn, is much betterS. Translate-output and
standard Transformer-based encoder-decoder models.  translate-input settings lead to slightly improved

The best results are highlighted. models for English and Tamil respectively. On

average, translate-output setting performs the

| [[BLEU [ METEOR [ chrF++ | worst while the multi-lingual setting performs

Bi-lingual mTS (12 models) 2588 [ 5091 [ 52.88 the best. Although we use the state-of-the-art
Translate-Output mT5 (1 model) || 18.91 42.83 49.10 . .

Translate-Input mT5 (1 model) || 2653 | 5224 | 5532 translation method, we believe low accuracy for

Multi-lingual mT5 (1 model)  [| 2813 | 5354 | 57.27 translate-output setting is mainly due to poor

Table 5: XF2T scores on XALIGNV?2 test set using bi- translat_io_n quality. _
lingual, multi-lingual and translation-based variants of ~ Pretraining approaches: Table 6 (lines 1 to 5)
mT5 model. Best results are highlighted. shows results using different pretraining strategies.

We observe that multi-lingual pretraining leads to
Standard Transformer-based Models: Table 4  improvements compared to no XF2T specific pre-

shows BLEU results across different (model, met-  training across 2 of the 3 metrics. Two-stage pre-
ric) combinations using three standard Transformer-  training is slightly better than translation-based pre-
based encoder-decoder models. Across the 12 lan-  training but not as good as multi-lingual pretraining.
guages, on average for each metric, mT5 performs  Finally, multi-task performs better than two-stage.
better than IndicBART, which is better than vanilla  For English and Bengali, we found that two-stage
Transformer. We observed that IndicBART per-  pretraining provided best results. However, multi-
formed exceptionally well for Bengali but is excep-  lingual pretraining is the best on average across
tionally poor on English. Given that mT5 is better  languages, with biggest wins for Malayalam and
on average amongst the three, we perform further  Oriya.

experiments using mT5. Fact-aware embeddings: Table 6 (line 6) shows
that fact-aware embeddings lead to improvements

[No. [ Method [[BLEU[METEOR[chrF++]  over the vanilla mT5 method without fact-aware

1 gle%girﬁ;rsammg and no fact-aware em-|| 28.13 53.54 57.27 embeddings (Iine 1).

2 | Two-stage Prefraining 2770 | 5187 | 5532 In summary, we note that both the proposed

3 Multi-task Pretraining 28.45 51.87 55.20 . L.

4| Translation-based Pretraining 2753 | 5067 | 5371 methods (multi-lingual pretraining, fact-aware em-

5 Multi-lingual Pretraining 28.71 53.83 57.58 H H H

6 Fact-aware embeddings e B bedding) lead to improvements over the vanilla

mT5. We also experimented with combinations
Table 6: XF2T scores on XALIGNV?2 test set using dif- —_— _ .
ferent pretraining strategies and fact-aware embeddings Even later we observe that translation-only pretraining

for the mT5 model. Best results are highlighted. Row 1 Nélps improve Bengali performance. We hypothesize this
. is because of huge influence English has had over Bengali
is same as last row from Table 5.

historically.
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Table 7: XF2T scores on XALIGNV?2 test set using vanilla mT5, multi-lingual pretrained mT5 and mT5 with

VanillamT5 Multi-lingual Pretraining Fact-aware embeddings

BLEU [ METEOR [ chrF++ [[ BLEU [ METEOR | chrF++ [[ BLEU | METEOR | chrF++
hi 44.65 68.58 68.49 || 43.32 68.19 68.21 || 42.72 67.49 68.03
mr 26.47 56.85 59.17 || 27.64 56.34 57.74 || 29.06 55.40 57.97
te 14.46 43.45 52.58 15.94 42.71 52.40 || 16.21 42.14 51.25
ta 18.37 46.15 57.42 16.68 42.32 54.88 || 19.07 43.65 56.01
en 46.94 70.60 65.20 || 46.61 70.45 65.33 || 48.29 | 70.75 65.42
gu 22.69 | 50.31 51.36 || 21.39 | 47.98 50.14 || 23.27 | 50.00 50.64
bn [[ 4038 61.71 68.71 || 50.89 75.62 77.43 || 49.48 | 73.03 76.19
kn 10.66 32.58 46.92 11.61 33.00 4718 || 11.57 33.44 46.66
ml 26.22 56.71 57.01 || 27.38 56.63 57.35 || 29.04 57.15 57.60
pa 26.96 | 54.82 52.33 ]| 26.04 | 54.17 5250 || 2865 | 55.19 53.38
or 47.17 67.82 71.20 || 44.97 66.49 70.64 || 41.75 63.77 67.96
as 12.61 32.93 36.91 12.00 32.04 37.15 || 12.16 31.61 36.44
Avg || 28.13 53.54 57.27 || 28.71 53.83 57.58 || 29.27 53.64 57.30

fact-aware embedding models.

Figure 5: BLEU (left), METEOR (middle) and chrF++ (right) scores for the best model across languages for test
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Lang.

Input

Reference Text

Generated Text

hi

generate Hindi <S> Asha Nautiyal <R> member of political party
<O> Bharatiya Janata Party <R> date of birth <O> 25 June 1969
<R> occupation <O> politician <R> country of citizenship <O>
India <T> introduction

3em Jifearer (99T Y I, 9%€R ) Th
gﬂa‘ﬁawﬁﬁaévﬁwﬁawwﬁ@
|

e AfeaTe (ST Y S, 9%€% ) Wb
W'cﬁagwﬁfﬁaaﬂwﬂeﬁummﬁﬁ
I 5 |

generate English <S> Kedarnath Singh <R> date of death <O> 19
March 2018 <R> date of birth <O> 07 July 1934 <R> occupation
<O> poet <R> languages spoken, written or signed <O> Hindi <R>
country of citizenship <O> India <T> introduction

Kedarnath Singh ( 7 July 1934 - 19
March 2018 ) was an Indian poet
who wrote in Hindi.

Kedarnath Singh ( 7 July 1934 -
19 March 2018 ) was a Hindi poet
from Uttar Pradesh, India.

generate Marathi <S> Théodore de Banville <R> date of death <O>
13 March 1891 <R> date of birth <O> 14 March 1823 <R> occu-
pation <O> writer <R> country of citizenship <O> France <T>
introduction

SeNaR f feset (A 9%, 3. 6. 9¢23
- 91 93, 3. 9. 9¢R9 ) & %9 AfRf@s
.

offSX § dHfeaet (19 98, 8. §. 9¢R3 -
A 93, 3. 9. 9¢’9 ) & hd oG Bl

November 1975 <R> place of birth <O> Hyderabad <T> introduc-
tion

ax:a&o&)oﬁ.

te generate Telugu <S> Sushmita Sen <R> date of birth <O> 19 [& 1975 3300 19 3 péoerdd | s 05 1975 $3008 19 3 rEoersss”
November 1975 <R> place of birth <O> Hyderabad <T> introduc- | eso08. 2300008,
tion

ta generate Tamil <S> Kirti Kumari <R> member of political party | &768 @orfl ( 13 <ysss 1967 - |&i5dH @orfl (13 ssg 1967
<O> Bharatiya Janata Party <R> date of birth <O> 13 August |28 <568 2017 ) umpSu mens | - 28 <yssz 2017 ) @f @pHu
1967 <R> date of death <O> 28 August 2017 <R> occupation <O> | gi_fluder @bHu  rfludand <rfludeirdlyn, umdlu  masT
politician <R> country of citizenship <O> India <T> introduction | syeumi. s Aufer (peneneT  &LLLDEH

2 midlanpd 6.

kn generate Kannada <S> Barry C. Barish <R> award received <O> |33 woda’ 301 9002 T & Bew0® | 9002 TY ©F00 HY BRO° 3dﬁﬁ§b
Henry Draper Medal <R> point in time <O> 2017 <T> awards and 31:56’3?) DeBETDOI). IEB3.
honors

bn generate Bengali <S> Jim Pothecary <R> member of sports team TR SIITE! (@0 RIeTd SN ST0Ts | KEwel ST [P HCeTd SI5eN Ty
<O> South Africa national cricket team <R> occupation <O> crick- fofe 1 Ol |
eter <T> introduction

gu generate Gujarati <S> Krishnalal Shridharani <R> date of birth | gs@idid #leriell (a5 w20k acaq | goeidid seriell (1§ A0 16 -
<O> 16 September 1911 <R> date of death <O> 23 July 1960 <R> | - 3 g aeso ) Aaridl einioll s(A | *3 a1y acso ) Rid] sA, dieisiR
occupation <O> poet <R> occupation <O> playwright <R> lan- A4\ ol1Z=ISIR Bdll. A olIz=ISIR 6dll.
guages spoken, written or signed <O> Gujarati <T> introduction

pa generate Punjabi <S> Orhan Pamuk <R>award received <O> Nobel | §3076 UHd (7&H 796 1952 ) fed 3341 | §3a7s uhal (7aH 796 1952 ) e 34t
Prize in Literature <R> point in time <O> 2006 <R> date of birth | sr=marg T A ¥ 2006 39 ATI3 B¢ | s=8a9 T A7 & 2006 =9 Aoz Bt
<O> 07 June 1952 <R> occupation <O> novelist <R> languages | 393 fean RS 3. ST UIHI 578 HaHTs3 SftaT fap .
spoken, written or signed <O> Turkish <T> introduction =

ml generate Malayalam <S> Naomi Scott <R> date of birth <O> 06[1993 ea®@ 6 o mogpedleeal [1993 eawW 6 ® oyeEleel
May 1993 <R> place of birth <O> London <R> country of citizen- | pignacileioeny @(@Qg" 209 ool elenamileloemy @@gg“ 209 oo
ship <O> United Kingdom <T> introduction

or generate Odia <S> Ajay Swain <R> award received <O> Odisha | 6290¢ 9 A1QRI6Q 8L ALY IR | 90R 9 A1AL6Q 6 BLHl ALY IREL
Sahitya Akademi Award <R> point in time <O> 2012 <T> intro- q@%am@@@@em q@mam@@@aem
duction

te generate Telugu <S> Sushmita Sen <R> date of birth <O> 19| & 1975 ot 19 J praTerd& K)oig@‘.o51975ééo&)6\)19é?gdc‘wmﬁs

zs.'oéoaoa.

as

generate Assamese <S> Harishankar Parsai <R> date of death <O>
10 August 1995 <R> date of birth <O> 22 August 1922 <R> oc-
cupation <O> writer <R> country of citizenship <O> British India
<R> country of citizenship <O> Dominion of India <R> occupation
<O> author <T> introduction

2P APIR (3 SA6E, 5538 -
50 TR, Sosa ) wiifet Bt Mxew
QI &St (GTAF 1 TR |

2fFT AP (13 BIE, H53R - S0
TGTE, 555 ) IS SIS (T4 |

Table 8: Test examples with reference text and predictions from our fact-aware embedding model.
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‘ Input

‘ Reference Text

‘ Generated Text

‘ Reason

<S> rajendra pratap singh <R> date_of birth <O> 20 octo-
ber 1954 <R> place_of birth <O> pratapgarh uttar pradesh
<T> early life and education

ST T 20 TG 1954 BT
SIITOG foret 3 gar |

oS AT 8 @1 9 0 aga

9948 BT IR TR & FATTE F o
o |

The generated output
covers more facts from
input

<S> imam-ul-haq <R> date_of birth <O> 12 december
1995 <R> place_of birth <O> lahore <T> personal life

IPT T 12 FaEeR 1995 @t
@R N g o |

T - I - 8P BT o 9 R
998y P @MER ¥ gamen |

Better transliteration of
dates

<S> ryan mclaren <R> country_of citizenship <O> south
africa <R> date_of birth <O> 09 february 1983 <R> occu-
pation <O> cricketer <T> introduction

R e (S 9 TRast
1983 ) U@ AT 31t fiehe
et € |

IR Fhord (S 9 ANl 1983 )
Ta SfET ST fomehex £ |

Multiple possible
transliterations of
English word in phonetic

languages like Hindi

<S> mirza salaamat ali dabeer <R> lan-
guages_spoken, written_or_signed <O> urdu <R> oc-
cupation <O> poet <T> introduction

EEESESESE S
T B |

el arema ot IRER IS AT B
fareama wfdaR & |

Model  outputs
onyms/related terms

syn-

Table 9: Some examples of Hindi sentences generated by our best model which got low BLEU scores but are

actually better than ground truth.

of these approaches but did not observe better re-
sults. Amongst these, multi-lingual pretraining
performs the best on two of the metrics (METEOR
and chrF++) while fact-aware embeddings perform
best on BLEU. Hence, we present language-wise
detailed comparison across these three models in
Table 7. As expected, since we have relatively
more training data for bn, en and hi, overall the
models perform well on these languages. We also
observe that the models do not perform very well
for languages of the Dravidian family (te, ta and
kn) even though ta has as many training examples
as hi. Oriya is an exception — models perform al-
most as good as on Hindi, even with almost one
third amount of training data. We hypothesize that
this is limited variety in terms of types of person
entities in Oriya compared to that in Hindi.

Fig. 5 shows BLEU, METEOR and chrF++
scores for the best model across languages for test
instances with a specific number of facts. Number
of facts per instance range from 1 to 9. We observe
that the model performs best on instances with 2—4
facts across languages and across all metrics.

Table 8 shows XF2T prediction examples for our
fact-aware embedding model. In general, across
examples, we observe that the generated text is flu-
ent and correct. Most of the input facts are covered
by the generated sentence. Sometimes, though, the
model hallucinates and brings in extra information
in the output, e.g., for English, “Uttar Pradesh” is
not mentioned as part of input facts.

Scaling study: So far we presented results using
small-scale models. For the fact-aware embedding
model, we also train a large scale checkpoint with
12 encoder and 12 decoder layers. We observe that
it leads to a BLEU of 30.90, METEOR of 55.12
and chrF++ of 59.17 which is significantly better
compared to the small model as expected.

Human Evaluation Results: Finally, we obtain
human annotations to evaluate the perceived qual-
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ity of the generated text. Table 10 shows results
for our best model across three metrics: fluency,
coverage and hallucination in the generated output.
Higher the better. The evaluation has been done
on 100 samples for 7 languages on a 5-point Likert
scale per metric. The table shows values averaged
across judgments from three annotators. Fluency
checks for coherence and grammar correctness of
generated output. Coverage verifies if most facts
are captured in the sentence correctly. Absence
of extra information verifies if the model does not
generate any hallucinated information. Fluency,
coverage and hallucination are 4.71, 4.31, 4.37 on
average for our best model respectively.

Further, we observed that even though our mod-
els generate reasonable results, sometimes they
are wrongly penalized using automated metrics for
multiple reasons as shown in Table 9.

[ [Fluency [ Coverage [ Hallucination |

hi 4.89 4.75 4.37
ml| 4.87 4.42 4.73
ta 4.45 4.07 4.36
te 4.65 4.18 4.14
pa | 4.69 4.23 4.29
mr| 4.70 4.35 4.44
en | 4.69 4.17 4.29

Table 10: Human Evaluation Results for our best model

7 Conclusion

In this paper, we worked on the XF2T problem. We
contributed the XALIGNV 2 dataset which has in-
stances with English facts aligned to 12 languages.
We investigated several multi-lingual Transformer
methods with different training setups, pretraining
setups and input representations. We obtained mod-
els with best metrics of 30.90 BLEU, 55.12 ME-
TEOR and 59.17 chrF++ for XF2T. We make our
code and dataset' publicly available to empower
future research in this critical area.



8 Ethical Concerns

We do not foresee any harmful uses of this tech-
nology. In fact, F2T generation systems are vi-
tal in many downstream Natural Language Pro-
cessing (NLP) applications like automated dialog
systems (Wen et al., 2016), domain-specific chat-
bots (Novikova et al., 2017), open domain question
answering (Chen et al., 2020), authoring sports
reports (Chen and Mooney, 2008), etc. We be-
lieve that these systems will be useful for powering
business applications like Wikipedia text genera-
tion given English Infoboxes, automated generation
of non-English product descriptions using English
product attributes, etc.

As part of this work, we collected labeled data
as discussed in Section 3. The dataset does not
involve collection or storage of any personally iden-
tifiable information or offensive information at any
stage. Human annotators were paid appropriately
while performing data collection according to the
standard wages set by National Translation Mis-
sion (https://www.ntm.org.in/) and mutually
agreed upon. The data is publicly released un-
der MIT Open-Source License. The annotation
exercise was approved by the Institutional Review
Board of our institute.

Usage of XALIGN dataset: Our usage was con-
sistent with its intended use. The dataset was made
available to us by the authors under MIT Open-
Source License.
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Table 12 shows detailed results per language us-
ing various bi-lingual, multi-lingual and translation-
based settings.

A Limitations

In this work, we performed XF2T for a total of 12
languages. Clearly, the work can be extended to in-
clude many more low resource languages. Further,
the amount of training data per language varies
significantly. Gathering more labeled data across
languages is difficult but should help improve ac-
curacy of the trained models.

For some languages, finding qualified annotators
was very difficult. For Assamese, we could obtain
only one annotator. For Oriya, we found two an-
notators but due to their limited bandwidth, we did
not get overlapping samples annotated by them and
hence cannot compute inter-annotator agreement.
While our annotation guidelines are clear, and inter-
annotator agreement is high on most languages, we
acknowledge that the annotation quality may have
suffered for Assamese and Oriya.

The best automatic evaluation results from our
models as well as human evaluation results show
that there is a lot of scope for further work in this
area.

B Detailed results

Table 11 shows detailed results per language. We
observe that IndicBART performed exceptionally
well for Bengali but is exceptionally poor on En-
glish.
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Vanilla Transformer IndicBART mT5
BLEU | METEOR | chrF++ [[ BLEU | METEOR | chrF++ || BLEU | METEOR | chrF++
hi 35.04 63.46 60.85 || 40.44 66.41 66.27 || 44.65 68.58 68.49
mr 18.28 50.66 49.87 || 28.08 55.35 57.73 || 26.47 56.85 59.17
te 6.95 36.17 41.70 || 15.67 41.52 50.40 || 14.46 43.45 52.58
ta 14.67 44.64 53.03 || 19.37 45.78 56.63 || 18.37 46.15 57.42
en 37.12 65.32 59.69 || 10.47 42.35 34.35 || 46.94 70.60 65.20
gu 15.66 47.70 46.29 || 19.16 47.92 49.30 || 22.69 50.31 51.36
bn 48.55 74.18 75.68 || 55.90 79.29 80.51 || 40.38 61.71 68.71
kn 4.78 28.96 37.60 || 10.30 33.55 46.65 || 10.66 32.58 46.92
ml 16.29 50.84 47.26 || 27.41 56.27 56.80 || 26.22 56.71 57.01
pa 17.76 50.27 4473 || 22.32 53.20 50.74 || 26.96 54.82 52.33
or 39.94 61.09 62.79 || 22.16 53.76 58.30 || 47.17 67.82 71.20
as 8.08 29.27 31.24 || 14.07 34.25 38.87 || 12.61 32.93 36.91
Avg || 21.93 50.21 50.89 || 23.78 50.80 53.88 || 28.13 53.54 57.27

Table 11: XF2T scores on XALIGNV 2 test set using standard Transformer-based encoder-decoder models. Best
results for a (metric, language) combination are highlighted.

Bi-lingual (12 models) Translate-Output (1 model) Translate-Input (1 model) Multi-lingual (1 model)
BLEU | METEOR | chrF++ || BLEU | METEOR | chrF++ || BLEU | METEOR | chrF++ || BLEU | METEOR | chrF++
hi 41.07 66.15 65.57 || 24.88 55.91 54.48 || 41.98 66.14 66.47 || 44.65 68.58 68.49
mr || 16.74 49.36 48.40 || 20.62 46.87 52.23 || 24.90 54.56 57.25 || 26.47 56.85 59.17
te 12.23 37.85 44,94 || 14.13 38.69 50.36 || 13.11 40.83 49.64 || 14.46 43.45 52.58
ta 18.37 46.57 57.10 8.36 30.41 46.35 || 19.23 45.68 57.54 || 18.37 46.15 57.42
en 45.79 69.90 63.79 || 50.81 70.47 65.43 || 45.12 69.88 64.11 || 46.94 70.60 65.20
gu 12.49 38.73 37.01 || 18.23 42.25 46.27 || 20.84 48.71 49.30 || 22.69 50.31 51.36
bn 53.61 75.42 78.12 || 20.57 46.58 56.60 || 40.56 67.75 71.36 || 40.38 61.71 68.71
kn 8.71 31.02 41.16 7.93 27.58 44.47 7.75 30.82 41.44 || 10.66 32.58 46.92
ml 24.28 55.37 55.49 || 18.60 47.39 51.47 || 26.16 56.49 57.22 || 26.22 56.71 57.01
pa 21.92 51.10 47.82 || 26.24 53.18 51.57 || 24.42 51.64 49.28 || 26.96 54.82 52.33
or 45,53 62.91 65.30 9.37 29.40 37.80 || 43.43 64.12 65.20 || 47.17 67.82 71.20
as 9.76 26.48 29.80 7.15 25.25 32.19 || 10.89 30.27 35.00 || 12.61 32.93 36.91
Avg || 25.88 50.91 52.88 || 18.91 42.83 49.10 || 26.53 52.24 55.32 || 28.13 53.54 57.27

Table 12: XF2T scores on XALIGNV2 test set using bi-lingual, multi-lingual and translation-based variants of mT5
model. Best results for a (metric, language) combination are highlighted.
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Preventing Generation of Verbatim Memorization in Language
Models Gives a False Sense of Privacy
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Abstract

Studying data memorization in neural lan-
guage models helps us understand the risks
(e.g., to privacy or copyright) associated with
models regurgitating training data and aids in
the development of countermeasures. Many
prior works—and some recently deployed
defenses—focus on “verbatim memorization”,
defined as a model generation that exactly
matches a substring from the training set. We
argue that verbatim memorization definitions
are too restrictive and fail to capture more sub-
tle forms of memorization. Specifically, we de-
sign and implement an efficient defense that
perfectly prevents all verbatim memorization.
And yet, we demonstrate that this “perfect” fil-
ter does not prevent the leakage of training
data. Indeed, it is easily circumvented by plau-
sible and minimally modified “style-transfer”
prompts—and in some cases even the non-
modified original prompts—to extract memo-
rized information. We conclude by discussing
potential alternative definitions and why defin-
ing memorization is a difficult yet crucial open
question for neural language models.

1 Introduction

The ability of neural language models to memo-
rize their training data has been studied extensively
(Kandpal et al., 2022; Lee et al., 2021; Carlini et al.,
2022; Zhang et al., 2021; Thakkar et al., 2021;
Ramaswamy et al., 2020). When language mod-
els, especially ones used in production systems,
are susceptible to data extraction attacks, it can
lead to practical problems ranging from privacy
risks to copyright concerns. For example, Carlini
etal. (2021) showed that the GPT-2 language model
could output personally identifying information of
individuals contained in the training dataset.
oRemaining authors ordered by Algorithm 18 in Ap-
pendix H; briefly, we require Daphne be listed first, and
Nicholas listed last, and we search for the first permutation of

authors’ first names which satisfies these constraints, where
permutations order names by their salted MD5 hash.
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Figure 1: Illustration of Memorization-free Decoding,
a defense which can eliminate verbatim memorization
in the generations from a large neural language model,
but does not prevent approximate memorization.

One natural way to avoid this risk is to filter out
any generations which copy long strings verbatim
from the training set. GitHub’s Copilot, a language-
model-based code assistant, deploys this defense
by giving users the option to “block suggestions
matching public code” (GitHub, 2022).

In this work, we ask the question: “Do lan-
guage models emit paraphrased memorized con-
tent?” This scenario can happen maliciously (e.g.,
adversaries trying to extract private user data) or
through honest interactions (e.g., users prompting
in real-world scenarios). Indeed, we find that Copi-
lot’s filtering system is easy to circumvent by ap-
plying plausible “style transfers” to the prompt.
For example, by translating variable names from
English to French the model outputs completely
memorized examples, but post-processed with the
en-fr style transfer. We further show that GPT-
3 (Brown et al., 2020), a model trained on natural
language, is also vulnerable to extraction attacks.

Unfortunately, Copilot’s training set and precise
algorithm for their defense are non-public. There-
fore, to investigate this phenomenon systematically,
we develop MEMFREE decoding (Figure 1), an ef-
ficient defense that is guaranteed to prevent all ver-
batim memorization, and which scales to training
sets consisting of hundreds of gigabytes of text. In

Proceedings of the 16th International Natural Language Generation Conference, pages 28-53
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MEMFREE decoding, at each step of generation
we check whether the model’s chosen next token
would create an n-gram found in the training set. If
it does, an alternative next token is selected (with-
out a computationally expensive regeneration) by
sampling from the model’s token posterior. The
check for membership in the training set is per-
formed efficiently using a Bloom filter containing
all common n-grams from the training set.

We use MEMFREE to study Copilot’s verbatim-
filtering defense on other state-of-the-art large
language models such as GPT-Neo (Gao et al.,
2020). We first confirm that even honestly de-
signed prompts often bypass verbatim memoriza-
tion checks. Then, we observe another interesting
phenomenon: language models succeed at emit-
ting approximate memorization that bypass our
filter all by themselves. Indeed, when prevented
from generating exact n-grams from the training
set, models are capable of “cheating” the filter by
producing close paraphrases—for example, insert-
ing spelling errors, adjusting punctuation or whites-
pace, or using synonyms (e.g., swapping ‘and’ with
‘&’). These changes lead to generated text a human
would perceive as nearly identical, even if it is not
verbatim memorization.

Clearly, defenses which prevent verbatim copy-
ing are necessary but not sufficient to protect
against training data leakage. As a result of these
failure modes, we argue that a broader defini-
tion of memorization is necessary when reason-
ing about training set memorization in language
models. Such a definition should not only capture
verbatim notions of memorization, but also notions
based on high “semantic similarity” between model
outputs and training data. We conclude our work by
comparing approximate and verbatim memoriza-
tion, discussing their relation to other domains of
literature, and the challenges surrounding the ambi-
guity of approximate memorizations. Future work
that aims to faithfully measure or prevent memo-
rization in language models will need to take this
ambiguity into account—for example, our analysis
suggests that the fraction of datasets that large lan-
guage models is likely far larger than the fraction
as reported in prior work (Carlini et al., 2022).

2 Background

Language Models. We consider auto-regressive
language models that operate over sequences of
text and, given a prefix p, output a probability dis-
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tribution for the next token in the sequence. To
generate text for a prompt p, the language model
starts with an empty suffix s, and repeatedly sam-
ples the next token from its prediction on p ~ s,
and then appends this token to s. The success of
neural language models has, in large part, been
driven by the transformer architecture introduced
of Vaswani et al. (2017), which allowed models
to scale from millions to hundreds of billions of
parameters over the past half-decade (Brown et al.,
2020; Chowdhery et al., 2022; Zhang et al., 2022).
This increase in model sizes has likewise driven
increases in dataset sizes, with most of this data
coming from internet crawls (Lee et al., 2021; Raf-
fel et al., 2020; Gao et al., 2020).

Prior work has shown that large language models
can memorize and regurgitate potentially private
information, like phone numbers and addresses, as
well as memorize long sequences from their train-
ing sets (Carlini et al., 2019, 2021; Lee et al., 2021,
Carlini et al., 2022; Zhang et al., 2021; Thakkar
et al., 2021; Ramaswamy et al., 2020; Kandpal
et al., 2022). Our work focuses on large language
models trained to generate English text or code,
and our work does not distinguish between prob-
lematic memorization (e.g. exposure of private
information) and non-problematic memorization
(e.g. quoting perfectly from a presidential speech).

Measuring Memorization. Many studies of
memorization stem from a concern of privacy leak-
age: if a model memorizes sensitive training data
and can generate it, then interactions with a model
can lead to the leakage of that sensitive data. Nearly
all of this literature is focused on measuring verba-
tim cases of memorization.

Eidetic memorization (Carlini et al., 2021) de-
fines a string s as memorized if there exists a
prompt p so that LMppg ““ s and s is contained in
the training dataset. This definition and variations
of it have been used widely in the literature (Kand-
pal et al., 2022; Lee et al., 2021; Carlini et al.,
2022). For example, Tirumala et al. (2022) study a
similar per-token definition called exact memoriza-
tion and Kandpal et al. (2022) a document-level
definition called perfect memorization.

There is also a newly emerging line of works
exploring differential-privacy (DP)-based defini-
tions (Zhao et al., 2022; Stock et al., 2022), which
relate to document-level DP guarantees in language

LA common source for datasets is the Common Crawl
dataset found at: https://commoncrawl .org/



modelling (Yu et al., 2021). These works differ
from the above in that they define a probabilis-
tic leakage measure. However, this is based on the
probability of generating—verbatim—a canary sen-
tence s, depending on whether s was contained in
the training set or not. There are different prob-
abilistic definitions, also based on verbatim se-
guences, such as the counterfactual memorization
proposed by Zhang et al. (2021).

In the domain of language model memorization,
the most similar work to ours is Lee et al. (2021)
who also argue for a more relaxed definition of
memorization. Lee et al. say any model output
for a prompt p is memorized if it is within some
chosen edit distance of the prompt’s true continua-
tion in the training set. As we will discuss, a small
edit distance may not capture all forms of approxi-
mate memorization either—such as our examples
of “style-transfer” applied to memorized content.

Preventing Memorization. Differentially pri-
vate training, e.g., using DP stochastic gradient
descent (Abadi et al., 2016), is the gold standard for
training models which provably do not memorize
individual training examples. However, in practice,
these techniques result in worse generative mod-
els (Anil et al., 2021)—thus, no state-of-the-art,
large, language models are trained with DP. In-
stead, data deduplication has arisen as a pragmatic
countermeasure against data memorization (Lee
et al., 2021; Kandpal et al., 2022; Carlini et al.,
2022). The core idea is to remove any duplicated
content—e.g., repeated documents—because dupli-
cated content is much more likely to be memorized.
However, deduplication does not guarantee that a
model will not still memorize individual (dedupli-
cated) examples, necessitating defenses that oper-
ate at inference-time.

3 Preventing Models from Emitting
Verbatim Training Data

In this paper, we consider inference-time defenses
that eliminate the generation of memorized con-
tent from the training set. The most immediate
way to do this is simply to filter all model outputs
using some fixed definition of memorization. For
example, in Carlini et al. (2022), a continuation
s ““ LMppq of a k-length prompt p is said to be
memorized if the string s exists verbatim in the
training dataset. A straightforward implementation
checks each generation s against the training set
and rejects any matches. We call the approach of
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re-running a language model, possibly many times
with different seeds, until a qualifying generation
is produced, retroactive censoring.

The problem with retroactive censoring is that it
effectively prevents the model from emitting any
output when the model’s confidence in a memo-
rized string is too high. To encourage a model to
generate novel outputs, we could also adopt a more
granular filtering approach: rather than censoring
memorized content solely at the level of an en-
tire sequence s, we could instead check and mark
each n-gram within s individually. Filtering for
memorization at the n-gram-level rather than at the
sequence level allows substrings of a generation
which may be novel to be kept, and only the pieces
that are verbatim memorized to be modified. We
call this approach MEMFREE decoding, as the
defense is applied at decoding time.

Both retroactive censoring and MEMFREE de-
coding explicitly prohibit the model from emitting
a sequence if it is contained (entirely or partially) in
the training dataset. However, in retroactive censor-
ing, if a generation starts off with memorized text,
but then veers off track from the true continuation
(a common occurrence), this would not be marked
as memorization, even though a portion of the out-
put sequence is clearly memorized. The MEMFREE
decoding approach performs a more fine-grained
and aggressive check by filtering out all memorized
subsequences of a given length. In this work we
use the MEMFREE decoding approach to show that
even when a model is restricted from emitting any
output with snippets of verbatim memorization, the
model can still leak training data.

3.1 MEMFREE Decoding Details

In order to implement MEMFREE decoding, we
alter the model’s generation in an online manner by
restricting the production of tokens which would
result in an n-gram memorization. Let p be the
current working prefix and t be the next proposed
token when running the model forward.

Our algorithm first checks if any n-gram in the
concatenated sequence p||t is contained in the train-
ing dataset D. If it is, we suppress this generated
token and re-sample from the model. To avoid po-
tentially expensive resamplings, we equivalently
express this as altering the model’s output probabil-
ity distribution by removing the probability mass
from token t. In this way, we guarantee that prior
to sampling the probability of outputting a mem-



orization will be 0. Appendix B.1 gives a formal
procedure for this method.

Altering the token posterior allows any sampling
strategy to be used on top of memorization-free
decoding. For example, if one uses top-k sampling,
tokens that result in memorization are disqualified
before the probability distribution is truncated to
the k next most likely tokens. This procedure is
guaranteed to generate non-memorized text.

3.2 Querying the Training Set Efficiently

Our MEMFREE defense has assumed that it is easy
to perform the query s P D to test if any given
string is contained in the training dataset. Because
the defense works at inference-time, it is neces-
sary that this query is computationally efficient to
maintain utility of the language model. Given that
training sets may contain terabytes of data (Brown
et al., 2020), it is infeasible to maintain an entire
copy of the training dataset in an efficiently acces-
sible storage. Thus, we explore three optimizations
to speed up the process of memorization checking.

First, as a direct result of our n-gram memoriza-
tion definition, we can equivalently check only the
n-gram ending in the current predicted token t; we
can thus avoid many n-gram queries for each token.
Further, and in addition to preventing subsequence
memorization, this allows us to avoid queries into
a large set of all prefixes and continuations.

Second, we only check against sequences that
have a reasonable probability of being memorized
by the model. In theory, this could be easily de-
termined by running each n-gram s P D through
the model and then filtering out all sequences with
high loss (thus unlikely to be memorized). How-
ever, this is a computationally expensive procedure
as it requires re-processing every substring of the
training dataset. Instead, a computationally- and
storage-efficient procedure could be to only store
n-grams which occur more than once in the train-
ing set—prior work has shown duplicate text is
the most likely to be memorized (Lee et al., 2021;
Kandpal et al., 2022).

Third, by being willing to tolerate some false
positives (labeling an n-gram as memorized when
it is in fact not), we can take advantage of prob-
abilistic data structures such as Bloom filters
(Bloom, 1970), which admits no false negatives
but trades off time and space with the false positive
rate (which can be computed exactly). Thus, by
using a Bloom Filter, we guarantee that no mem-
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orized n-gram will ever be released (i.e., a false
negative) but we may (rarely) prevent the emission
of non-memorized content (i.e., a false positive).

Integrating a Bloom Filter into our defense is
straightforward. Let F¢,pDng represent the Bloom
Filter of dataset D, generated by adding each n-
gram of the dataset s P Dy, to the Bloom filter,
with false positive rate fp. Then, any memoriza-
tion check s P Dy, in Algorithm 1 can be replaced
with s P F¢ppDng. The Bloom filter can be gen-
erated with a single pass over the model’s training
set, which could be performed in parallel with one
epoch of model training.

Additional Parameters. We must choose an ap-
propriate false positive rate based on memory con-
straints and the chosen n-gram length. Choosing n
has two major impacts: on the population size (i.e.,
the number of unique n-grams) and thus the size of
the filter, and on the effectiveness of memorization
mitigation. If n is set too low, then we will cer-
tainly prevent all memorized sequences but might
also prevent too many common phrases. But if we
set n too high, we might not prevent actually mem-
orized sequences from being emitted by the model.
We discuss these tensions in Appendix B, along
with two additional takeaways: (1) that MEMFREE
does not impact downstream model performance
(which may result from false positives), and (2)
that our chosen optimizations maintain a suitably
low false negative rate (we observed a 3000x im-
provement). These optimizations led to a filter of
size 1.6 gigabytes (or, 40.5 gigabytes if all, even
non-duplicated, 10-grams were stored) when run
over the 800GB Pile dataset.

3.3 Measuring Approximate Memorization

To show that defenses against verbatim memoriza-
tion still allow approximate memorization, we need
a definition for approximate memorization. We
consider two definitions. First, drawing from stan-
dard NLP evaluation techniques, we measure the
BLEU score between the generated and ground-
truth continuations. Second, we measure the length-
normalized character-level Levenshtein similarity
between the generated and ground-truth continua-
tions. Appendix C.1 gives implementation details.
In Section 5, we investigates how these two simi-
larity metrics decrease with MEMFREE decoding.

For situations requiring a binary label of whether
approximate memorization has occurred, we use
the following definition: a suffix s for prefix p is
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Figure 2: Honest “style-transfer” prompts evade
verbatim memorization filters. Trivially modifying
prompts causes GitHub’s Copilot language model to
emit memorized, but not verbatim, content.

Model evaluated with the option
“block suggestions matching public code” enabled. For
brevity, we removed comments from model outputs.

labeled as memorized if for generation g ““ fppa,
BLEUpg, sq & 0.75. This threshold was chosen by
qualitatively inspecting examples. Several exam-
ple generations that are close to this threshold are
shown in Table A12.

When we repeat the prefix-extraction experiment
from (Carlini et al., 2022) to measure incidents of
generations that could be considered memorized,
but using this approximate definition instead of a
verbatim one, we find that hat prior literature has
significantly underestimated memorization leak-
age. In Figure 3, the shaded region represents the
fraction of memorized samples that would have by-
passed a verbatim memorization filter: in the worst
case, there is a factor-of-two increase.

32

=

o GPT-Neo GPT-3
NO8 ® Approx @ Approx
=] e Exact Exact
£ 0.6 =
[}
€
c 04
kel
o
© 0.2
P
120M 345M 762M 1.5B 2.7B 6B

Model Size

Figure 3: Significantly more examples are approxi-
mately memorized (BLEU > 0.75) than are found to
be exactly memorized by Carlini et al. (2022). This
is for undefended generation.

However, we caution that this definition of ap-
proximate memorization is inaccurate, potentially
both over and under counting approximate memo-
rization. While our choice of a 0.75 BLEU score
threshold shows a significant increase in approxi-
mate vs. verbatim memorization, it is not clear that
all identified cases of memorization would be per-
ceptually tagged as such by a human judge. This is
one reason why simply switching to this definition
for defenses may not be ideal—it could introduce
significant false positives.

4 Evading Verbatim Memorization
Defenses

In this section, we show how retroactive censoring
of verbatim memorization can be evaded, even in
settings where models are used honestly. We first
present a case study with Copilot, which has im-
plemented retroactive censoring in production. We
then show how a large English language models
like GPT-3 and PaL M are susceptible to the same
vulnerability, should a defense similar to Copilot’s
be deployed. In short, protecting against verbatim
memorization can lead to a false sense of privacy.

4.1 Evading Copilot’s Memorization Filter

Copilot is a code auto-complete service which
is trained on GitHub code. Copilot is built us-
ing the Codex language model designed by Ope-
nAl (Chen et al., 2021). To prevent generating
memorized code, Copilot uses a filtering mecha-
nism that blocks model outputs from being sug-
gested if they overlap significantly (approximately
150 characters) with a training example. This is a
practical example of a filter that aims at prevent-
ing perfect verbatim memorization, presumably
by using a procedure similar to Algorithm 1 (the



exact mechanism used by GitHub is not public).
However, we find that the filter fails to prevent the
leakage of training data in many settings.

Style-transfer prompting. In Figure 2, we show
that Copilot’s filter can easily be bypassed by
prompts that apply various forms of “style-transfer”
to model outputs, thereby causing the model to
produce memorized (but not verbatim) outputs.
As a concrete example, we demonstrate how to
extract the public code for Quake’s “Fast Inverse
Square Root”. If we naively prompt the model
with the function definition “Float Q_rsqrt (
float number ), Copilot correctly aborts gener-
ation of the full function (“standard prompting”).
However, we find that simple style-transfers
applied to the prompt allow us to easily bypass
Copilot’s restrictions. First, via prompting with
“Python-style comments” we begin our prompt with
Python’s comment character “#”. Even though this
is syntactically invalid C code, Copilot outputs the
entire verbatim fast inverse square root algorithm,
but commented out. Second, in prompting with
“French translations” we change the naming con-
vention to French. As a result, the generations fol-
low the new naming convention and are no longer
flagged as a verbatim match. Other naming con-
ventions, such as pre-pending “_” to the variable
or changing the language to Spanish, also work.
These strategies work because the Copilot model
is sufficiently powerful: it can both follow the style-
transfer prompt (by e.g., renaming variables) while
simultaneously regurgitating memorized training
data. We provide more examples in Appendix F.

Copilot evades its own filter. Not only do ac-
tively style-transfered prompts evade the verbatim
memorization filter, but even passively prompting
Copilot with highly duplicated text from the Pile
dataset can too. We find several examples where
Copilot evades its own filter to output memorized
text, some of which we show in Figure 5. We see
that Copilot evades the filter by (1) changing cap-
italization, (2) making small non-stylistic errors,
and (3) changing whitespaces. The latter evasion
(changing whitespaces) is surprising, as Copilot’s
documentation reports ignoring whitespace in its
filtering mechanism (Appendix A). However, we
hypothesize that this can be explained by the model
replacing tabs with space characters. We can verify
this by adding tabs to the beginning of each line
of the Q_sqrt function, as an application of our
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Figure 4: Fraction of prompts which discover approx-
imate memorization, grouped by domain (left) and by
style transfer applied (right). We tested two versions
of GPT-3 DaVinci and two sizes of PaLM. Full plot in
Appendix D.

style-transfer strategy.

4.2 English Language Models

Following our analysis of Copilot, we ask whether
this vulnerability is pervasive in other language
models too. We use API access to four large (En-
glish) language models—GPT-3 Davinci Original
and V2 and PaLM 62B and 540B—to test whether
they would be susceptible to style transfer of the
prompt. We assume that the training sets for these
models are unknown and prompt with documents
we believe are likely to have been memorized:
open-source licenses, famous speeches and mono-
logues, novel openings, and song lyrics. For each
document, we prompt the model with 100 words
of either (1) the original document (“base™), (2)
the document with all spaces doubled (“spaces”),
(3) the document in all lowercase (“lower”), and
(4) the document in all uppercase (“caps”). We
report approximate memorization results of this
experiment in Figure 4, with additional figures in
Appendix D.

We see that even when prompting with style-
transfered prompts, GPT-3 and PaLM are still of-
ten able to generate memorized continuations. De-
fenses for verbatim memorization are therefore in-
complete. Among the three techniques, uppercas-
ing was the least likely to lead to memorized gen-
erations. For the two PaLM models, the larger one
is much more capable of memorization than the
smaller one, which validates prior work (Carlini
et al., 2022). The two version GPT-3 are purport-
edly the same size model but have quite different
memorization tendencies. For example, V2 is much



1) Misspelling and changed capitalization

", you can redistribute it and/or [
modify it under the terms of the GNU General Public License
[ds published by the Free Software Foundation; either
version 2 [of the License, or (at your option) any later
version”

2) Small non-stylistic errors

MetadataBearer
as __MetadataBearer

3) Changed whitespace

IPV6_2292RTHDR [20 spaces] = 0x5\n

Figure 5: CoPilot can “cheat” and emit nearly verba-
tim memorized content. Here, we show prompts from
the training set, where the model makes slight errors
causing the continuations to pass the filter.

, Tollowed by CoPilot’s continuation where er-
rors are highlighted as
with the correct characters in green.

more susceptible to the “double spaces” style trans-
fer than the Original Davinci. This emphasizes the
importance of models’ training set compositions
and training methods on memorization tendencies.

5 MEMFREE Decoding Experiments

In this section, we study the effectiveness of our
proposed MEMFREE decoding defense from Sec-
tion 3.3, and the appropriateness of our proposed
definition of approximate memorization.

5.1 Experimental Design

It is not possible to apply MEMFREE to the models
from Section 4 since their training sets are non-
public. Instead, we turn to the GPT-Neo languge
model family (Black et al., 2021). These models
are trained on the Pile, a publicly available 825GB
dataset (Gao et al., 2020). We build a Bloom filter
over all 10-grams occur 10 or more times.? In
all experiments, we generate text using arg max
decoding as the sampling method. We investigate
four model sizes: 125M-6B parameters.

We evaluate using substrings of the Pile released
by Carlini et al. (2022). The dataset includes 30k
strings of length 150 tokens taken from the training
set. These are divided into 30 buckets of 1k strings,
sampled such that the strings in bucket i occur in

ZNote that the choice of n=10 for the n-gram size is very
conservative, and common phrases that happen to be com-
posed of 10+ tokens will get filtered out by this check. We
discuss why we chose these particular values in Appendix B.
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Figure 6: MEMFREE reduces similarity when the
continuation would have been highly similar to the
ground-truth, and has little impact otherwise. For
5,000 prompts, we plot the similarity of the groundtruth
continuation with the generation from MEMFREE (y-
axis) and with the undefended generation (x-axis). Gen-
erations on the diagonal were not memorized.

the Pile between 214 and 271 144 times. For each
string, we use the first 50 tokens as a prompt p and
generate a 50-token long continuation.

5.2 Reduction in Memorization

MEMFREE significantly reduces the similarity of
generations to the groundtruth, compared to per-
forming undefended generation (Figure 6). We
also observe that when undefended generation al-
ready results in low similarity with the groundtruth,
MEMFREE does not significantly alter the genera-
tions, as desired.

Previous work shows that increasing model size
increases discoverable memorization (Carlini et al.,
2022; Kandpal et al., 2022). We again find a clear
trend that generations from larger models have, on
average, a much higher similarity with the original
continuation (Figure 8). Despite this, MEMFREE
remains effective at all model sizes (BLEU remains
near-flat around 0.6). Even when a sequence has
many duplicates in the train set (a strong indica-
tor of memorization), MEMFREE significantly de-
creases similarity with the groundtruth at all model
sizes (Figure 7).

5.3 Failures in Preventing Memorization

A defense against memorization fails when it al-
lows a sequence to be generated which a human
would perceive as substantially copied from the
true continuation—even if it is not verbatim mem-
orized. This failure case can be seen as the points
where the MEMFREE generation is still a close
match to the ground-truth continuation (Figure 6).
It occurs because the defense only adjusted a few
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Figure 7: MEMFREE decreases the BLEU score of
generations more for highly duplicated examples.
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Figure 8: MEMFREE remains effective at reducing
similarity between the generated and groundtruth
continuations even as models grow larger.,

tokens (e.g., 1 after every sequence of 10). When
looking at these examples, many, but not all, are
lists of numbers. Some examples are included in
Table A17. There is also a second failure-case:
when a full (50 token) generation is made more
similar with the ground-truth by MEMFREE (on
10-grams) than without. This may happen depend-
ing on the model’s token posterior’s after removing
all tokens that fail the MEMFREE check. Almost
all of these cases had a trivial increase in similar-
ity. However, 0.16% of samples had a similarity
increase above 0.1. We found qualitatively that
many of these cases did have significant overlap
with the true continuation.

6 Discussion

Defining memorization in language models.
While verbatim definitions have helped discover
significant memorization in large language models,
they are insufficient to capture more subtle forms
of memorization. Our work highlights two such
situations: "style-transfer" prompting, where de-
fenses for verbatim memorization can be actively
subverted, and when models “cheat” by outputting
similar, but not verbatim, continuations. As a result,
our work suggests that memorization prevention
must capture these types of paraphrased memo-
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rizations in addition to the previously considered
verbatim definitions. However, exhaustively an-
ticipating styles to incorporate into defenses is an
innumerable problem that will become harder as
models become more powerful.

This emphasizes two major challenges in defin-
ing approximate memorization. First, since new
approximate cases must be discoverable by the def-
inition, this can result in a cat-and-mouse game.
Second, the definition of memorization is domain-
dependent. For example, our paper focuses on lan-
guage models trained to output English and code,
which each have different standards for what it
means to memorize. Other languages will require
different considerations when defining memoriza-
tion.

There are a few areas of research which may help
in improving memorization definitions. The field of
image generation memorization is already com-
fortable with measuring fuzzy (in our terms, approx-
imate) memorization, where generated items may
be perceptually similar to training set examples,
despite having high distance according to standard
metrics. For example, Fredrikson et al. (2015) con-
sider “model inversion”, where an image is suc-
cessfully recovered from the model if it is identi-
fiable to a human worker. In Zhang et al. (2020),
model inversion success is measured based on pixel
similarity and feature space similarity to training
images. These works also recover “representative”
images from different classes, rather than specific
training examples. Recent work on reconstructing
training images have used feature similarity (Haim
et al., 2022) and pixel similarity (Balle et al., 2022).
In each of these papers, “fuzzy” reconstructions are
allowed by the evaluation metrics and, indeed, are
common in their reconstructions.

The inherent limitations of verbatim definitions
of text regurgitation have also been well docu-
mented in the literature on plagiarism detection—
both for text and code. Existing plagiarism tools,
and their evaluations, go far beyond verbatim
matches and consider fuzzy data “clones” ranging
from simple transformations (e.g., word variations
or shuffles) to arbitrary semantics-preserving para-
phrasing (Roy et al., 2009; Potthast et al., 2010).
Re-purposing techniques from the plagiarism de-
tection literature to minimize generation of mem-
orized data in LLMs is an interesting direction to-
ward achieving better approximate memorization
definitions in machine learning.



Consequences for machine learning research.
In relaxing definitions of memorization, our paper
acknowledges the blurred line between memoriza-
tion (e.g., of personal information) and knowledge
(e.g., of common facts). Because we use a 10-gram
overlap, our MEMFREE decoding algorithm should
not significantly impact utility, however studying
this interplay is an important area of future work.
However, still, identifying which data is considered
“memorized” cannot be done only by looking for
verbatim reproductions of the training set. This
may make the task of understanding memorization
and generalization more difficult.

We do not believe that our work requires aban-
doning all research directions which rely on prior
verbatim definitions. These definitions are still
useful as an efficient way to test for obvious and
undeniable memorization. However it will be nec-
essary to continue studying further relaxations of
memorization definitions to adequately capture and
measure the space of privacy concerns for language
models.

7 Ethics & Broader Impact

Improving the privacy of neural language models—
and especially those trained on user data—is an
important and timely research problem. In this
paper we hope to help both researchers and practi-
tioners develop a more nuanced understanding of
what constitutes memorization in language mod-
els. In particular, just because a sequence does
not appear verbatim in a training dataset does not
mean the example is a novel generation: as we have
shown, models today are sufficiently powerful to
minimally transform memorized data to make it
appear superficially different even if the underlying
content remains memorized.

Our observation will complicate the privacy eval-
uation of future machine learning models. It should
no longer be deemed sufficient to check for (ver-
batim) matches between generated output and a
training example. Practitioners in the future will
need to be aware of this potential failure mode
when applying output post-processing defenses to
mitigate memorization. To the best of our knowl-
edge, the only deployed system affected by our
analysis is GitHub’s Copilot. In order to mitigate
harm here we shared a copy of our paper with the
relevant researchers at both GitHub and OpenAl
prior to paper submission.

In this paper we focus our efforts entirely on

public datasets that other researchers have exten-
sively studied (Gao et al., 2020) to minimize any
harm caused by demonstrating extraction results.
However, just because the data that we study is
public does not mean there are no privacy concerns.
As Brown et al. (2022) argue, there are many other
considerations when discussing the privacy of large
models trained on “public” datasets.

Contributions

e Daphne Ippolito posed the idea of memory-
free decoding using a bloom filter as a solution
to memorization, worked on the MEMFREE
implementation, ran experiments with GPT-3
and PaLM, and contributed to paper writing.

e Christopher Choquette analyzed how MEM-
FREE used the bloom filter, created figures,
and contributed to paper writing.

= Matthew Jagielski qualitatively analyzed gen-
erations from MEMFREE, created figures, and
contributed to paper writing.

« Katherine Lee led figure-making, contributed
to paper writing, and resolved TODOs.
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contributed to paper writing.

< Florian Tramér came up with the idea of style
transferring prompts and contributed to paper
writing.
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A GitHub Copilot

At the time of this paper’s writing, GitHub Copilot’s memorization prevention mechanism is described in
their FAQ at https://github.com/features/copilot. We copy the text here:

What can 1 do to reduce GitHub Copilot’s suggestion of code that matches
public code?

We built a filter to help detect and suppress the rare instances where a
GitHub Copilot suggestion contains code that matches public code on GitHub.
You have the choice to turn that filter on or off during setup. With the
filter on, GitHub Copilot checks code suggestions with its surrounding code
for matches or near matches (ignoring whitespace) against public code on
GitHub of about 150 characters. IT there is a match, the suggestion will not
be shown to you. We plan on continuing to evolve this approach and welcome
feedback and comment.

B Further Discussion of MEMFREE

B.1 Formal Procedure

Algorithm 1 provides a formal procedure for MEMFREE decoding. In all our experiments, we used
arg max decoding as the sampling method for line 4.

Algorithm 1 MeEMFREE decoding algorithm.

1. procedure GREEDY MEMFREE DECODING(language model f, prefix p, gen length n, training set D)
2 repeat

3 logits © fppg = 8 "tlrpp||tq P Ds : t P vocabu

4: tok B sample from logits
5
6
7

p B p||tok
until n iterations
end procedure

B.2 Choice of n-gram length

There are two tradeoffs to consider when choosing an n-gram length: the choice of n changes the
granularity of the memorization checking and the total number of substrings of the dataset that must be
stored in the Bloom filter. with respect to the former, notice that short n-grams do not have sufficient
novelty (loosely, entropy) to be considered memorizations, e.g., they are often commons words and
phrases. However, too large also would not capture shorter sequences that have sufficient novelty. On the
latter, notice that the universe of possible n-grams is exponential in n, but that the unique number of such
sequences in a fixed dataset may decrease with large n. This total number of unique sequences impacts
the required size of the Bloom filter to maintain a fixed false positive rate. With N the number of unique
n-grams and fp a decimal probability of the false positive rate, the size of the filter in bits is:

R . V
PN ~ log pfpqq _
Iogp2q2

Then, k the number of Bloom hash functions can be calculated from the number of bits per element, i.e.,
m{N, as:

mn‘

k ““ rppm{Ng ° logp2qqs .

This determines the cost of inserting and looking up into the Bloom filter as Opkgq. But, because k typically
remains small (in our case, k ““ 7), this can be treated as a small constant-time operation. See Tarkoma
et al. (2011) for the full calculations, which the ones listed here are taken from.
We err on the side of caution and select n=10 for our experiments. This does prevent the model from
generating common words or phrases which consist of 10 or more tokens, such as “The quick brown fox
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jumped over the lazy dog.” or “supercalifragilisticexpialidocious”. We find qualitatively that the impact of
this is low, and that this also presents a balanced trade-off with the Bloom filter size.

B.3 Choice of Minimum Frequency

Ideally, we want n large enough so that we do not prevent common phrases and small enough so that we
catch all (though practically, most) possible memorizations. Optimizing n for this task is both non-trivial,
as the objective is not clear, and computationally expensive. Instead, we choose n ““ 10 based on
qualitative experience that this does not prevent many common phrases. Further, we do so to also limit the
storage cost of the Bloom filter, because n too large leads to a blow up in the number of elements, N.

It is important to note that using MEMFREE with a lower n will result in worse performance on standard
benchmarks than using it with a higher n. This is because a lower n means more true answers prevents
from being generated.
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Figure 9: (left) Most generations have few Bloom queries, as observed by the small quartiles; however, there is a
long tail of few generations with many Bloom hits (12.6% of generations had beyond 50 hits with a max of 1111).
(right) Some positions had significantly more hits, e.g., the first and tenth tokens. (both) are histograms from
6000 generations of 50 tokens each using MEMFREE decoding on GPT-Neo 6B.

B.4 Python Implementation
Figure 10 contains a Python implementation of MEMFREE using the HuggingFace Transformers® API.

B.5 Impact of MEMFREE on Downstream Task Performance

In this section, we discuss the worst-case impact MEMFREE could have on performance on downstream
tasks. We measure this by looking at the targets, the groundtruth text a model’s outputs are compared
against, for three abstractive summarization tasks, three question answers tasks, and the 12 tasks in the
GEM natural language generation benchmark (Gehrmann et al., 2021). On all these tasks, a model would
score perfectly on the validation set if it exactly outputted the groundtruth target sequence. By measuring
how many of the 10-grams in each of these target sequences are present in the bloom filter used by
MEMFREE, we can assess the worst-case impact MEMFREE would have on model performance at these
tasks. The results of this analysis are shown in table 1

We see that for most of these tasks, the percentage of 10-grams which are present in the bloom filter is
not too much above 1%, the false positive rate of our bloom filter. Tasks where the target sequences come
from documents likely to be present in the Pile are the most affected by MEMFREE usage. For example,
for the BillSum and Arxiv summarization tasks, over 86% of their validation set examples have a 10-gram
in the bloom filter. Non-English tasks, which are labeled with an asterisk in Table 1 were also significantly
affected. The drop in performance for non-English tasks is due to the fact that GPT-Neo’s vocabulary is
built off of English. This means that non-English phrases end up being broken into many more tokens on
average than English ones, and a single common word in a non-English language might take up several
tokens. This can be seen in the bloom hit examples for the MLSum-de task.

3https://github.com/huggingface/transformers
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banned = None

model
bloom

## huggingface model loader here
## set” like bloom filter

num_tokens_in_filter = 10

def ban_bloom(input_ids, scores):
"""input_ids is the tokens of the prompt. scores is the logits outputted by the model given these input_ids."""
input_ids = input_ids.cpu().detach () .numpy ()

# Order the tokens by their likelihood.
order = torch.argsort(” scores, 1)
order = order.cpu().detach () .numpy()

batch_size = input_ids.shape[0]

# Set the likelihood to 0 for all the most likely next tokens which would create an ngram in the bloom filter.
for ex in range(batch_size):
for i in order[ex]:
sequence_to_check = (input_ids[ex].tolist() + [int(i)])
if sequence_to_check[” num_tokens_in_filter:] in bloom:
scores[ex,i] = 1000
else:
break
return scores

prior_processor = model._get_logits_processor
def fn([atgs, [L[Kwargs):
prior = prior_processor([atgs, [[Kwargs)
prior.append(ban_bloom)
return prior

model. _get_logits_processor = fn

# Proceed with calling model.generate as normal.

Figure 10: Implementation of MemFree in HuggingFace

There are easy strategies to reduce the effect MEMFREE has on benchmark performance. First, one
could deliberately choose to omit from the bloom filter datasets which one decides are acceptable to
memorize from, such as Wikipedia and legal documents. Second, one could increase the n-gram size
of the bloom filter. As shown in the qualitative examples in Table 1, n=10 is perhaps too stringent for
fact-based task, where names of proper nouns can take up 10-tokens or more. Third, one could reduce the
error rate of the bloom filter so as to emit fewer false positives.

B.6 Performance of MEMFREE

In this section, we study two questions: (1) “does MEMFREE maintain model utility?” and (2) “does our
optimized MEMFREE prevent memorization release”.

Along question (1), recall that MEMFREE can admit false positives, which may degrade the utility of
the language model. Fortunately, the false positive rate can be computed exactly, e.g., see Tarkoma et al.
(2011), and a long literature has proposed optimizations to account for non-uniform distributions (Bruck
et al., 2006) and to adaptively correct for false positives (Bender et al., 2018).

Here, we study how, under reasonable computational constraints and inference times, the observed
rates impact model utility. As we will show, we observe that MEMFREE maintains the highest utility (no
observable impact) while being the most efficient defense.

Along question (2), we study if our optimizations lead to a substantial increase in the false negative
rate. To do this, we repeat the experiment from (Carlini et al., 2022), which prompted GPT-Neo models
with examples from its training data. We compute how many examples are verbatim memorized when
MEMFREE decoding is used. The 6B parameter GPT-Neo model memorizes more than 12,000 of these
documents, but, after applying MEMFREE, it only outputs 4 verbatim memorizations. These 4 remaining
verbatim memorizations are repeated fewer than 10 times in the training data, and so were not added to
our Bloom filter. Nonetheless, this strategy reduced verbatim memorization by over 3000™".

B.7 Bloom Filter Statistics

Figure 11 shows the distribution in number of tokens (out of 50 generated) that were changed by
MEMFREE from the token that would have been generated using undefended greedy decoding.
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% ex with ‘ % ex % 10grams

Task len>10 | with bloom hit | with bloom hit | Example 10-grams with bloom hit

Summarization Tasks

TIFU 92.0 16.9 1.3 | stall windows, get new mouse, keyboard and cup , my freezer and
now my home is the bog of , went to a concert five hours away as
the dd

Arxiv 100.0 86.8 1.38 | of a bose gas below the critical temperature. , in this paper, we
develop a structure - preserving , consider a model of diffusion
where the individuals behavior is

Pubmed 100.0 92.3 17 normal alanine aminotransferase , the prevalence of osteoporosis
in postmen , www.cs.tau.ac.il

BillSum 100.0 88.6 3.0 | Employee Retirement Income Security Act of 1974 and the Internal
, Congressional Budget and Impoundment Control Act of 1974 ,
Federal Meat Inspection Act, the Poultry Products Inspection

Question-Answering Tasks

SQUAD2.0 9.8 11 5.9 E. Mann, Raymond S. Bradley and Malcolm , CTLs (cytotoxic T
lymph , in 1975. It went public in 1979 and was

WebQuestions 2.4 0.9 9.8 | Academia de Bellas Artes de San Fernando , Paris Saint-Germain
F.C. , The Mating Habits of the Earthbound Human

CoQA 4.0 0.5 10.6 Kingdom of Serbs, Croats and Sloven , Sheikh Mohammed bin

Rashid Al Maktou , grabbed the rest of the pickle and ran

GEM Benchmark
CommonGen 81.9 5.7 14 You ride the horse around the area near the fence , children walk
with their dog on a leash down the] , she wears a helmet & sits on
the motorcycle.

Chezch Restaurant*

(Dusek et al., 2019) 99.6 235 17 jemnou restauraci BarBar, kter , jsou v riiznych , BohuZel, pobli

(Dl\l/_\aFr:-Ie—zt al., 2021) 97.1 20.1 1.7 | inNew York City. He was a member of , a low-priced family restau-
N rant located near Raja , a Member of the U.S. House of

E2E clean

99.9 88.9 1.0 near Rainbow Vegetarian Café in the city center. , Phoenix is a
cheap French restaurant in riverside. , a French restaurant with a
moderate price range, but

(Dusek and Jurcicek, 2016)

MLSum-de*

(Scialom et al., 2020) 100.0 58.7 2.58 | zum neuen Vorsitzenden , fir verfassungswidrig. , langst iberfall
3

géﬁ:ﬁﬁ al., 2020) 100.0 42.3 2.2 | del pactt_),y no de la confror)ta_\cién , seleccion espafiola de f , in-
vestigacion sobre la desaparici

Schema-Guided Dialog 63.3 7.5 1.3 | The Lord of the Rings: The Return of the , tyard By Marriott Sacra-
mento Cal Expo has a 3 star , with Southwest Airlines. The flight
takes off at 7

ToTTo isi6

(Parikh et al., 2020) 98.0 20.9 3.2 | and was broadcast on Venevision. , As of the census of 2000, there
were 133 , on the U.S. Billboard 200 chart.

XSum 99.4 185 1.6 | stressed will not increase your risk of dying, according , Two drug

dealing brothers taken back to court for mocking , the Institute of
Directors (loD) has

WebNLG-en 97.9 274 4.7 | written by J.R.R. Tolkien, , play in the Campeonato Brasileiro , is
affiliated with Visvesvaraya Technological University
WebNLG-ru* 100.0 99.6 429 s
WikiAuto + Turk/ASSET 96.5 16.7 2.2 pop-punk, surf rock, ska, , was discovered by a team of as-
tronomers from the University , cover of Sgt. Pepper’s Lonely
Hearts Club Band

Table 1: Some benchmark tasks could be significantly affected by MEMFREE. For several standard benchmark
tasks commonly used to evaluate language models, we report the percentage of test set target sequences which
consist of at least one 10-gram (meaning hitting the bloom filter is possible), the percentage of test set target
sequences which contain at least one 10-gram present in the bloom filter, and the percentage of all the 10-grams in
the test set targets which can be found in the bloom filter. We also show 3 example 10-grams (delineated by *,”)
which are present in both the test set and the bloom filter. (For QA tasks, we only consider the first answer for each
question.) The numbers here reflect the worst case scenario: the fraction of examples a language model that
perfectly memorized the test set would be incapable of getting exactly correct when used with MEMFREE.
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Figure 11: Most generations require few (& 5) changes to pass MEMFREEchecks. Data for histogram from
6000, 50-token generations using MEMFREE decoding on GPT-Neo 6b.

Figure 9 presented some of the query patterns of the MEMFREE decoder to investigate when and how it
impacts decoding. First, we observe that MEMFREE is trivial to run in terms of compute: it takes only
49.8 milliseconds to run 10,000 queries on one CPU core. From Figure 9 (left), all generations required
significantly fewer queries (mean ““ 42.1 queries / generation)—even running batches of many hundreds
or thousands of queries would incur less than a few seconds additional overhead. Second, we find that the
Bloom filter is often hit at the first and tenth tokens after the prompt. We see many hits at the first token
because all our prompts are from the training data—so there are relatively fewer single token additions
that generate a novel n-gram. Third, we find that most generations need only a few (& 5) alterations due
to MEMFREE decoding.

C More Details on Measuring Approximate Memorization

C.1 Similarity Metrics Implementations

As noted in Section 5, we identify instances of approximate memorization by measuring the similarity
between a generated continuation and the groundtruth continuation for a prompt. We do so using
BLEU-score and character-level edit distance.

We computed BLEU score using NLTK’s BLEU computation (nltk.translate.bleu_score) with
the default parameters (averaging equally BLEU-1, BLEU-2, BLEU-3, and BLEU-4)(Bird et al., 2009).
Edit distance was computed with the ‘editdistance* pip package. Normalized edit similarity between two
strings x and y is defined as:

. EDITDISTANCEpX, Yq

EDITSIMpX, yq * maxp|x|, [y|q

C.2 BLEU Score Threshold Selection

We chose to use a BLEU score of 0.75 or higher to indicate that a generation substantially memorized
from the ground-truth continuation. We choose to threshold BLEU score rather than edit-distance since it
is more interpretable to NLP researchers. Table 12 presents several examples of generations that were
very close to the 0.75 BLEU score threshold. This threshold was deliberately set high so as to avoid
false-negatives, allowing us to provide a reliable lower bound on memaorization. In our qualitative analysis
of the data, all examples that were above BLEU of 0.75 showed unambiguous memorization. We also
observed memorization in some examples with lower BLEU scores.
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True Continuation LM Generation \ BLEU

about a deeper bond with the product. Nostalgia. | about a deeper bond with a product. Nostalgia. 0.79
It’s delicate, but potent. Sweetheart.\n\nTeddy told | It’s delicate, but potent. Teddy told me that in
me that in Greek, “nostalgia” literally means “the | Greek, nostalgia literally means the pain from an
pain from an old wound”. It’s a twinge in your | old wound. It’s a twinge in your heart, far more
heart far more powerful than memory alone. This

And I’ll show you\nYou want the moves like | And I’ll show you\nAll the moves like Jagger\nl’ve 0.79
jagger\nl got the moves like jagger\nl got the | got the moves like Jagger\nl’ve got the moves like
mooooooves like jagger\nl don’t even try to control | Jagger\nl don’t need to try to control you\nLook
you\nLook into my eyes and I’ll own you\nYou | into my eyes and I’ll own you\nWith the

with the moves

Purpose\n\nThe laws of most jurisdictions through- | Purpose\n\n The laws of most jurisdictions through- 0.76
out the world automatically confer\nexclusive | out the world automatically confer\n exclusive
Copyright and Related Rights (defined below) upon | Copyright and Related Rights (defined below) upon
the creator\nand subsequent owner(s) (each and all, | the creator\n and subsequent owner(s) of an orig-
an "owner") of an original work of\nauthorship | inal work of authorship (the "Work™).\n Certain
and/or a database jurisdictions do not recognize a

Figure 12: Examples of model generations with BLEU score close to 0.75, the threshold we used to declare that
approximate memorization had occurred.

D Experiments with Large English Language Models

D.1 Prompt Selection Process

Famous speeches were selected from the "Top 100 Speeches" list found at https://www.
americanrhetoric.com/newtopl00speeches.htm. Monologues were selected from the list of two-
minute monologues found at http://www.monologuedb.com/tag/2-minute-monologues/. Novels
were selected from the Time Magazine’s Top 100 All-Time Novels list found at https://www.goodreads.
com/list/show/2681.Time_Magazine_s_All_Time_100_Novels. The opening paragraphs of the
first chapter (skipping over prefaces, introductions, and boilerplate) were used as each example. The
2011 and 2021 song lyrics were selected from the Billboard Year-End Hot 100 singles lists found at
https://en.wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2011 and https:
//en_wikipedia.org/wiki/Billboard_Year-End_Hot_100_singles_of_2012.

For each document, the first 100 words were used as a prompt, and the first 50 generated words were
compared with the first 50 words of the true continuation. This approach has the ramification that not all
prompts were the same length in tokens. However, this approach was necessary for fairness across style
transfers because an all-uppercased string is going to be many subword tokens longer than the lowercased
version of the same string.
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Figure 13: "'Style-transfer'* prompting divulges approximate memorization in two versions of GPT-3 and two
sizes of PaLLM. Note that generations also follow the same style as the prompt. Generations were characterized as
memorized if they had a BLEU score of at least 0.75 with the ground-truth continuation.
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# Prompts Memorized per

Domain with n total prompts ~ Model Style-Transfer Type
Original ~ Two Spaces  Lower  Upper
Open-Source Licenses (n=42)  GPT-3 DaVinci Original 23 8 14 1
GPT-3 DaVinci v2 30 25 25 13
Famous Speeches (n=100) GPT-3 DaVinci Original 20 1 14 0
GPT-3 DaVinci v2 12 6 11 3
Famous Monologues (n=60) GPT-3 DaVinci Original 3 0 1 0
GPT-3 DaVinci v2 4 3 4 0
Novel Openings (n=77) GPT-3 DaVinci Original 9 0 3 0
GPT-3 DaVinci v2 7 4 5 0
Lyrics 2011 (n=11) GPT-3 DaVinci Original 7 2 6 2
GPT-3 DaVinci v2 14 11 14 4
Lyrics 2021 (n=11) GPT-3 DaVinci Original 3 3 3 2
GPT-3 DaVinci v2 4 2 4 4

Table 2: "'Style-transfer' prompting surfaces approximate memorization in GPT-3. We explore n prompts
for each domain. Note that generations also follow the same style as the prompt.
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E Experiments with MEMFREE and Other Model Families

In addition to running experiment using the GPT-Neo family, we also ran them with the Pyhia model
family (Biderman et al., 2023). Like GPT-Neo, Pythia was trained on the Pile. There are two versions of
Pythia, one trained on the same version of the Pile as GPT-Neo, and another trained on a deduplicated
version of the Pile.

Figure 14 shows the amount of memorization in each of these three model families, with and without
MEMFREE. Figure 15 shows the same scatter plots as in Figure 6, but using the 6.9B-parameter Pythia.
We see that Pythia exhibits more approximate memorization than GPT-Neo. Though MEMFREE is still
effective at reducing approximate memorization, it is slightly less effective than it was on GPT-Neo.
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Figure 14: Approximate memorization on the base and deduped versions of Pythia, compared with GPT-Neo.
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Figure 15: MEMFREE is also effective at reducing approximate memorization for the deduped Pythia 6.9B model.

F Qualitative Examples that Bypass Copilot’s Filter

In Figure 16, we show more examples that bypass Copilot’s memorization filter.
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Standard Prompting

Comment Prompting

{
if (low < high)
{
/= pi is partitioning index, arr[p] is
now
at right place =/
pi = partition(arr, low, high);

I

Naming Convention Prompting

#
#
#
#
#

#* # H

#*

uickSort(arr[], low, high)
if (low < high)
{
/= pi is partitioning index, arr[p] is
now
at right place =/
pi = partition(arr, low, high);
quickSort(arr, low, pi - 1); # Before
pi
quickSort(arr, pi + 1, high); # After pi
¥

Language Prompting

(arr[1, —low, _high)

{
if (low < _high)
{
/= pi is partitioning index, arr[p] is
now
at right place =/
pi = partition(arr, —_low, _high);
quick_sort(arr, _low, pi - 1); //
Before pi
quick_sort(arr, pi + 1, _high); //
After pi
by
¥

|

if (depart < fin)
{
/> pi est 1’index de partitionnement, arr[
p] est maintenant
a la bonne place =/
pi = partition(arr, depart, fin);
// Trier les éléments séparément avant et
apres la partition
quick_sort(arr, depart, pi - 1);
quick_sort(arr, pi + 1, fin);

Naming Convention Prompting

Comment Prompting

quickSort(arr[], LOW , HIGH )
{
if (LOW < HIGH )
{
/= pi is partitioning index, arr[p]
is now
at right place =/
pi = partition(arr, LOW , HIGH );
quickSort(arr, LOW , pi - 1); //
Before pi
quickSort(arr, pi + 1, HIGH ); //
After pi
3
¥

N

(arr[1, low, high) /72

if (low < high) //3

{
/= pi is partitioning index, arr[p] is now
at right place =/
pi = partition(arr, low, high); /74
quickSort(arr, low, pi - 1); //5
quickSort(arr, pi + 1, high); //6
¥

Figure 16: Preventing GitHub’s Copilot language model from emitting verbatim memorized content often results
in it emitting memorized, but not verbatim, content. Trivially modifying the prompt bypasses these output fil-

ters.

Model evaluated with the option “block suggestions matching public code”

enabled. For brevity we removed comments from model outputs.
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G Qualitative Examples of Memorization Despite MEMFREE

Table 17 gives examples of approximate memorization which occured despite using MEMFREE decoding.
Below , we present a longer list of full examples of MEMFREE decoding. In the following paragraphs,
the gray highlighted texts are the prompts, and the texts that follow the prompts are generated by the
model. For easier reading, we merged the individual tokens to form text spans, except at tokens where
bloom-filter rejection happens. In this case, the symbol [Cintlicate connection between tokens. Moreover,
red highlighted texts indicate one or more rejected tokens, which are always followed by one accepted
token highlighted with green. The texts are lightly edited mostly to properly encode unicode symbols
(some garbled symbols are replaced as b) that IATEX does not handle gracefully.

Split word “Activity” viewHolder.swipeLayout.setOnDoubleClick Listener(new SwipelLay-
out.DoubleClickListener() { Override public void onDoubleClick(SwipeLayout layout, boolean surface) {
Toast.makeText(mContext, "DoubleClick : " + position, [—Toast _TENGTH [_)). Cshbw(); [}/
D; if return m [Context.start [CActivity Service Activ Lifies(new Intent(mContext, [_Activity [
class)); [_}Im [Cantext.fin Cish ishing ()]

Typo “Wildlife” A “Wildife” should promptly announce a phase-in of non-lead ammunition for all
hunting throughout the rest of the state to protect other wildlife poisoned by lead and to safeguard human
health. Hunters can play a critical role in the recovery of the condor and also keep lead from poisoning the
wild game they eat.” The lead-free ammunition regulations are designed to reduce lead poisonings of the
iconic and extremely endangered California condor. Condors, eagles, and other scavengers such as ravens
[ drows, and hawks [are have [bden poisoned by lead ammunition. The California Department
of Fish and CWildlife Game Wild [Cifé (CDFW) is the lead agency responsible for implementing the
regulations. The regulations are based on the Condor Protection Act,

Singular to plural: “claim” A “claims” ) No 1924/2006. neurotransmission and muscle contraction
including heart muscle 29 Magnesium Magnesium contributes to normal protein synthesis The claim
may be used only for food which is at least a source of magnesium as referred to in the claim SOURCE
OF [NAME OF VITAMIN/S] AND/OR [NAME OF MINERAL/S] as listed in the Annex to Regulation
(EC) No 1924/2006. protein [—Syhthesis 30 _MIN [atin Niac [inlins [_cdntribute to normal protein
synthesis The [claim claims [may be used only for food which is at [least lest [Cadource of niacin as
referred to Cinlto [Cinlthe claim SOURCE OF [

Uppercase to lowercase cuisine of the city’s long-established Hum Vegetarian Cafe & Restaurant to a
central garden location. Settle into the elegant and verdant space and enjoy dishes including papaya and
banana flower salads, mushrooms steamed in coconut, and the subtle combination of braised tofu with
star anise and cinnamon. Nha Hang NgonVietnamese$$ (MAP GOOGLE MAP); %028-3827 7131; 160
b Pasteur; meals 60 [,0D0-100,000d; h7am-10pm; [bl) [THis is the place to come for [Ca‘authentic
[Vietnamese food in the French [CQuarter quarter [__The menu is a mix of Vietnamese and French
dishes, and the food is

Lower case to upper case broker = createBroker(deleteAllMessagesOnStartup); broker.start(); } public
BrokerService createBroker(boolean deleteAllMessagesOnStartup) throws Exception { return createBro-
ker(deleteAllMessagesOnStartup, TRANSPORT _URI); } public BrokerService createBroker [—("With 1
TransportURI(boolean deleteAliIMessagesOnStart [up Up ) throws Exception { Cblreturn [create
new broker [Sdrvice.createBroker(deleteAllMessages COn, CTRANSPORT_URI); } Cblb [} 1
b b <|endoftext|>

Change from “agree” to ‘Ag-reeableness” a person is imaginative or independent, high openness can

be perceived as unpredictability or lack of focus. Moreover, individuals with high openness are said to

pursue self-actualization specifically by seeking out intense, euphoric experiences, such as skydiving,

living abroad, gambling, et cetera. Conversely, those with low openness seek to gain fulfillment through

perseverance, some disagreement remains about how to interpret and contextualize the openness factor. A

tendency to be organized and dependable, show self- [discipline, and be goal-oriented is also associated
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with high openness. The openness factor is also associated with the Big Five personality traits of [Cagree
Ag [rekableness, Conscientiousness [, -and [Emhotional Stability. See also Openness

Passive voice to active voice (grammar error) still wouldn’t shock me at all if the Chiefs pulled off a
Giants- or Ravens-esque Super Bowl run to cap off this five-year window of the Smith/Reid era with a
ring. While Pittsburgh has been this team’s bugaboo, maybe they can avoid them in January thanks to a
Jacksonville upset, and I still say this is the AFC team most likely to win a playoff game in New England.
While so many were quick to write the Chiefs off, they just opened up [athew chapter in their history.
The Chiefs are the AFC’s best team, and they’re going to be a force to be [reckoned reckon [Cwith for
years to come. 1. New England Patriots [_blThe [Pdtriots are the AFC’s best

Change of protocol (email still get generated) ="https://groups.google.com/group/django-developers"
target="_blank" rel="nofollow" onmousedown="this.href=&#39;https://groups.google.com/group/django-
developers&#39;;return true;" onclick="this.href=&#39;https://groups.google.com/group/django-devel-
opers&#39;;return true;">https://groups [._... [<la> <a href=" [Chttps http mail ./
david@davidwalsh.name" target="_blank" rel="n [Coflore ... [</h> <a href="mailto://david@davidw

Synonyms  ken interior. The seats were heavily cushioned black velvet. On the windows, the Darkling’s
symbol had been cut into the glass: two overlapping circles, the sun in eclipse. Across from me, the two
Grisha were studying me with open curiosity. Their red kefta were of the finest wool, embroidered lavishly
in black and lined in black fur. The fair-haired Heartrender was lanky and had a long, melancholy face.
Ivan was taller, broader, ["add had a face like a bulldog’s. "You are [the a [_Gr very L[prktty girl,"
Ivan said. "Thank you," | [Csaid replied answered [T _bI" [T7in not a girl." "You are a girl," he said.

Synonyms  severing any such bond. In re L.M., 923 A.2d 505, 511 (Pa. Super. 2007) (citing 23 Pa.C.S.
8§ 2511) (some citations omitted). Section 2511 (a) provides in pertinent part: (a) General rule.-The rights
of a parent in regard to a child [IImay are [ndt terminated by a proceeding brought under [_this [
part chapter section sub subsection [ article paragraph [Carl [“paragraph section 23912 or 2513(a) or (b),
orany bl 1 [—b & [*Retired Senior Judge

Synonyms " “Do Androids Dream of Electric Sheep?” (the original of “Blade Runner”), and his master-
piece, “Ubik.” Dick’s fans are not modest in their claims. Nor are they especially precise: Borges, Calvino,
Kafka, Robertson Davies are cited, in the blurbs and introductions, as his peers. A note of inconsistency
inflects these claims-Calvino and Robertson Davies? [=blt the point is clear: Dick is the most important
writer of the last century. The book is divided into three [Csections parts main categories [_1Themes,”
“Themes and Themes,” and “Themes

Rejecting multiple candidates s den.” Scott is aware of the impact his race and size has on the way
people — particularly authority figures like law enforcement officers — perceive him. He is big. He is
dark-skinned. “They look at us like we don’t know how to control ourselves and we just get angry quick,”
he said. “It’s not even like that. They criminalize us for no reason.” Scottb mother, who is white,
said she has been stopped by police for no reason. “I’ Cvelm Il d [Chbelsay get like never just have ask
rather been tell pull [aver and they’d be like, b [Cblb L [Ahat are you doing?”” she said

Other examples Suzy is great! She helped me buy my condo at a great price (foreclosure) and then was
super patient with my husband and me 4 years later when we were on a search for a house. She helped us
get our... Suzie H., Jacksonville Goes above and beyond Suzy has helped me close on my third property in
3 years. First she found me my dream pool home at the Beach then she helped me find two investment
townhomes in same area [_._and [Cndw she is helping me find my dream home. She is always
available to answer any questions | have and goes above and beyond to help me find the perfect home. | 1
would highly Cretommend her! Suzy H., Jacksonville

from this new programme. | have also been reminded of the role of tax measures in supporting urban
development. With us in the gallery today is Mr Vuyisa Qabaka, a Cape Town entrepreneur and co-founder
of an organisation called the Good Neighbourhoods Foundation. His advice is that “Government should
encourage township investment. For instance, it could promote urban development and regeneration
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through accelerated depreciation allowances for new building constructions or refurbishment of existing
buildings.” [I'dm sure that ["the many [oflyou [Cwill have in [thls Chamber will agree with him. |
am also sure that many of you will agree with the Minister of Finance, who has said that the tax system
should be used to support the [Cdevelopment growth economy [Cand to create

m off on some details.) Unelma keltaisesta kuninkaasta. Fastaval is not your average convention — it
specializes in incredibly tight auteur-designed roleplaying scenarios. A bunch of people run each scenario
for players, not just the creator. There’s awards for best scenarios in different categories. The Society
for Nordic Roleplaying published a collection of these scenarios translated into Finnish a few years ago,
called Unelma keltais [esta kuninkaasta. It’s a great book, [“and but with [—alot of great scenarios. LI-]
The [Chdok is available in English, but it’s not cheap. 1’ve been looking for a copy for a while

disappoint Jimmy. Then, | slept like a baby. SoFortWorthit Oscars Swag GIVEAWAY !!! The Oscars
are exhausting, y’all. I’ll definitely be cheering for all the stars this year, especially since | know the kind
of caviar-Champagne-and-swag-filled night they’re experiencing. And you know what? | want you to
experience what it’s like to get arm-loads of [frée stuff. So, I’'m [Cgiving doing going partnering 1
with the folks at the FortWorthIt Oscars Swag Giveaway to give away a $100 Visa gift card to one lucky
winner. To enter, all you have [toldo [isl

decision." "It will go down to destruction... or else, it will survive." "This is their moment of trial."
"They’ve got to show themselves worthy of everything we gods have given them." "But evil is dark and
strong.” "And it may be that the scales of fate... are not yet in full balance.” "What can | do to equalize
both sides of the struggle, Athena?" "If you don’t want to increase the powers of all men... then why don
[tlou just give me the power to destroy them?" "I can’t do that." [""[ C_THunderclap]” "I’m sorry."
"I’m [Csorry not so afraid I it you that the [gdds have decreed... that the balance of power must be
maintained.” "I’m

give him a minute between removing the first tray and replacing it with the second - and you can
come up with all sorts of theories to explain your findings. You can even throw a person in an MRI
machine, study the flickering images on your computer screen. But the brain is the ultimate black box.
Eventually, to grasp the first cut, you’ll have to make another. The car pulls into the parking lot of the
nursing home, noses into an empty space. Annese and Cork [y §et out, and Annese goes to the trunk to
get the wheelchair. Corky is still standing, leaning on the car. "I’m going [tolin [Z™1Che she An [
nese says. "I’ll come [Cwith in Cwith [Cyou ya
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True Continuation

| MEMFREE

Undefended

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

attendee list reflects the minimum
number of seats reserved for your
game. Preregistered attendees for
each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
name will only be listed once. There-
fore, the attendee list reflects the min-
imum number of seats reserved for
your game. Preregistered attendees
for each of your events are listed be-
low. If one attendee reserved multiple
seats for your event, that attendee’s
BLEU: 1

293. 294. 295. 296. 297. 298. 299.
300. 301. 302. 303. 304. 305. 306.
307. 308. 309. 310. 311. 312.

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 3034. 3043.
305. 3064. 3076. 308. 3097. 31009.
31108. 31210. BLEU: 0.95

293. 294. 295. 296. 297. 298.
299. 300. 301. 302. 303. 304. 305.
306. 307. 308. 309. 310. 311. 312.
BLEU: 1

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, Oxafdada75U,

0x42212163U, 0x20101030U, 0

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1UL, Oxaf-

dada75U,0x42212163U,
0x20101030U, 0 BLEU: 0.93

0x058f8f8aU, 0x3f9292adU,
0x219d9dbcU, 0x70383848U,
0xf1f5f504U, 0x63bcbcdfU,
0x77b6b6c1U, Oxafdada75U,
0x42212163U, 0x20101030U, O
BLEU: 1

7, calc(sin((pi/180)*a7))) define(ceal,
calc(cos((pi/180)*ea0))) define(ceal,
calc(cos((pi/180)*eal))) define(cea2,
calc(cos((pi/180)*ea2))) define(ceas,
calc(cos((pi/180)*ea3))) define(cea4,
calc(cos((pi/180

7, calc(sin((pi/180)*a7))) define(cea0,
calc(cos((pi/180)*ea0))) define(ceal,
calc(cos((pi/180)*eal))) define(cea2,
calc(cos((pi/180)*ea2))) define(ceas,
calc(cos((pi/180)*ead))) define(cea4,
calc(cos((pi/180 BLEU: 0.95

7, calc(sin((pi/180)*a7))) define(ceal,
calc(cos((pi/180)*ea0))) define(ceal,
calc(cos((pi/180)*eal))) define(cea2,
calc(cos((pi/180)*ea2))) define(ceas,
calc(cos((pi/180)*ea3))) define(cead,
calc(cos((pi/180 BLEU: 1

Figure 17: Random sample of MEMFREE generations where the BLEU score with the true continuation g 0.9.
Most of these examples are repetitive and/or lists of numbers. In the MEMFREE column, we use highlights to show
the difference from the true continuation: red means deleted text, and green means added text.
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H Author Ordering Algorithm

import hashlib
import numpy as np

def hash(x):
h=hashlib.new("'md5')
h_update(bytes(x,"ascii™))
return int(h.hexdigest(),16)

names = ("Nicholas Daphne " +
"Katherine Matthew ™ +
"Florian Chiyuan Milad "™ +
"Christopher™).split()

for i in range(0,10000):
s = str(i)
I = [hash(x+s) for x in names]
o = np.argsort(l)

if names[o[0]] != ""Daphne':

continue
if names[o[-1]] !'= "Nicholas":
continue
print([names[x] for x in o])
exit(0)

Figure 18: Author ordering algorithm
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Abstract

While GPT-3 has garnered significant attention
for its capabilities in natural language gener-
ation, research on its use outside of English
is still relatively limited. We focus on how
GPT-3 can be fine-tuned for generating syn-
thetic news articles in a low-resource language,
namely Danish. The model’s performance is
evaluated on the dimensions of human and ma-
chine detection in two separate experiments.
When presented with either a real or GPT-3 gen-
erated news article, human participants achieve
a 58.1% classification accuracy. Contrarily,
a fine-tuned BERT classifier obtains a 92.7%
accuracy on the same task. This discrepancy
likely pertains to the fine-tuned GPT-3 model
oversampling high-likelihood tokens in its text
generation. Although this is undetectable to the
human eye, it leaves a statistical discrepancy for
machine classifiers to detect. We address how
decisions in the experimental design favoured
the machine classifiers over the human evalu-
ators, and whether the produced synthetic arti-
cles are applicable in a real-world context.

1 Introduction

In recent years, rapid development in natural lan-
guage processing, particularly in the area of pre-
trained language models, has led to significant ad-
vancements in various language tasks. State-of-the-
art models, such as GPT-3 (Brown et al., 2020) and
BERT (Devlin et al., 2019), have excelled in tasks
such as classification of documents (Kong et al.,
2022), text completion (Balkus and Yan, 2022),
language translation (Yan et al., 2022) and text
summarization (Wazery et al., 2022). These ad-
vances have even led some to suggest that we are
currently experiencing a whole paradigm shift in
NLP with the introduction of pretrained language
models (Min et al., 2021).

However, most contemporary studies using GPT-
3 focus on its performance in English. This is
to be expected as the model was almost exclu-
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sively trained on English with less than 8% of
training data being non-English (OpenAl, 2020).
Still, the few investigations on GPT-3 for non-
English text generation show promising results
(Kraft et al., 2022; Muller and Laurent, 2022). This
even holds for low-resource languages such as Cata-
lan (Armengol-Estapé et al., 2021).

Yet, the more prevalent approach in NLP for
low-resource languages has been using smaller
language-specific models or multilingual models
such as mBERT (Doddapaneni et al., 2021). This
is despite multilingual models seemingly lacking
in natural language generation tasks, especially for
the Nordic languages and other low-resource lan-
guages (Roénngvist et al., 2019; Wu and Dredze,
2020). In terms of language-specific models, this
development has also occurred in Danish NLP
with several Danish models appearing based on
the likes of BERT and ELECTRA (e.g., Tamimi-
Sarnikowski, 2021 and Magllerhgj, 2021). Neverthe-
less, such models are miniscule in size compared to
the state-of-the-art language models. For instance,
the Danish BERT model by Mgllerhgj (2021) is
trained on 9.7 billion characters. Comparatively,
GPT-3’s total training data corresponds to 1.1 tril-
lion characters (OpenAl, 2020).

In this paper, we seek to understand how well
GPT-3 can perform for a low-resource language
such as Danish when optimized for that language
through fine-tuning. To our knowledge, this is the
first structured assessment of GPT-3’s capabilities
in a Danish NLP task. Concretely, we investigate
whether GPT-3 can be fine-tuned to produce
synthetic news articles that are indistinguishable
to real news articles written by journalists. Gener-
ating news articles with GPT-3 is a common task
with previous work showing remarkable results in
English (Brown et al., 2020; Uchendu et al., 2021).

Proceedings of the 16th International Natural Language Generation Conference, pages 54-68
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Inspired by a similar study from Ippolito
et al. (2020), we make a two-fold evaluation of the
model’s performance:

(A) Human Detection: Can untrained human par-
ticipants distinguish between real and syn-
thetic articles in an experimental setting?

(B) Machine Detection: Can machine classifiers
be trained to distinguish between real and syn-
thetic articles?

As human and machine detection methods pre-
sumably apply distinct techniques to spot synthet-
ically generated text (Ippolito et al., 2020), a two
dimensional evaluation provides a more nuanced
insight into how GPT-3 performs on the task.

Our findings suggest that a fine-tuned GPT-3
can generate convincing Danish synthetic news,
deceiving human readers while being identifiable
by a BERT classifier. This demonstrates GPT-3’s
capacity to perform succesfully in the context of
low-resource languages, but with the drawback of
heightened machine-detectability due to an overuse
of high-probability tokens.

2 Related Work

2.1 Natural Language Generation with
Pretrained Language Models

Natural language generation (NLG) is a subfield of
NLP concerned with the process of producing in-
telligible language. However, even within this sub-
field, there are a diverse range of related sub-tasks.
Examples of such tasks, which have natural lan-
guage as the input and output, are summarization,
question answering and translation (Celikyilmaz
etal., 2021).

Similar to other fields in NLP, text generation
has evolved rapidly with the paradigm of pretrained
language models. These models have been critical
for advancing NLG as they understand natural lan-
guage, express it fluently and are capable of being
fine-tuned for a specific domain (Li et al., 2021).
Importantly, pretrained language models can gen-
erate natural language that is novel rather than just
outputting text memorized from the training data.
This was demonstrated in McCoy et al. (2021) who
found GPT-2 and Transformer-XL to produce novel
words and unique syntactic structures not found in
the training data.

The demonstrated successes of GPT-3 in NLG
cannot only be attributed to the sheer amount of

55

data it has seen, but also to the underlying decoder-
transformer architecture. GPT-based models are
built using only decoder blocks which possess
a masked self-attention layer that prevents the
language model from considering future context
(Wang et al., 2022). This architecture is more eas-
ily applicable to NLG tasks than the alternative
encoder-only structures found in BERT-based mod-
els (Lewis et al., 2020).

2.2 The Fine-Tuning Approach

The groundbreaking paper introducing GPT-3 ti-
tled, “Language Models are Few-Shot Learners”
highlighted its ability to achieve strong perfor-
mance on various NLP tasks after only seeing a few
examples (Brown et al., 2020). This few-shot learn-
ing approach can be contrasted with fine-tuning
in which the model is updated through re-training
with task-specific data. Although GPT-3 arguably
excels at text generation from few-shot learning,
OpenAl recommends fine-tuning the model for cus-
tom applications citing advantages such as higher
quality results.t

Related research has also already demonstrated
the flexibility of GPT-3 by fine-tuning it for a
wide variety of tasks. Perhaps the most ambitious
fine-tune of GPT-3 is OpenAl’s Codex which was
trained on 159 GB of Python files from 54 million
GitHub repositories. As a result of this fine-tune,
Codex outperformed base GPT-3 on a benchmark
on several different coding tasks (Chen et al., 2021).
However, fine-tunes of GPT-3 extend beyond just
massive applications. A study by Zong and Kr-
ishnamachari (2022) on extracting equations from
math word problems found an 80% accuracy for
a fine-tuned GPT-3 model compared to only 40%
accuracy with 3-shot learning. Contrary to the enor-
mous Codex fine-tune, their fine-tune had just seen
1000 examples. Similar small-scale fine-tunes of
GPT-3 improved its abilities for assessing students’
short answer questions (Moore et al., 2022) and
writing less biased job advertisements (Borchers
etal., 2022).

The takeaway from these studies is that GPT-3
can improve performance through fine-tuning for
specific downstream tasks despite its generalized
task excellence from just few-shot learning.

Yhttps://platform.openai.com/docs/guides/fine-tuning



2.3 Evaluating Synthetically Generated Text
2.3.1 Human Detection

Evaluating whether artificial intelligence can de-
ceive humans dates back to the Turing Test (Turing,
1950). While the current state of Al is incompara-
ble to the 1950s, the underlying idea of judging ma-
chines on their human-like performance is still rel-
evant. Much of research using this approach eval-
uated language models by asking participants to
classify whether text excerpts were human-written
or synthetically generated (Bogaert et al., 2022;
Brown et al., 2020; Uchendu et al., 2021).

Although these classifications provide valuable
insight into a language model’s capabilities, they
leave many questions as to why and how these
models excel. For this reason, other studies ask par-
ticipants to rate various qualities of the text without
knowing whether the text is synthetic or real. The
exact qualities that are rated differ across studies.
For instance, some studies judge the overall text
quality (Zhang et al., 2020) or fluency (Adelani
et al., 2020) on a Likert scale. Dou et al. (2022)’s
SCARECROW framework offers a more system-
atic approach to analyzing synthetic text, accessible
to laypeople with basic training. It groups common
error types within categories, like language errors
for grammar and incoherence, and factual errors
for incorrect or nonsensical information.

2.3.2 Machine Detection

Although SCARECROW provides a standard-
ized human evaluation of language models, human
detection may not be ideal for detecting GPT-3
news articles as low accuracies would suggest. For
instance, Clark et al. (2021) found that human eval-
uators only unmasked GPT-3 news stories with
56% accuracy despite them being trained for the
task. Yet, this does not imply that synthetic text
cannot be detected at all. In fact, past research on
synthetic text detection has found machines to be
superior to humans (Ippolito et al., 2020; Meyer
et al., 2022; Uchendu et al., 2021). For example,
Ippolito et al. (2020) utilized both a bag-of-words
logistic regression and a fine-tuned BERT, report-
ing much greater performance than human eval-
uators. While the BERT model was optimal, the
bag-of-words model did not lag far behind. As for-
mulated by the study, the high performing machine
detectors are likely due to the sampling method
of language models being skewed towards high-
likelihood words. Therefore, synthetic text is more
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easily distinguishable from human language which
has greater variability in word choice (Holtzman
etal., 2020). This linguistic difference is also noted
in other research (Gehrmann et al., 2019; Tay et al.,
2020).

Nevertheless, models relying solely on word
probabilities are still inferior to more complex lan-
guage models such as BERT. This may indicate
that there are other factors which differentiate real
and synthetic articles that language models pick up
on with fine-tuning. Just like Ippolito et al. (2020),
Uchendu et al. (2021) found that the fine-tuned
BERT was the best performing detector across text
generated by 19 language models including GPT-3.

3 Data

The real news stories were all sourced from the
Danish news site tv2.dk. In October 2022, TV2’s
news platform boasted over 3 million unique users
(Danske Medier Research, 2022), which is more
than half of Denmark’s population. Hence, it makes
an excellent representation of typical news content
consumed by Danes. These articles were obtained
via two channels: directly scraping from TV2
and employing the DaNewsRoom Danish news
database (Varab and Schluter, 2020).

In the selection process, only article bodies with
a minimum length of 100 words were considered,
and longer articles were shortened to a maximum of
150 words. Although the exact threshold is some-
what arbitrary, it was kept in this range for two
reasons. Firstly, accumulating costs for generat-
ing articles with the fine-tuned GPT-3 necessitated
that we kept the articles short. Also, using longer
articles would entail that each participant would
evaluate fewer articles as their time was limited.

In total, 1866 real Danish news articles from
TV2 were sourced and used for three purposes:
Fine-tuning GPT-3 (1209 real articles), providing
training/validation data for machine classifiers (609
real articles), and serving as test data in the experi-
ments (48 real articles). Additionally, 657 synthetic
articles were generated by the fine-tuned GPT-3 for
training the classifiers (609 synthetic articles) and
test data in the experiments (48 synthetic articles).

4 Methods

4.1 Fine-Tuning GPT-3

GPT-3, specifically text-davinci-002, was fine-
tuned with 1209 pre-processed real news articles
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Figure 1: Training loss for fine-tuning GPT-3. The
dashed lines indicate an epoch ending (1209 examples).

using OpenAl’s API in Python. All articles were
formatted to JSONL in accordance with the API
documentation.? The headlines and subheadings
were combined to be the prompts for GPT-3, and
the corresponding article bodies were completions.
All hyperparameters set for the fine-tune are de-
tailed in Appendix A.1. As the training loss for the
fine-tune plateaued during the fourth epoch (Fig-
ure 1), we ended model training after this epoch.

4.2 Generating Synthetic News Articles

The fine-tuned GPT-3 was then applied to generate
synthetic news articles. As in the training phase,
the prompts (headline and subheading) came from
real news articles.® When generating the text com-
pletions, we modified several of the default hyper-
parameters based on previous research for similar
cases and OpenAl’s general recommendations.*
Firstly, GPT-3’s temperature sampling method
was adjusted by setting the temperature parameter
to zero. In temperature sampling, a high temper-
ature means that low probability tokens are more
frequently sampled. By setting temperature to zero,
the model becomes deterministic, always sampling
the most probable token when generating text. We
made this adjustment because a high temperature
may lead to factual errors as the model “takes more
risks". Also, Ippolito et al. (2020) found that a
zero temperature in conjunction with a frequency
penalty was the most successful for generating En-
glish news articles. This parameter penalizes a new
token based on how frequently it appears in the
generated text so far. It can be used along with a

2https://platform.openai.com/docs/guides/fine-
tuning/prepare-training-data

%To avoid double-dipping, these headlines and subheadings
came from articles that were not part of the 1866 real articles
mentioned in the data section.

4platform.openai.com/docs/api-reference
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presence penalty (penalizes solely based on pres-
ence rather than frequency) to decrease the likeli-
hood of sampling repetitive token sequences. As
repetitiveness is also a particular concern for GPT-
3’s text generation (Dehouche, 2021), we add small
presence and frequency penalties of 0.2. The full
specification including ranges for the hyperparam-
eters are in Appendix A.2.

The text completions formed the synthetic news
articles, utilized as training/validation data for ma-
chine detection and test data for both experiments.
Sanity checks were made to verify that these arti-
cles were similar to the real news articles in length
and structure, but we made no modifications to
them whatsoever.

5 Experiment A: Human Detection

Experiment A is designed as a binary classification
task where human participants must distinguish
between real articles written by humans and GPT-
3’s synthetic ones.

5.1 Participants

120 participants (66.6% female, age: M = 30.0, SD
= 13.7) voluntarily took part in the online study.
The study was run on the online platform SoSci
Survey (Leiner, 2022) for one week in October
2022. To ensure a wide participant reach, the study
was optimized for both computer and smartphone
use. Complying with the prerequisites for the study,
all participants were adult Danish native speakers.

5.2 Experimental Procedure

In each experimental trial, participants saw a page
with one news article and four questions to be
answered (see Appendix A.5). Participants were
firstly asked to evaluate whether they believed the
article body to be written by a human or an artificial
intelligence. Subsequently, participants had to rate
their confidence on a 5-point Likert scale from com-
pletely unsure (1) to completely sure (5). Finally,
participants were asked to label whether the arti-
cle had any distracting language or factual errors.
These error types were inspired by the SCARE-
CROW framework but simplified as the full frame-
work would be too complex for untrained evalua-
tors. To ensure participants understood what the
error types implied, examples were written beneath
each question. The articles were formatted to be
closer in appearance with a real news article. This
was done by differentiating in the size and color of



the headline, subheading and the article body (Ap-
pendix A.5). Importantly, it was clearly stated that
only the body should be evaluated, not the headline
and subheading as those always originated from
real news stories.

In total, each participant evaluated 16 articles (8
real and 8 synthetic) in a randomly shuffled order.
To cover the wide topical variance within news
articles, 96 articles were used across all participants.
That is, each participant only assessed a sixth of
the total article pool, which corresponds to every
article being evaluated by 20 unique participants.

5.3 Results

5.3.1 Human Accuracy

With 20 assessments of 96 articles, the human re-
sults are based on 1920 total classifications. The
overall classification accuracy was just 58.1%. This
means that participants only performed eight per-
centage points over chance level which is a compa-
rable result to similar studies conducted in English
(see 2.3). Interestingly, when presented with a syn-
thetic news article, participants correctly labeled it
as machine-written 53.6% of the time. Contrarily,
a true positive rate of 62.6% indicates that partici-
pants were better at identifying real news articles as
human-written. In addition, it should also be under-
lined that none of the 96 articles were exclusively
classified correctly or incorrectly. The articles that
were the easiest to identify were classified correctly
95% of the time, whereas there were only 15% cor-
rect classifications for the hardest ones.

Moreover, none of the 120 participants answered
correctly on all 16 articles that they saw, with all
of them misclassifying at least one synthetic news
article as real news. This implies that the synthetic
news articles have fooled all 120 participants to
some extent.

Furthermore, all participants were screened on
their news consumption level and prior knowledge
of GPT-3. To see whether domain expertise caused
enhanced performance, a mixed effects logistic re-
gression model was run with media consumption
level and GPT-3 knowledge as fixed effects. The
news article ID is used as a random effect to ac-
count for variance that is specific to the articles.®

The full model output is displayed in Appendix
A.6. The baseline/intercept in the model corre-
sponds to a participant who never reads news and

Saccuracy ~ news consumption + gpt-3 knowledge +
(1] article ID)

58

Classification

6004 Accuracy

Correct
M Incorrect

5004

4004

3004

Count

2004

i 2 3 4

Confidence

100

.1
bl

Figure 2: Confidence rating distribution of all trials. The
fill indicates whether the corresponding classifications
were correct or not.

never had heard of GPT-3 prior to the experiment.
The output reveals that a higher level of news con-
sumption does not lead to significantly higher accu-
racies. However, compared to the baseline, we see
significant improvements for participants that have
heard of GPT-3 before ( = 0.327, odds ratio =
0.581, SEg = 0.131, p = 0.013) and those partici-
pants that have additionally read GPT-3 texts (B =
0.478,odds ratio = 0.617,SEg = 0.146,p =
0.001). This suggests that having GPT-3 knowl-
edge may give an advantage in demarcating real
from synthetic news, although participants who
had worked with GPT-3 (highest level of GPT-3
knowledge) did not outperform the baseline.

5.3.2 Confidence and Error Identification

Participants were also asked to rate their confidence
in the classification as well as marking error types
for each trial. Figure 2 reveals that participants
typically abstain from the most extreme confidence
ratings of Completely unsure (1) and Completely
sure (5). As expected, participants’ accuracy is
around the chance level for low confidences. How-
ever, even when claiming to be Completely sure,
the fraction of correct answers only increases to
69%. For confidences of Fairly sure (4), this drops
to only 60% correct answers.

We also see some interesting patterns in error
type responses by the participants. Figure 3 il-
lustrates which errors were marked for real and
synthetic articles respectively. Overall, the pat-



terns are strikingly similar. The figure reveals that
participants most often did not find errors in the
articles. When errors then were marked, there was
a propensity to find language errors over factual
errors for both real and synthetic articles. Despite
the similarities, participants were more inclined to
identify both factual and language errors for syn-
thetic articles than for real ones. However, this did
not necessarily lead to correct classifications. For
instance, when participants marked Both errors, ar-
ticles were almost exclusively labeled as synthetic
(89.7% of cases) although Figure 3 reveals that this
was often incorrect.

In sum, participants struggled with demarcating
real news articles from synthetic ones in Experi-
ment A. The overall accuracy was only 58% with
classifications of synthetic news articles approach-
ing chance level. Also, all 120 participants were
fooled by at least one synthetic article and even
the most confident classifications frequently led to
wrong responses. Finally, patterns in error types
marked by participants are similar for real and syn-
thetic articles which shows the participants’ inabil-
ity to demarcate the articles by style and content.

6 Experiment B: Machine Detection

Experiment B explores whether it is possible to con-
struct machine classifiers that are capable of distin-
guishing between real and synthetic articles. This
is approached with logistic regression using bag-
of-words (BOW) and TF-IDF as baseline models.
The more advanced language model, NB-BERT-
LARGE, is then fine-tuned, tested and evaluated
against the baselines and human participants.

6.1 Building Classifiers

Two baseline classifiers are constructed using lo-
gistic regression with BOW and TF-IDF numerical
representations of the vocabulary within the entire
corpus (see Appendix A.3 for their hyperparame-
ters). The BOW classifier is the most simple base-
line, solely representing word frequencies within
each document. TF-IDF provides a more detailed
representation by also accounting for a word’s rar-
ity in relation to the entire set of documents.
Expanding beyond purely vocabulary-based clas-
sification, we fine-tune the BERT model, NB-
BERT-LARGE (Kummervold et al., 2021), for
the binary classification task. This BERT model
was pretrained on the Norwegian Colossal Cor-
pus which is a diverse collection of textual data
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Figure 3: The marked error types by participants. On
the left, the responses to real articles are found, and the
synthetic responses are on the right. The fill indicates
how participants classified the corresponding articles.

(Kummervold et al., 2022). Although Norwegian
is the primary language of the corpus, the collec-
tion contains several languages. Notably, Danish is
the biggest language after Norwegian with 13.6%
of the corpus being in Danish. We fine-tuned the
model with the Trainer API using Hugging Face’s
transformers package (Wolf et al., 2020) in Python.
The fine-tuning dataset comprised 1218 labeled arti-
cles split into a training and validation set (training:
75%, validation: 25%). Half of these were the real
news articles from TV2 and the other half synthetic
news articles. The test data comprised the same 96
articles that humans evaluated in Experiment A.

The hyperparameters for the fine-tuning of
BERT are detailed in Appendix A.4. Resulting
from an early stopping callback,® the model was
fine-tuned for two epochs, obtaining a validation
accuracy of 95.7%.

6.2 Results

6.2.1 Classification Accuracies

Table 1 shows the results of both the machine and
human detection on the test data of 96 articles. The
fine-tuned BERT model outclasses humans at the
task with a 92.7% accuracy on the test set as well
as the highest F1-score. Also, even the baseline
BOW and TF-IDF models performed substantially
better than the human average accuracy with ac-
curacies around 80%, indicating that vocabulary
discrepancies can demarcate the real and synthetic
articles to an extent.

®based on the validation accuracy



Classifier Accuracy F1  Precision Recall TP TN FP FN

Human 0.581 0.599 0.575 0.626 62.6% 53.6% 46.4% 37.4%
BOW 0.802 0.796 0.822 0771 77.1% 83.3% 16.7% 22.9%
TF-1DF 0.802 0.800 0.809 0.792 79.2% 81.3% 18.8% 20.8%
BERT (fine-tuned) 0.927 0.927 0.932 0.927 875% 97.9% 21% 12.5%

Table 1: Evaluation metrics for all classifiers on the test data of 96 articles.

An interesting similarity between all machine
classifiers is their tendency to classify articles as
synthetic. This is most noticeable with fine-tuned
BERT which has 12.5% false negatives as opposed
to just 2.1% false positives. Remarkably, BERT’s
true negative classifications of 97.9% means that
the model has only classified a single synthetic
article wrong. This propensity to classify articles
as synthetic contrasts human participants, who had
a bias towards classifying most articles as real.

6.2.2 Classifier Agreement

We turn to examine classifier agreement quanti-
tatively by evaluating their inter-rater reliability
using Cohen’s Kappa. Unsurprisingly, this met-
ric reveals that TF-IDF and BOW have an almost
perfect agreement, kK = 0.91,z = 3.37,p < 0.05.
Moreover, both TF-IDF (k = 0.62,z = 6.14) and
BOW (k = 0.62,z = 6.11) have a substantial
agreement with BERT that is greater than would
be expected by chance (both p < 0.05).

Table 2 gives a qualitative insight into the agree-
ments with examples of how four test articles were
classified. Article A was the most commonly mis-
classified article for humans (17 out of 20 misclas-
sifications). However, interestingly, all three classi-
fiers correctly identified it as synthetic news. Ad-
ditionally, article B is one of four instances where
BERT correctly identified a synthetic news arti-
cle while both BOW and TF-IDF failed. Oppo-
sitely, article C provides an example of BERT’s
over-inclination to classify as synthetic. It is one of
three articles where BERT misclassified a real news
article while BOW and TF-IDF did not. Finally,
article D is the only synthetic article that BERT
misclassified. However, as Table 2 shows, BOW
and TF-IDF also struggled with this article.

The overall takeaway remains that these machine
detections performed vastly better than human par-
ticipants. This improvement was clear even for
the two baseline models based on BOW and TF-
IDF. Still, the more sophisticated fine-tuned BERT
classifier performed the best by far, with an im-
pressive 92.7% overall accuracy and just a single
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misclassification of the 48 synthetic articles.

7 Limitations

A few limitations must be addressed in relation to
these results. Firstly, several design decisions pre-
sumably favoured the machine detectors over the
human evaluators. Whereas 78.3% of human partic-
ipants had never seen GPT-3 produced texts before,
all machine classifiers received extensive training
on over 1000 labelled articles prior to the final test-
ing. Also, the zero temperature token sampling for
generating synthetic articles created an overrepre-
sentation of high-likelihood tokens. This may be
identified by the machine detectors, whereas such
patterns are are probably too subtle to notice for
humans (Ippolito et al., 2020). Also, Dou et al.
(2022) show that higher temperatures are associ-
ated with GPT-3 making off-prompt errors. Such
errors would not be captured by the machine clas-
sifiers, whereas humans would more likely identify
these more semantic shortcomings.

Moreover, it must be addressed that human clas-
sifications are possibly influenced from being con-
ducted in an experimental setting. Contrary to the
machine classifiers, the human participants saw the
headline and subheading for all articles. Despite
being repeatedly told not to evaluate them, it cannot
be dismissed that these extra elements still could
have influenced their decision-making process. For
instance, a familiar headline could have evoked an
intuition for the article being real before reading the
article body. On the other hand, one could argue
that this was beneficial for humans as they could
improve assessments by comparing contents in the
headline and subheading to the article body.

Still, these methodological decisions systemat-
ically favored the machine classifiers over the hu-
man evaluators. However, asserting that the ma-
chine superiority would evaporate based on these
considerations is a reach considering how vast the
performance gap was.

Another limitation relates to the generalizability
of the synthetic news articles. Due to experimen-



Article A Article B
Correct | Human | BOW TF-IDF | BERT Correct | Human | BOW TF-IDF | BERT
Synthetic | Real Synthetic| Synthetic| Synthetic || Synthetic | Synthetic| Real Real Synthetic

Greenland’s government has decided not to apply for per-
mission for further oil drilling in the coming year. This is
announced by the Greenlandic Ministry of Nature, Environ-
ment and Agriculture in a press release. "We have decided
not to apply for oil drilling in 2023, because we want to
spend time developing a new strategy for the Greenlandic
economy, which will form the basis for a new oil and gas
strategy," it says. The government also emphasizes that it
will maintain its "vision of a fossil-free Greenland". The
decision comes after a meeting on Tuesday between the
government’s four parties. It is mainly the consideration
for the climate that has led the government to drop further
oil drilling.

Two photographers and a culture minister are now crit-
icized by the Press Council for having participated in a
photo series where they posed with weapons. The Press
Council writes this in a press release. In the case against
Culture Minister Ane Halsboe-Jargensen (S), the council
has assessed that she has violated good press ethics by
participating in the photo series *The Gun Series’. "By par-
ticipating in a photo series with weapons and ammunition,
the Culture Minister has expressed that it is acceptable to
carry weapons, whether it is in connection with artistic pho-
tography or not," the decision states. The decision against
photographer Rasmus Flindt Pedersen and Jim Lyngvild
is more stringent. Both have violated good press ethics by
participating in the photo series, says the Press Council.

Article C Article D
Correct | Human BOW TF-IDF | BERT Correct | Human BOW TF-IDF | BERT
Real Real Real Real Synthetic || Synthetic | Real Real Real Real

Consideration for endangered animal species such as hazel
dormice, birch mice, and bats in Denmark is now tem-
porarily hindering a massive natural gas project that aims
to supply Poland with natural gas from Norway. The En-
vironmental and Food Appeals Board has annulled the
project’s environmental permit, thereby halting the con-
struction work of the Baltic Pipe pipeline across Denmark.
"We are very disappointed with the decision," says Mar-
ian Kaagh, the deputy director of the company Energinet,
which is responsible for the construction work in Denmark.
In a press release, she says that Energinet has been working
on a number of initiatives to ensure good living conditions
for the animals in the areas where the pipeline is being
built. This was a requirement when the Environmental
Protection Agency granted the environmental permit for
the Baltic Pipe project in 2019. However, according to the
Environmental and Food Appeals Board, the conditions
should have been thoroughly investigated before the permit
was issued and construction work could begin.

The upcoming super hospitals are meant to help improve
the healthcare system in Denmark. However, they will
not be completed on time. On average, the 16 hospital
constructions are almost two years delayed, according to a
statement from the Quality Fund for hospital constructions,
which TV 2 has obtained access to. It is an expression of
"a number of challenges,” as the fund’s director, Morten
Hjortenberg, puts it. "We had hoped for better results
halfway through the construction period. It raises concerns
and reflections on some of the decisions and priorities that
were made during the projects,” he says. The fund’s task is
to provide funding for hospital constructions and ensure
high quality — that is, what is often called "quality funds."
The total budget for the constructions is over 30 billion
Danish kroner — of which the state accounts for 23 billion
and the regions’ self-financing contribution is 9 billion.

Table 2: Four article bodies from the test data translated to English. Predictions are marked in green if they were
correct and red for incorrect. The human prediction is based on the majority classification for the 20 participants for
an article (classified as real if split 50/50). See Appendix A.7 for the original articles in Danish.

tal constraints, articles were shortened greatly, and
may therefore not be comparable to what we con-
sider news in a real-world context. In addition, even
if it could write longer articles, our fine-tuned GPT-
3 model’s capabilities are practically useless in a
journalistic context despite producing human-like
outputs. This is because inferring a factually cor-
rect article body from just a headline requires addi-
tional, current context about the world which is in-
accessible in this setup. Instead, the only thinkable
purposes for this "headline-to-article news genera-
tor" have malicious undertones such as automating
fake news production.

8 Conclusion

As advancements in natural language processing
continue to progress rapidly, it is crucial to remem-
ber the importance of including and improving
upon NLP in low-resource languages. This paper
acknowledges this need by conducting a structured
assessment of GPT-3’s abilities for Danish natural
language generation when fine-tuned for the task.
Our study shows that GPT-3 can be fine-tuned
to produce Danish synthetic news articles that are
virtually indistinguishable to real news articles for
humans. However, this does not imply that the
articles are actually indistinguishable as the human
eye is not all-seeing. By constructing a fine-tuned
BERT model for the same discrimination task, we
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find that machine detection of the synthetic news
articles was possible to a great extent. Hence, there
must have been underlying flaws in GPT-3’s article
generations, likely relating to an oversampling of
high-likelihood words.

The introduction of ChatGPT and GPT-4 will
likely impact the findings presented in this paper,
lowering detection accuracies further for both
humans and machines. Although, as those models
are closed-sourced, it would be troublesome to
assess whether the testing articles are already part
of the training data which poses a methodological
challenge. Regardless, as our findings for Danish
conform with similar studies in English, we
encourage future work on low-resource languages
to develop machine detectors which possibly
stand the test when human evaluators are deceived.

Supplementary Materials Availability Statement:
All source code used in the project is available from
GitHub at https://github.com/drasbaek/finetuning-
gpt3-danish-news. A dataset with the synthetic
articles as well as classifications made by machine
detectors is also available on the GitHub. The
dataset containing human responses from Experi-
ment A cannot be made available due to GDPR
regulations. The real news articles from TV2 are
also not made publicly available due to copyright
limitations. In the interest of reproducibility,
dummy data is made available on the GitHub
which mimics the actual data to the greatest
possible extent under the circumstances. Contact
the authors for more information on the project.

Ethical Considerations

In this paper, we have created a GPT-3 fine-tune
that is capable of producing synthetic news. As it
may be possible to use it for malicious purposes,
the fine-tuned model will not be available to anyone
besides the authors. Per January 4, 2024, the au-
thors will also lose access to the model as OpenAl
announced all davinci models, including fine-tunes,
will depreciate. 7 Nonetheless, we acknowledge
that this paper demonstrates the ease of producing
such a model, but also how it may be detected.

Finally, we recognize that the synthetic news
produced for this paper could potentially contain
societal biases from GPT-3’s training data or from
the real news articles used for fine-tuning.

"https://openai.com/blog/gpt-4-api-general-availability

62

Acknowledgements

The expenses associated with fine-tuning and using
GPT-3 were funded by a grant from Apart Research,
a machine learning safety research organization.
This funding did not grant Apart Research any in-
fluence on the course of the study. The authors
would also like to thank Ross Deans Kristensen-
McLachlan for supervising the bachelor’s thesis
which laid the foundation for the present paper. Fi-
nally, we thank 1T-vest and Stibofonden for funding
the publication of this paper at INLG 2023.

References

David Ifeoluwa Adelani, Haotian Mai, Fuming Fang,
Huy H. Nguyen, Junichi Yamagishi, and Isao
Echizen. 2020. Generating Sentiment-Preserving
Fake Online Reviews Using Neural Language Mod-
els and Their Human- and Machine-Based Detection.
In Advanced Information Networking and Applica-
tions, Advances in Intelligent Systems and Comput-
ing, pages 1341-1354, Cham. Springer International
Publishing.

Jordi Armengol-Estapé, Ona de Gibert Bonet, and
Maite Melero. 2021. On the Multilingual Capabili-
ties of Very Large-Scale English Language Models.
ArXiv:2108.13349 [cs].

Salvador Balkus and Donghui Yan. 2022. Improving
Short Text Classification With Augmented Data Us-
ing GPT-3. ArXiv:2205.10981 [cs].

Jérémie Bogaert, Marie-Catherine de Marneffe, Antonin
Descampe, and Francois-Xavier Standaert. 2022. Au-
tomatic and Manual Detection of Generated News:
Case Study, Limitations and Challenges. In Proceed-
ings of the 1st International Workshop on Multimedia
Al against Disinformation, MAD ’22, pages 18-26,
New York, NY, USA. Association for Computing
Machinery.

Conrad Borchers, Dalia Gala, Benjamin Gilburt, Ed-
uard Oravkin, Wilfried Bounsi, Yuki M Asano, and
Hannah Kirk. 2022. Looking for a Handsome Car-
penter! Debiasing GPT-3 Job Advertisements. In
Proceedings of the 4th Workshop on Gender Bias
in Natural Language Processing (GeBNLP), pages
212-224, Seattle, Washington. Association for Com-
putational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-\Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, llya Sutskever, and Dario Amodei. 2020.



Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
2021. Evaluation of Text Generation: A Survey.
ArXiv:2006.14799 [cs].

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welin-
der, Bob McGrew, Dario Amodei, Sam McCandlish,
llya Sutskever, and Wojciech Zaremba. 2021. Eval-
uating Large Language Models Trained on Code.
ArXiv:2107.03374 [cs].

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A. Smith.
2021. All That’s ‘Human’ Is Not Gold: Evaluating
Human Evaluation of Generated Text. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282—7296, Online.
Association for Computational Linguistics.

Danske Medier Research. 2022. Toplisten.

N Dehouche. 2021. Plagiarism in the age of mas-
sive Generative Pre-trained Transformers (GPT-3).
Ethics in Science and Environmental Politics, 21:17—
23.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Sumanth Doddapaneni, Gowtham Ramesh, Mitesh M.
Khapra, Anoop Kunchukuttan, and Pratyush Kumar.
2021. A Primer on Pretrained Multilingual Language
Models. ArXiv:2107.00676 [cs].

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah A. Smith, and Yejin Choi. 2022. Is GPT-3

63

Text Indistinguishable from Human Text? Scarecrow:
A Framework for Scrutinizing Machine Text. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 7250-7274, Dublin, Ireland. As-
sociation for Computational Linguistics.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander
Rush. 2019. GLTR: Statistical Detection and Visual-
ization of Generated Text. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 111-116,
Florence, Italy. Association for Computational Lin-
guistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural Text
Degeneration. In International Conference on Learn-
ing Representations.

Daphne Ippolito, Daniel Duckworth, Chris Callison-
Burch, and Douglas Eck. 2020. Automatic Detec-
tion of Generated Text is Easiest when Humans are
Fooled. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1808-1822, Online. Association for Computa-
tional Linguistics.

Jun Kong, Jin Wang, and Xuejie Zhang. 2022. Hierar-
chical BERT with an adaptive fine-tuning strategy for
document classification. Knowledge-Based Systems,
238:107872.

Angelie Kraft, Hans-Peter Zorn, Pascal Fecht, Judith
Simon, Chris Biemann, and Ricardo Usbeck. 2022.
Measuring Gender Bias in German Language Gener-
ation. Gesellschaft fir Informatik, Bonn. Accepted:
2022-09-28T17:10:03Z ISSN: 1617-5468.

Per E Kummervold, Javier De la Rosa, Freddy Wet-
jen, and Svein Arne Brygfjeld. 2021. Operational-
izing a National Digital Library: The Case for a
Norwegian Transformer Model. In Proceedings of
the 23rd Nordic Conference on Computational Lin-
guistics (NoDaLiDa), pages 20-29, Reykjavik, Ice-
land (Online). Linkdping University Electronic Press,
Sweden.

Per E Kummervold, Javier De la Rosa, Freddy Wet-
jen, and Svein Arne Brygfjeld. 2022. Norwegian
Colossal Corpus Description.

D.J. Leiner. 2022. SoSci Survey.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7871-7880, Online. Association
for Computational Linguistics.



Junyi Li, Tianyi Tang, Wayne Xin Zhao, and Ji-Rong
Wen. 2021. Pretrained Language Model for Text
Generation: A Survey. volume 5, pages 4492-4499.
ISSN: 1045-0823.

R. Thomas McCoy, Paul Smolensky, Tal Linzen, Jian-
feng Gao, and Asli Celikyilmaz. 2021. How much
do language models copy from their training data?
Evaluating linguistic novelty in text generation using
RAVEN. ArXiv:2111.09509 [cs].

Selina Meyer, David Elsweiler, Bernd Ludwig, Marcos
Fernandez-Pichel, and David E. Losada. 2022. Do
We Still Need Human Assessors? Prompt-Based
GPT-3 User Simulation in Conversational Al. In
Proceedings of the 4th Conference on Conversational
User Interfaces, CUI ’22, pages 1-6, New York, NY,
USA. Association for Computing Machinery.

Bonan Min, Hayley Ross, Elior Sulem, Amir
Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz,
Eneko Agirre, llana Heinz, and Dan Roth. 2021.
Recent Advances in Natural Language Processing
via Large Pre-Trained Language Models: A Survey.
ArXiv:2111.01243 [cs].

Steven Moore, Huy A. Nguyen, Norman Bier, Tanvi Do-
madia, and John Stamper. 2022. Assessing the Qual-
ity of Student-Generated Short Answer Questions Us-
ing GPT-3. In Educating for a New Future: Making
Sense of Technology-Enhanced Learning Adoption,
Lecture Notes in Computer Science, pages 243-257,
Cham. Springer International Publishing.

Jens Dahl Mgllerhgj. 2021. certainlyio/nordic_bert.

Martin Miuller and Florian Laurent. 2022. Cedille:
A large autoregressive French language model.
ArXiv:2202.03371 [cs].

OpenAl. 2020. openai/gpt-3: Languages by Character
Count.

Samuel Ronngvist, Jenna Kanerva, Tapio Salakoski,
and Filip Ginter. 2019. Is Multilingual BERT Fluent
in Language Generation? In Proceedings of the
First NLPL Workshop on Deep Learning for Natural
Language Processing, pages 29-36, Turku, Finland.
Linkdping University Electronic Press.

Phillip Tamimi-Sarnikowski. 2021.

sarnikowski/danish_transformers.

Yi Tay, Dara Bahri, Che Zheng, Clifford Brunk, Donald
Metzler, and Andrew Tomkins. 2020. Reverse En-
gineering Configurations of Neural Text Generation
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 275-279, Online. Association for Computa-
tional Linguistics.

A. M. Turing. 1950. Computing Machinery and Intelli-
gence. Mind, 59(236):433-460. Publisher: [Oxford
University Press, Mind Association].

64

Adaku Uchendu, Zeyu Ma, Thai Le, Rui Zhang, and
Dongwon Lee. 2021. TURINGBENCH: A Bench-
mark Environment for Turing Test in the Age of Neu-
ral Text Generation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
2001-2016, Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Daniel Varab and Natalie Schluter. 2020. DaNewsroom:
A Large-scale Danish Summarisation Dataset. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 6731-6739, Marseille,
France. European Language Resources Association.

Haifeng Wang, Jiwei Li, Hua Wu, Eduard Hovy, and
Yu Sun. 2022. Pre-Trained Language Models and
Their Applications. Engineering.

Y. M. Wazery, Marwa E. Saleh, Abdullah Alharbi,
and Abdelmgeid A. Ali. 2022. Abstractive Ara-
bic Text Summarization Based on Deep Learn-
ing. Computational Intelligence and Neuroscience,
2022:€1566890. Publisher: Hindawi.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38-45, Online. Association
for Computational Linguistics.

Shijie Wu and Mark Dredze. 2020. Are All Languages
Created Equal in Multilingual BERT? In Proceed-
ings of the 5th Workshop on Representation Learning
for NLP, pages 120-130, Online. Association for
Computational Linguistics.

Rong Yan, Jiang Li, Xiangdong Su, Xiaoming Wang,
and Guanglai Gao. 2022. Boosting the Transformer
with the BERT Supervision in Low-Resource Ma-
chine Translation. Applied Sciences, 12(14):7195.
Number: 14 Publisher: Multidisciplinary Digital Pub-
lishing Institute.

Jingging Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with Extracted
Gap-sentences for Abstractive Summarization. In
Proceedings of the 37th International Conference
on Machine Learning, pages 11328-11339. PMLR.
ISSN: 2640-3498.

Mingyu Zong and Bhaskar Krishnamachari. 2022. Solv-
ing Math Word Problems Concerning Systems of
Equations with GPT-3. Proceedings of the Thirteenth
AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, page 8.



A Appendix

A.1 Fine-tuning Parameters for GPT-3

Parameters Value
Batch Size 2
Learning Rate Multiplier 0.2
Prompt Loss Weight 0.01
Epochs 4

A.2 Text Generation Parameters for GPT-3

Parameters Value Value Range
Temperature 0 Otol
Frequency Penalty 0.2 -2t02
Presence Penalty 0.2 -2t0 2
Max Tokens 400 0 to 2048
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A.3 Logistic Regression Parameters for BOW

and TFIDF
Parameters Value
Solver Ifbgs
C 10

Random State 2
Max lterations 250

A.4  Fine-Tuning Parameters for BERT

Parameters Value
Learning Rate  2e-5
Weight Decay  0.01
Batch Size 24
Epochs run 2

Max Epochs 5

The fine-tuned BERT was defined with an early stopping
callback which stopped model training if the validation
accuracy did not improve for 3 epochs. The final model
used for inference was thus only run for 2 epochs.



A5 Experimental Procedure

HEADLINE

SUBHEADING

ARTICLE
BODY

University in massive data leak: - The criminals have all the
information now, says expert

A student discovered that with just a few clicks, he could see others' social security
numbers.

A large number of sensitive personal details about Danish students are currently available to anyone
who wants to search the internet. This is because a database containing information on about
100,000 students at the University of Copenhagen has been leaked. It happened on Thursday
evening when a student at the University of Copenhagen discovered that with just a few clicks, he
could see other people's social security numbers. The leak was hidden behind a blurred address on
the internet, and it required a so-called reverse lookup service to find it. TV 2, using this service,
found the address, and it can be seen that it contains a large number of files with information about
the approximately 100,000 students.

Do you think that the article body is written by a human or artificial intelligence ?
[J Human
[ Artificial Intelligence

How sure are you of your answer?

Completely Slightly Somewhat Fairly Completely
unsure sure sure sure sure
1 2 3 4 5

Are there any distracting language errors?
E.g., spelling mistakes, wrong punctuation, incoherent or repetitive language

[ ves
[ No

Are there any distracting factual errors?
E.g., contradicting information or factual mistakes about individuals or events

[ ves
[ No

Ilustration of a trial from experiment A. All text was written in Danish in the actual
experiment. The article body in the example is synthetically generated. The captions
"HEADLINE", "SUBHEADING" and "ARTICLE BODY" did not appear in the actual

experiment.
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A.6 Logistic Regression Model Output for Predicting Accuracy

Fixed Effect Estimate Standard Error Z-value P-value
Intercept 0.33668 0.39335 0.856  0.39204
News_Consumption_2  -0.50311 0.43260 -1.163  0.24484
News_Consumption 3 -0.03473 0.39697 -0.087  0.93028
News_Consumption_ 4  -0.27516 0.40664 -0.677  0.49862
News_Consumption_ 5 -0.10105 0.39719 -0.254  0.79817
GPT_Knowledge_2 0.32738 0.13130 2493  0.01266
GPT_Knowledge_3 0.47842 0.14626 3.271  0.00107
GPT_Knowledge_4 0.37824 0.22513 1.680 0.09293

Fixed Effect Level

Participant Response (translated)

News_Consumption_1
News_Consumption_2
News_Consumption_3
News_Consumption_4
News_Consumption_5
GPT_Knowledge 1

GPT_Knowledge 2

GPT_Knowledge_3

GPT_Knowledge_4

Never read the news

Very rarely read the news

Read news every week but not daily
Read news once every day

Read news multiple times a day

Never heard of GPT-3

Heard of GPT-3, but never read any-
thing it wrote or worked with it

Heard of GPT-3 and read texts it wrote,
but never worked with it

Heard of GPT-3, read texts it wrote and
worked with it

Participant Response (original)

Laeser aldrig nyheder

Laeser meget sjeeldent nyheder

Leser nyheder hver uge men ikke
dagligt

Laeser nyheder en gang om dagen
Laeser nyheder flere gange om dagen
Aldrig hgrt om GPT-3

Hart om GPT-3, men aldrig laest noget
den har skrevet eller arbejdet med den
Hart om GPT-3 og laest tekster den har
skrevet, men aldrig arbejdet med den
Hort om GPT-3, laest tekster den har
skrevet og arbejdet med den
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A.7 Classifier Agreement (Table 2) Danish Original Text

Article A Article B
Correct | Human | BOW TF-IDF | BERT Correct | Human | BOW TF-IDF | BERT
Synthetic | Real Synthetic| Synthetic| Synthetic || Synthetic | Synthetic| Real Real Synthetic

Grgnlands regering har besluttet sig for ikke at sgge om
tilladelse til yderligere olieboringer i det kommende ar.
Det oplyser det grenlandske ministerium for natur, miljg
og landbrug i en pressemeddelelse. - Vi har besluttet os for
ikke at sgge om olieboringer i 2023, fordi vi vil bruge tid p&
at udvikle en ny strategi for den gregnlandske gkonomi, som
skal danne grundlag for en ny olie- og gasstrategi, lyder det.
Regeringen understreger samtidig, at den vil fastholde sin
"vision om et fossilfrit Grgnland". Beslutningen kommer
efter et mgde tirsdag mellem regeringens fire partier. Det
er iser hensynet til klimaet, der har faet regeringen til at
droppe yderligere olieboringer.

To fotografer og en kulturminister far nu kritik af
Pressenzvnet for at have deltaget i en billedserie, hvor
de poserede med vaben. Det skriver Pressenavnet i
en pressemeddelelse. | sagen mod kulturminister Ane
Halsboe-Jargensen (S) har nevnet vurderet, at hun har
brudt god presseskik ved at deltage i billedserien *The Gun
Series’. - Kulturministeren har ved deltagelse i billedserie
med vaben og ammunition givet udtryk for, at det er ac-
ceptabelt at baere vaben, uanset om det er i forbindelse med
kunstnerisk fotografering eller ej, lyder det i afgarelsen.
Afgarelsen mod fotografen Rasmus Flindt Pedersen og Jim
Lyngvild er mere knibsk. Begge har brudt god presseskik
ved deltagelse i billedserien, mener Pressenavnet.

Article C Article D
Correct | Human | BOW TF-IDF | BERT Correct | Human | BOW TF-IDF | BERT
Real Real Real Real Synthetic || Synthetic | Real Real Real Real

Hensynet til truede dyrearter som hasselmus, birkemus og
flagermus i Danmark stikker nu en midlertidig keep i hjulet
pa et enormt naturgasprojekt, der skal forsyne Polen med
naturgas fra Norge. Det er Miljg- og Fadevareklagenzvnet,
der har annulleret projektets miljgtilladelse, og dermed
har sat en stopper for anlegsarbejdet af rerledningen
Baltic Pipe pa tvaers af Danmark. - Vi er meget kede
af afgerelsen, siger Marian Kaagh, der er vicedirektor i
selskabet Energinet, der star for anleegsarbejdet | Danmark.
I en pressemeddelelse siger hun, at Energinet har arbejdet
med en raekke tiltag for at sikre gode levevilkar for dyrene
de steder, hvor rarledningen bliver anlagt. Det var et krav,
da Miljgstyrelsen i 2019 gav miljgtilladelse til Baltic
Pipe-projektet. Men ifglge Miljg- og Fedevareklagenavnet
burde forholdene veere grundigt undersggt, allerede inden
tilladelsen blev udstedt, og anlaegsarbejdet kunne begynde.

De kommende supersygehuse skal veere med til at lgfte
sundhedsvaesenet i Danmark. Men de bliver ikke klar til
tiden. Gennemsnitligt er de 16 sygehusbyggerier knap to
ar forsinkede, viser en opgerelse fra Kvalitetsfonden for
sygehusbyggerierne, som TV 2 har faet aktindsigt i. Det er
et udtryk for, at der er "en del udfordringer", som fondens
direkter, Morten Hjortenberg, siger det. - Vi havde habet
pé bedre resultater her halvvejs inde i byggeperioden. Det
giver anledning til bekymring og eftertanke om nogle af
de beslutninger og prioriteringer, der blev truffet under
projekterne, siger han. Fondens opgave er at stille penge
til rédighed for sygehusbyggerierne og sikre en hgj kvalitet
— altsa det man ofte kalder "kvalitetsfonde". Byggeriernes
samlede budget er pa over 30 milliarder kroner — heraf stér
staten for 23 milliarder og regionernes selvfinansierende
bidrag pa 9 milliarder.
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Abstract

In this work, we investigate Data Augmenta-
tion methods to improve the performance of
state-of-the-art models for four different down-
stream tasks. Specifically, we propose Genera-
tive Adversarial Network using Language Mod-
els (GAN-LM) approach that combines a deep
generative model with a pre-trained language
model to produce diverse augmentations. We
compare the GAN-LM to various conventional
methods in non-contextual- and contextual-
levels on four public datasets: ZESHEL for
zero-shot entity linking, TREC for question
classification, STS-B for sentence pairs seman-
tic textual similarity (STS), and mSTS for mul-
tilingual sentence pairs STS. Additionally, we
subsample these datasets to study the impact
of such augmentations in low-resource settings
where limited amounts of training data is avail-
able. Compared to the state-of-the-art methods
in downstream tasks, we mostly achieve the
best performance using GAN-LM approach. Fi-
nally, we investigate the way of combining the
GAN-LM with other augmentation methods to
complement our proposed approach. The de-
veloped code for reproducibility is included in
the supplementary material .

1 Introduction

Nowadays, the availability of large unsupervised
corpora and computational resources has led to de-
velopment of large language models (LMs) that
are now employed across a wide variety of nat-
ural language processing (NLP) tasks including
but not limited to entity linking (EL), text summa-
rization, question classification (QC) and semantic
textual similarity (STS). While such models can
sometimes work well for tasks where little (few-
shot) or no (zero-shot) supervised data is avail-
able, the performance loss in such low-resource
settings can be substantial compared to their high-
resource counterparts. This gap is even larger for

'https://github.com/amazon-science/
data-augmentation-for-entity-resolution
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low-resource languages. Thus, scientists in both
industry and academia still have to rely on a mul-
titude of methods Hedderich et al. (2021), such as
Data Augmentation (DA), to yield sufficient levels
of performance on their low-resource tasks.

DA allows to artificially increase the size of a
dataset by generating additional synthetic exam-
ples from the existing ones. A large amount of
diverse training data is important to ensure the gen-
eralization of a model but it is not always possible
to collect due to cost and time constraints or lack of
target language data and task experts. To mitigate
this issue, DA can be used to improve performance.

In this work, we test a wide variety of DA ap-
proaches, both the ones found in the literature
as well as our own approach, on four different
tasks: Zero-shot EL with ZESHEL dataset, QC
with TREC database, STS with STS-B dataset, and
multilingual STS with mSTS database. Two dif-
ferent levels of augmentations are considered: (1)
Non-contextual, or word-level, and (2) Contextual,
where full sentence is considered for DA. To further
highlight the impact of different DA approaches,
we produced low-resource versions of the above-
mentioned tasks by subsampling training sets and
removing rich textual contexts where applicable.
We propose a novel Generative Adversarial Net-
work using Language Models (GAN-LM) which
employs GAN with Wasserstein distance to im-
prove the stability of training and uses the pre-
trained LM for generating synthetic textual data
to extend its usability. We also introduce tunable
thresholds and a decoding method to control the
diversity and lexical similarity of synthetic data
to mitigate the mode collapse problem in GAN.
Compared to other DAs, GAN-LM employs an
adversarial training with the offered data in each
task to learn the characteristic of it which gener-
ates suitable synthetic data to aid in downstream
tasks (covered in Section 5.6). Even if we used
pre-trained LM in GAN-LM, we do not use its
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generation ability (e.g. paraphrase, text genera-
tion) for downstream tasks. To complement our
approach, we mix GAN-LM with other DAs (e.g.
Back-translation, GPT) to enhance further in low-
resource languages and limited entity linking task.
The source code used to train the GAN model and
produce augmentations listed in this paper is pub-
licly released and attached with a paper.

2 Related Work

Originally, DAs for NLP relied on synonyms to in-
crease diversity and dataset size. Synonyms could
be found in various resources like WordNet Miller
et al. (1990) and PPDB Ganitkevitch and Callison-
Burch (2014). In Wang and Yang (2015), they con-
sidered word embedding with K-Nearest-Neighbor
(KNN) and cosine similarity to search and substi-
tute similar words. Other pre-trained word em-
beddings such as Word2Vec Mikolov et al. (2013),
GloVe Pennington et al. (2014) and fastText Bo-
janowski et al. (2017) have been leveraged for that
purpose. Furthermore, the authors in Wei and Zou
(2019) generated synthetic texts by changing the
words through synonym replacement or random
insertions, substitutions and deletions where Shou
et al. (2022) include the abstract meaning represen-
tation graph along with it for STS task. In Pruthi
et al. (2019), the authors simulated spelling mis-
takes by random insertions, substitutions, character
swaps and deletions to enhance the robustness of
the model for sentiment analysis. Also, punctuation
as DA was considered in Karimi et al. (2021) for
QC task. Later, back-translation with Neural Ma-
chine Translation (NMT) was employed to generate
variations of target words Sennrich et al. (2016).
More emerging techniques for DA are using
deep neural networks which mostly use auto-
regressive language model to predict words from
a given context, e.g. GPT-2 Radford et al. (2019),
XLNet Yang et al. (2019) and BART Lewis et al.
(2020) which have been used for DA in diverse ap-
plications such as question-answering, text classifi-
cation and machine translation. Using LMs, KNN-
based DA with knowledge distillation Kamalloo
et al. (2021) is considered for QC task. There are
also works related to the adversarial learning to un-
derstand their effects on language models. Alzan-
tot et al. (2018) proposed a black-box population-
based optimization to generate the imperceptible
adversarial examples to fool the models. In Zhang
et al. (2019a), they considered Metropolis-Hastings
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attack to generate the adversarial examples which
were tested in terms of attack and training.
However, there are relatively few works using
GANs for text generation even if it is one of the
most notable approaches in other domains An-
toniou et al. (2017). In Kusner and Hernandez-
Lobato (2016), the authors used a GAN model
with Gumbel-Softmax to have a differentiable sam-
pling distribution approximating a categorical one.
In Subramanian et al. (2017), diverse GANs with
recurrent and convolutional architectures were eval-
uated for text augmentation at word and character-
levels. Yu et al. (2017) proposed a sequence GAN
with reinforcement learning to address the problem
of assessing a partially generated sequence. An-
other work in Nie et al. (2018) developed a GAN
model consisting of relational memory-based gen-
erator, the Gumbel-Softmax relaxation, and multi-
ple embedded representations in the discriminator.
In Golovneva and Peris (2020), authors explored a
data generation for the bootstrapping of a new lan-
guage and the handling of low-resource features us-
ing a sequential GAN. Croce et al. (2020) used the
fine-tuning of BERT with unlabeled data in a gener-
ative adversarial setting to reduce the time consum-
ing of annotating the data but did not extend to the
DA application. Similarly, Thakur et al. (2021) use
the cross-encoder to label the new inputs for train-
ing a bi-encoder model. Marek et al. (2021) focus
on out-of-domain data generation with a sequential
GAN to build the robust dialog system. Compared
to these works, GAN-LM combines a large pre-
trained model and GAN with tunable thresholds
to suitably control the diversity and similarity of
generated data and it was tested on various down-
stream tasks to assess its generalizability. Also, we
can use any pre-trained LM on top of the GAN part
which extends its applicability to various tasks. To
highlight the effectiveness of DA, the low-resource
settings are investigated in Shi et al. (2021) and
Hedderich et al. (2021) where we mainly investi-
gate the different size of training set and suggest a
way to define the optimal size of augmented data.

3 Data Augmentations

3.1 Non-Contextual-Level Augmentation

In this work, we utilize four augmentation ap-
proaches as non-contextual-level. Lexical: We use
WordNet Miller et al. (1990) to replace each word
in the original text with a synonym. Spelling: We
generate alternate texts from common misspellings



of the original words Coulombe (2018). Character:
Here, we randomly change characters in the origi-
nal tokens with four different ways: Insertions, sub-
stitutions, swaps and deletions Pruthi et al. (2019).
For lexical, spelling and character-based methods,
we use the implementation in nlpaug? with 10%
replacement. Token-LM: To understand the effec-
tiveness of GAN part in GAN-LM, we consider
pre-trained LMs solely. To generate the synthetic
data: (1) Use LM to get token embeddings for in-
put text and (2) perform nearest neighbor search
for each token to find alternate tokens that meets
the similarity thresholds. We search the synthetic
tokens which satisfied these thresholds to balance
the analogy and diversity, compared to the origi-
nal token. The similarity thresholds are defined
empirically (e.g. Table 5). We did not insert the
noise on the input embedding as GAN-LM since
the generated data is far from the original one.

3.2 Contextual-Level Augmentation

To extend our work, we experiment three meth-
ods as contextual-level augmentation. Text Gen-
eration: This is a typical auto-regressive genera-
tion which uses the original text as the initial con-
text and extends it Yang et al. (2020). For this,
we employ GPT-2 Radford et al. (2019) and OPT
Zhang et al. (2022) for English-based datasets, and
MGPT Tan et al. (2021) for multilingual dataset.
Paraphrase: This augmentation transforms a sen-
tence with similar semantic meaning but a different
syntactic form where we consider the fine-tuned
T5 model Raffel et al. (2020) on Google PAWS
Zhang et al. (2019b) for English-based tasks and
Prism model Thompson and Post (2020a,b) for
multilingual-based task. Back-translation: It is
a process of retranslating content from the target
language back to its source language to generate
a sentence variant. For this augmentation, we em-
ploy multiple pre-trained neural translation models
trained on OPUS data Helsinki-NLP (2023) with
nlpaug.

3.3 Generative Adversarial Network

GAN is basically coming from the adversarial
learning which aims to trick the model by pro-
viding deceptive input. GAN targets to correctly
classify both unmodified and adversarial examples
to receive the rewards. It consists of two neural

2https://github.com/makcedward/nlpaug.
MIT License.
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networks, generator and discriminator, where each
of them tries to outplay the other. The goal of
generator is to artificially manufacture outputs that
could be hard to distinguish from real data. The
discriminator is similar to the usual classification
model that aims to differentiate between real and
synthetic data from generator. Using GAN, we
target to achieve eminent performances with only
offered train set in each downstream task.
Specifically, we considered a WGAN-GP Gul-
rajani et al. (2017) which uses the Wasserstein dis-
tance as loss to capitalize on the probability distri-
butions from fake and real data rather than labeled
samples. Compared to the vanilla GAN, it is robust
to vanishing gradient and mode collapse through
smoother gradient updates from its loss functions.

34 GAN-LM

To extend the usability of GAN in NLP domain,
we propose GAN-LM which combines GAN with
pre-trained LM regardless of non-contextualized
and contextualized models. In this work, we focus
on the latter one which promises the better result.
Loss function of GAN-LM is covered in Equation
(1) and its structure is shown in Appendix.

R = LMencoder(Input Text)
1T Uhiform(0, 1), n [CNIO, 1)
F=GR+n), F=LR+@—-0IF

Lg = D(F) — D(R) + A~ (|| LzD(F)||2 — 1)
Ly =—D(F)

1)
where LMencoder 1S the encoder of LM to generate
the embedding of input text for augmentation. Cand
n are random numbers from the uniform and Gaus-
sian distributions respectively. Also, R is the real
embedding and F is the fake embedding generated
from the generator, G(-). Fis weighted embedding
from real and fake embeddings. D(:) means the
discriminator output for embeddings. Lq and Lg
refer to the loss functions of the discriminator and
generator respectively. D(F)—D(R) describes the
1-Wasserstein distance and A - (|| (If)||2 —1)?
is called gradient penalty used for mitigating the
vanishing gradient where we use A = 10 based on
the suggestion in Gulrajani et al. (2017).

Figure 1 illustrates the flowchart of the overall
algorithm in GAN-LM. First, we generated em-
beddings for each input text to serve as a training
set for the GAN. For embeddings, we use the pre-
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Figure 1: GAN-LM with pre-trained LM. Before decoding from LM, we additionally consider the low and high
thresholds for similarity matching between the averaged synthetic embedding from GAN-LM and the candidate
embedding from defined dictionary in pre-trained LM to control the diversity and lexical similarity of synthetic text.

trained BART-base Lewis et al. (2020) and mBART-
large-50 Tang et al. (2020) as encoder and decoder
according to the empirical results (e.g. Table 5).
However, GAN-LM can be applied with other ap-
proaches that can encode arbitrary text into embed-
dings and comprise of a well-defined dictionary to
map generated embedding back to tokens. Using
these transformers, we can decode the synthetic
embedding into a text which can be different from
the original input. We fix the sentence lengths to
27, 25, 36, 24 tokens for ZESHEL, TREC, STS-B,
mSTS datasets respectively, which cover 99% of
the data for each dataset. To express the text into an
input data for GAN training, we stacked each token
as the dimension with padding the remainder of the
input with zero values (more covered in Appendix).

Figure 1 shows the steps of the algorithm in
GAN-LM. In training part (red area), we encode
the input text into embeddings using LMegncoder
then we add Gaussian noise on top and input re-
sulting embeddings to the generator. Next, the
generator produces synthetic embeddings which
should resemble real ones and feeds those to the
discriminator which tries to distinguish between
real and synthetic embeddings. In synthetic data
generation pipeline (yellow area), we feed the tar-
get text, for which we want to generate and alter-
nate form, to the encoder and add Gaussian noise
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to that embedding. The generator will produce the
synthetic embedding for that target text and then
we average the original and synthetic embeddings
to maintain the structure of original text. To de-
code, we perform nearest neighbor search for each
token using those generated synthetic embeddings.
Finally, we introduce upper and lower thresholds
on similarity to select tokens that are diverse yet
still possess similar semantics compared to the orig-
inal and don’t accidentally change the meaning of
the input text. The augmented tokens are selected
randomly from tokens that meet those thresholds
with the bias towards tokens for high similarity
score. Since BART’s vocabulary consists of sub-
word units, GAN-LM is able to come up with new
valid-looking words that were never in the original
training set (see Table 4). To clarify, we employ the
pre-trained LM for tokenization and detokenization
in GAN-LM but we do not use its text generation
methods (e.g. paraphrase) for downstream tasks.

4 Datasets and Employed Models

We experiment with four different downstream
tasks where (1-3) are English-based databases and
(4) is multilingual-based dataset: (1) ZESHEL —a
zero-shot learning dataset for EL, (2) TREC —a text
retrieval dataset for QC, (3) STS-B - an integrated
version of STS tasks for measuring the semantic



similarity between two sentences, and (4) mSTS -
multilingual version of STS task.

ZESHEL introduced by Logeswaran et al. (2019)
is based on Wikia where there are non-overlapping
domains in train/validation/test sets to simulate
zero-shot learning. For this task, we employ
BLINK’s Wu et al. (2019) bi-encoder model from
scratch. TREC shown in Li and Roth (2002) is
collected from Hovy et al. (2001) where ques-
tions were manually created with 50 fine class
labels. For this application, we use fine-tuned
BERT-Tiny Turc et al. (2019) with training data
in TREC. STS-B covered in Cer et al. (2017) in-
cludes news headlines, image captions and user
forum posts. In each sentence pair, semantic simi-
larity labels are provided by a number between 0
and 5. For this task, we use SentenceTransformers
Reimers and Gurevych (2019) from scratch using
the mean pooling layer with XLM-RoBERTa Con-
neau et al. (2020). mSTS introduced in Cer et al.
(2017); Reimers and Gurevych (2020) has sentence
pairs in different languages with semantic similar-
ity scores between 0 and 5. For train set, we used
the offered monolingual pairs of AR-AR, ES-ES
and the translated sentences of ES-ES into EN, DE,
TR, FR, IT, NL using Google Translator since we
do not have monolingual pairs for them. The pro-
vided EN-EN dataset was eliminated from train set
since most cross-lingual datasets were made from
translating one sentence of EN-EN Reimers and
Gurevych (2020). All the cross-lingual pairs are
considered as test set. For this application, we em-
ploy the mean pooling of outputs for the pre-trained
multilingual BERT (mBERT) Devlin et al. (2019)
with fine-tuning from train set.

5 Results and Discussion

5.1 Experimental Setting

For all downstream tasks, in addition to the origi-
nal size, we construct a low-resource version (i.e.
limited train set) to highlight augmentation impact.
In addition, ZESHEL contains rich textual context
for both entity mentions and catalog entities, which
provide additional information for EL. To isolate
the impact of DA approaches, we test model per-
formance with and without those contexts.

For augmentation, in ZESHEL we consider both
the entity and mention to generate synthetic data, in
TREC we synthesize an alternate question sentence,
in STS-B and mSTS we generate an alternate sen-
tence from one of the pair. To build the GAN-LM,
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we use pre-trained BART and mBART with 0.3-
0.7 and 0.5-0.9 similarity thresholds respectively
which give a good diversity of generated data while
remaining close to the original semantics. The
thresholds are decided from empirical results such
as Table 5. Also, the size of augmentation is deter-
mined from the empirical results in validation set
(e.g. Table 6) where we cover the optimal size in
this work. Compared to other tasks, we addition-
ally fine-tune GAN-LM with a target language (e.g.
AR-AR) in mSTS after training with multilingual
sentences to boost the quality of synthetic data.

In all tasks, we use the same target metrics
as found in the literature. For ZESHEL we use
recall@k, for TREC F1 score, for STS-B and mSTS
the spearman’s rank correlation (SRC) between
the cosine similarity of sentence pairs embeddings
and ground-truth labels. In all experiments, we
retrain target model 3 times with different seeds
and report average results with 95% confidence
interval (CI). Finally, the computational cost for
GAN-LM is covered in Appendix where it takes a
longer training time compared to non-contextual-
level methods, and comparable time to contextual-
level approaches. However, GAN-LM promises
the better performances in most cases and utilizes
LMs without fine-tuning for generation purpose.

5.2 Results in Entity Linking

Table 1 shows the results for ZESHEL. In this ap-
plication, we target to find the generalized augmen-
tations for zero-shot learning task. In low-resource
cases, the amount of train set with augmentation
is 5K generated from 1K baseline while in full
training data, the size of the training set after aug-
mentation is 69K from 49K baseline.

Overall, improvements after augmentation in
normal case are lower than for the low-resource
scenario which confirms the importance of aug-
mentation in the limited data setting. Including
synthetic data can have an effect of inferring the
unseen data which might have a different distribu-
tion from train set. Few training set samples in
low-resource mean insufficient variation of data
to help the models, especially high capacity ones,
generalize well. Thus, data augmentation often im-
proves more in low-resource scenarios, compared
to normal case.

When we consider scenarios without context,
we can see that there are large improvements
in performance using augmentations, especially



Table 1: Recall values in ZESHEL with 95% CI. Baseline describes the performance of model without augmentation
and change denotes the performances against baseline in absolute term. In each scenario, bold means the best results

and underline denotes the proposed methods.

Scenarios Type R@1 R@8 R@32 R@64 Cl Change Scenarios Type R@1 R@8 R@32 R@64 CI Change
G’_*GN% 28.91% | 54.83% | 64.77% | 60.38% | 1.71% | 7.94% GAN-LM | 39.13% | 66.45% | 76.3% | 79.98% | 0.65% | 1.23%
GAN-LM | 24.2% | 48.96% | 60.85% | 66.16% | 1.65% | 3.51% GPT | 37.36% | 65.31% | 74.78% | 78.65% | 1.54% | -0.21%
GPT | 28.32% | 54.14% | 63.31% | 67.46% | 1.89% | 6.77% OPT | 37.63% | 65.37% | 74.88% | 78.77% | 0.93% | -0.08%
OPT | 27.54% | 53.28% | 62.81% | 67.15% | 1.89% | 6.16% Paraphrase | 37.88% | 65.35% | 74.94% | 78.7% | 0.76% | -0.02%
Paraphrase | 22.1% | 46.89% | 59.1% | 64.73% | 2.08% | 167% | Normal Back- | 57 7306 | 65.26% | 74.95% | 78.73% | 1.25% | -0.07%
Normal with context | Translation
without context Tr;itl::t-ion 20.7% | 44.77% | 57.13% | 62.99% | 2.06% | -0.14% Token-LM | 37.53% | 64.58% | 74.49% | 78.41% | 1.27% | -0.49%
Token-LM | 21.33% | 45.52% | 57.55% | 63.29% | 1.83% | 0.39% Char | 37.53% | 64.68% | 74.6% | 78.56% | 1.37% | -0.4%
Char | 22.11% | 46.36% | 58.5% | 64.07% | 4.38% | 1.22% Spel | 37.27% | 64.42% | 74.42% | 78.38% | 1.19% | -0.62%
Spel | 2L.52% | 45.76% | 58.22% | 63.88% | 2.25% | 0.81% Lexical | 37.49% | 64.86% | 74.80% | 78.66% | 1.66% | -0.27%
Lexical | 20.67% | 44.8% | 57.23% | 62.91% | 2.01% | -0.13% GAN-LM | 23.03% | 49.79% | 61.5% | 66.75% | 1.09% | 3.71%
G_AGN% 25.25% | 50.94% | 59.9% | 63.8% | 2.3% | 15.11% GPT | 21.57% | 47.75% | 59.75% | 64.69% | 2.05% | 1.66%
GAN-LM | 18.67% | 42.43% | 55.21% | 61.03% | 1.97% | 9.47% OPT | 22.84% | 47.99% | 60.47% | 65.38% | 1.68% | 2.39%
GPT | 2252% | 47.52% | 58.23% | 62.62% | 2.37% | 12.86% Paraphrase | 20.13% | 45.50% | 58.36% | 63.62% | 1.75% | 0.14%
OPT | 19.76% | 45.079% | 57.06% | 61.82% | 2.33% | 11.070 | LOW-TosOUrCe | Back- | g 600 | 4 o60 | 54.869% | 60.84% | 1.98% | -2.9%
with context | Translation
Lowresource | Poraphrase | 17.83% | 41.16% | 53.79% | 60% | 241% | 8.33% Token-LM | 13.76% | 35.95% | 48.64% | 54.97% | 1.62% | -8.45%
without context Tr;zlc:t'ion 16.14% | 37.71% | 50.63% | 56.82% | 2.84% | 5.46% Char | 14.92% | 38.11% | 51.17% | 57.35% | 2.85% | -6.4%
Token-LM | 15.86% | 36.9% | 49.98% | 56.2% | 2.9% | 4.87% Spel | 19.46% | 44.46% | 56.85% | 62.54% | 4.71% | -0.96%
Char | 16.52% | 37.91% | 51.34% | 57.53% | 2.67% | 5.96% Lexical | 17.50% | 41.68% | 54.03% | 60.18% | 2.62% | -3.41%
Spel | 16.11% | 37.44% | 50.63% | 56.87% | 3.88% | 5.4% B_asl_eo"',';e 20.92% | 45.19% | 57.63% | 63.39% | 1.59%
Lexical | 15.56% | 36.67% | 49.9% | 56.01% | 2.24% | 4.67% Bszer'r::‘; 37.93% | 65% | 75.08% | 78.95% | 1.19%
Bfisl_eo"';e 124% | 31.24% | 44.65% | 51.16% | 3.09%
Bﬁ'ﬁ"r:; 20.57% | 44.89% | 57.56% | 63.13% | 192%

with contextual-level, and GAN-LM mostly out-
performs others, except for GPT and OPT. In this
case, EL model has been trained on only entity
in train set to infer the entity with its contexts in
test set. Thus, it can be beneficial to use the aug-
mented data with additional descriptions to imitate
the context of it which can be done by GPT and
OPT. We further investigate the augmentation from
a combination between GAN-LM and GPT, called
GAN-LM-GPT. In this approach, GAN-LM gener-
ates alternate forms from the original inputs at the
token-level and GPT adds new textual content after
that. We observe improvements after combinations
of both methods, especially in the low-resource
case. Therefore, we can also consider GAN-LM-
GPT augmentation when train data is limited with-
out additional contexts in entity linking (EL) task
since it helps to include the diverse variations in
test set which cannot be covered by the considered
train set. For scenarios with context, most aug-
mentations, especially with non-contextual-level,
decrease the performance since synthetic data from
these approaches could be less related to the avail-
able contexts which could be harmful to EL. How-
ever, GAN-LM has tunable thresholds to control
the diversity and similarity of synthetic data which
finally promises the improvements. In conclu-
sion, we observe that GAN-LM and its comple-
ment, GAN-LM-GPT, are the best choices for EL

task whether in low-resource or normal setting. In
ZESHEL, domains in test set are not overlapped
with the ones in train set, which confirms that GAN-
LM is fairly compared with other augmentations.

5.3 Results in Question Classification

Now, we test the influence of DAs for question
classification (QC) task covered in Table 2 left side.
In this task, we need label-invariant augmentations
to improve the performance. The size of training
data for augmentations is 1K from 109 baseline
in low-resource and 8K from 2K baseline in half-
train set case. Interestingly, the improvements after
augmentations in both scenarios have a similar pat-
tern: Contextual-level augmentations outperforms
the non-contextual ones, except for spelling and
lexical (only for low-resource) while GAN-LM
is always the best performing approach. In addi-
tion, the improvements in half-train set scenario
are higher than the ones in the low-resource. From
our investigation, the result without augmentation
in half-train set is considerably worse than the one
in normal case (i.e. 8.84% F1 difference), meaning
the effect of augmentation can be huge in half-train
set to improve further. Also, adding synthetic data
on model can be noticed as inferring the possible
variations in test set which needs some degree of
real traffic from original data to suitably utilize the
augmented data. Still, GAN-LM works the best in
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Table 2: F1 and SRC values in TREC and STS-B with 95% CI. Here, we did not cover the normal case for
augmentation since we already achieve the better or similar performance with half-train set, compared to full
training set without augmentation (i.e. Baseline - Normal). In normal scenario, GAN-LM gives 34.28% F1 score in
TREC and 79.84% SRC in STS-B. Denotations are identical as Table 1.

Question Classification in TREC

Semantic Textual Similarity in STS-B

this environment and can be a top pick which has
7.17% F1 improvement with half-train set against
full train set without augmentation.

5.4 Results in Semantic Textual Similarity

Table 2 right side covers the results on the STS-B
dataset. In this application, we need various and
semantically closed augmented data to improve the
result. The size of training data is 1K from 115
baseline in low-resource and 8K from 2K base-
line in half-train set scenario. In low-resource, we
can achieve great improvements, especially with
contextual-level and GAN-LM approaches. In half-
train set, the improvement is smaller than the one
in low-resource setting but we can see consistent
improvements by including synthetic data. Again,
contextual-level augmentations outperforms non-
contextual-level and GAN-LM yields the best per-
formance for semantic textual similarity (STS) task
which gives a closed performance as the result from
full train set without augmentation.

5.5 Results in Multilingual Semantic Textual
Similarity

Lastly, we extend our work to multilingual task.

Table 3 shows the results on the mSTS dataset.

In this task, we target diverse and semantically
consistent augmented samples in multilingual to

Scenarios Type F1 Cl Change Scenarios Type SRC Cl Change

GAN-LM 32.14% | 2.23% | 16.01% GAN-LM 78.02% | 0.96% | 4.44%

GPT 29.16% | 2.66% | 13.03% GPT 76.94% | 0.83% | 3.36%

OPT 28.75% | 2.7% | 12.62% OPT 76.97% | 1.65% | 3.39%

Paraphrase 28.39% 3% 12.26% Paraphrase 77.07% | 2.01% | 3.49%

Half-train set Back-_ 28.03% | 2.36% | 11.9% Half-train set Back-_ 77.1% 2 4% 3.52%
Translation Translation

Token-LM 27.16% | 1.67% | 11.03% Token-LM 76.11% | 0.57% | 2.53%

Char 255% | 7.02% | 9.37% Char 75.43% | 0.86% | 1.85%

Spel 29.05% | 2.16% | 12.92% Spel 76.61% | 2.13% | 3.03%

Lexical 26.93% | 5.02% | 10.8% Lexical 76.74% | 1.39% | 3.16%

GAN-LM 10.15% | 1.95% | 9.27% GAN-LM 61.66% | 1.46% | 23.44%

GPT 8.48% | 3.61% | 7.6% GPT 58.11% | 6.38% | 19.89%

OPT 8.17% 1.9% | 7.29% OPT 59.17% | 3.95% | 20.95%

Paraphrase 5.93% | 2.42% | 5.05% Paraphrase 57.9% 3.1% | 19.68%

Low-resource Back-_ 797% | 1.59% | 6.39% Low-resource Back-. 58.02% | 6.72% 19.8%
Translation Translation

Token-LM 5.26% | 3.72% | 4.38% Token-LM 56.66% | 2.59% | 18.44%

Char 419% | 1.42% | 3.31% Char 53.32% | 1.6% 15.1%

Spel 7.68% | 4.03% | 6.8% Spel 54.52% | 5.07% | 16.3%

Lexical 6.09% | 3.3% | 521% Lexical 57.77% | 5.17% | 19.55%

Baseline - Low 0.88% | 1.54% - Baseline - Low 38.22% | 10.61% -
Baseline - Half 16.13% | 1.16% - Baseline - Half 73.58% | 4.08%
Baseline - Normal | 24.97% | 2.27% - Baseline - Normal | 78.49% | 0.28%
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enhance the performance. The amount of train
set is 800 from 200 baseline in low-resource, and
4K from 2K baseline in normal scenario. In low-
resource, we can confirm that all augmentations
improve the overall performance, especially with
GAN-LM. Compared to low-resource, the improve-
ment in normal is lower but still, GAN-LM mostly
gives the best results, except for EN-AR. This
is because GAN-LM is mostly trained on Indo-
European languages (i.e. EN, DE, NL, FR, ES,
IT) which enhances the generation ability for these
languages. Interestingly, GAN-LM works well in
EN-TR since the performance without augmenta-
tion in this pair is very low and it has a large gap
to be improved by augmentation, especially with
GAN-LM which saves original structure with sim-
ilarity thresholds and does token-level tweaking
with affordable diversity learned from train set. We
can find that back-translation works the best in EN-
AR because it directly uses the well-defined neural
translation models for augmentation which finally
decreases the unsuitable assigned languages (e.g.
code-switching) suffered by other augmentations.
To complement our approach, we combine GAN-
LM with back-translation, called GAN-LM-Back,
to enhance the performance. In this method, we
generate the synthetic data for AR-AR and EN-EN
using back-translation and other monolingual pairs



Table 3: SRC values in mSTS with 95% CI. Here, we focus on the contextual-level augmentations which promise
the superior performances in STS task. Denotations are identical as Table 1.

Scenarios Type EN-AR | ES-EN | EN-DE | EN-TR | FR-EN | IT-EN | NL-EN Cl Change
76'33'\;2"('\/' 46.18% | 55.92% | 59.23% | 43.72% | 60.93% | 57.32% | 53.9% | 2.64% | 2.38%
Normal GAN-LM 44.44% | 53.6% | 59.2% | 42.62% | 61.48% | 55.31% | 53.96% | 2.62% | 1.43%
mGPT 45.24% | 50.86% | 59.2% | 42.52% | 60.51% | 53.07% | 53.86% | 2.71% | 0.67%
Paraphrase 45.21% | 48.69% | 58.06% | 40.9% | 60.67% | 54.12% | 53.32% | 2.92% | 0.06%
Back-Translation | 46.36% | 50.62% | 57.26% | 41.82% | 58.64% | 53.48% | 52.98% | 2.72% | 0.08%
GAN-LM 31.75% | 37.05% | 44.71% | 24.21% | 43.12% | 39.96% | 43.96% | 3.06% | 5.43%
L OW-resource mGPT 30.29% | 34.33% | 38.11% | 19.64% | 34.9% | 33.37% | 39.19% | 4.83% | 0.44%
Paraphrase 28.67% | 35.93% | 37.76% | 22.04% | 35.4% | 32.63% | 35.24% | 3.59% | 0.13%
Back-Translation | 31.01% | 34.44% | 36.67% | 21.94% | 36.28% | 31.7% | 37.15% | 4.49% | 0.35%
Baseline - Low | 29.95% | 33.13% | 36.04% | 18.23% | 37.26% | 34.68% | 37.46% | 3.85% -
Baseline - Normal | 45.08% | 50.52% | 56.9% | 40.94% | 60.89% | 53.16% | 53.08% | 2.47% -

using GAN-LM to fine-tune the mean pooling of
mMBERT. Using GAN-LM-Back, we achieve the
overall enhancements. Thus, we can understand
that GAN-LM and its extension, GAN-LM-Back,
are the best approaches for mutlilingual STS task.

5.6 Analysis of Synthetic Data

In this section, we analyze the synthetic data from
each augmentation method. Table 4 shows exam-
ples of synthetic data in TREC dataset. Lexical-
based finds the synonym of the word, spelling
and character-based tweak the words, and token-
LM-based changes the lowercase word and aux-
iliary verb. Both back-translation and paraphrase
restate a text with different orders and words while
both OPT and GPT adds a new context after origi-
nal statement. Interestingly, GAN-LM focuses on
changing question word which is the main factor
to increase the performance. It also finds a seman-
tically similar word. Lastly, we can see that GAN-
LM-GPT is the combination between GAN-LM
and GPT. From our findings, DA improves model
robustness to unseen noisy inputs in downstream
tasks. Augmentations containing grammatical mis-
takes, speech recognition errors, semantically sim-
ilar terms help the model generalize better. With
GAN-LM, we preserve both the semantics and the
structure of the input text, while providing diverse
augmentations. More examples of augmented data
are covered in Appendix.

5.7 Ablation Study

In Table 5, we example the ablation study of GAN-
LM where 0.3-0.7 range as the similarity thresholds
and BART as pre-trained LM are the best choices
in STS-B. The similarity thresholds control the anal-
ogy and diversity of synthetic data where 0.3-0.7
range was the top choice in STS-B to balance these
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Table 4: Examples of generated augmentations. Bold
texts in each cell mean the changed parts.

Type Example
Original Why do heavier objects travel downhill faster ?
Lexical Why do heavier object travel downhill quicker?
Spelling Whay do heavier objects travel downhill faster?
Character Why do heavier osbjects tralvel downhzill faster?
Token-LM WHY does heavier objects travel downhill faster ?
Back-Translation | Why are the heavier objects moving down faster?
Paraphrase Why do heavier objects go faster downhill?
Why do heavier objects travel downhill faster ?
OPT N :
Because they’re heavier
GPT Why do heavier objects travel downhill faster ?
Or slow down to 2 km h
GAN-LM HOW do heavier objects travel down faster ?
HOW do heavier objects travel down faster ?
GAN-LM-GPT | 5§ ow down to 2 km h

two terms for achieving the best performance. Simi-
lar patterns are observed in other downstream tasks,
except for mSTS where mBART and 0.5-0.9 range
are selected. Additional architectural ablation study
is shown in Appendix.

In addition, we investigate the effect of size of
augmented data in Table 6. We consider the vali-
dation set (or cross-validation for dataset without
validation set) to determine the optimal size of aug-
mented data and find that there is a specific point
when the validation performance becomes stable.
Our findings indicate that performances (SRC -
Test in Table 6) are stabilized after this certain point,
implying that the generated synthetic data offers
sufficient diversity to improve the model’s gener-
alization capabilities. The size of augmentation in
other tasks are determined by same approach.

6 Conclusions

In this work, we investigate the effect of different
DAs to improve the performance on various tasks.
We study both techniques found in the literature as
well as the proposed GAN-LM in different scenar-
ios: We subsample training sets to study model per-



Table 5: GAN-LM study in STS-B with half-train set.

SRC
78.02%

Type
GAN-LM with BART
(0.3-0.7)
GAN-LM with BART
(0.1-0.5)
GAN-LM with BART
(0.5-0.9)
GAN-LM with BERT
(0.3-0.7)
GAN-LM with XLNet
(0.3-0.7)

75.57%

77.49%

71.33%

74.21%

Table 6: Investigation on the size of train set with GAN-
LM. Validation and Test describe each set in STS-B.

Low-resource in STS-B

Type Size of Train set | SRC - Validation | SRC - Test
690 65.56% 56.81%
920 68.93% 60.16%
GAN-LM 1150
0, 0,
(same as Table 2) 1% 61.66%
1380 70.89% 61.61%

formance under low-resource conditions and use
half or full training set to understand under different
conditions. In most experiments, GAN-LM clearly
gives the better results than non-contextual and
contextual-level augmentations. In addition to ap-
ply GAN-LM solely, we combine it with GPT and
back-translation to supplement the performance.

7 Limitations

There are three predictable limitations in the devel-
oped GAN-LM. First, the convergence of training
process in GAN-LM should be investigated care-
fully. Different datasets have different distribution
of data and characteristics which can affect the
GAN-LM’s convergence and we need a few iter-
ations of training to confirm the suitable epochs
for each task. Second, there can be a machine bias
since each model is trained on machine generated
synthetic data. Therefore, searching the suitable
pre-trained model is important to be considered at
the beginning. Last, while we did a thorough eval-
uation of GAN-LM on four downstream tasks, it is
still a general-purpose approach and its effective-
ness on specific tasks or domains may vary. Thus,
further research is required to fully understand its
capabilities and limitations in different contexts.

Supplementary Materials Availability Statement:
Source code is included in supplementary materi-
als. Notes on reproducibility (e.g. computational
budget and used hyperparameters) are included

in Appendix. Additional ablation study and aug-
mented examples are covered in Appendix. Links
for considered datasets and models are shown in
Appendix.
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Abstract

Good figure captions help paper readers under-
stand complex scientific figures. Unfortunately,
even published papers often have poorly written
captions. Automatic caption generation could
aid paper writers by providing good starting
captions that can be refined for better quality.
Prior work often treated figure caption genera-
tion as a vision-to-language task. In this paper,
we show that it can be more effectively tackled
as a text summarization task in scientific docu-
ments. We fine-tuned PEGASUS, a pre-trained
abstractive summarization model, to specifi-
cally summarize figure-referencing paragraphs
(e.g., “Figure 3 shows...”) into figure captions.
Experiments on large-scale arXiv figures show
that our method outperforms prior vision meth-
ods in both automatic and human evaluations.
We further conducted an in-depth investigation
focused on two key challenges: (i) the common
presence of low-quality author-written captions
and (ii) the lack of clear standards for good
captions. Our code and data are available at:
https://github.com/Crowd-Al-Lab/Gen
erating-Figure-Captions-as-a-Text-S
ummarization-Task.

1 Introduction

In scientific documents, effective figure captions
help readers understand complex figures like bar
charts, line charts, or pie charts. These captions de-
scribe the images and often include necessary con-
text from the document’s full text (Durbin, 2004).
Unfortunately, even published papers often have
poorly-written captions. As per our analysis (Sec-
tion 8.2), around 53.88% of line charts’ captions
in arXiv cs.CL papers are found to be unhelpful
for NLP readers. Automatic caption generation
could aid paper writers by providing good starting
captions that can be refined for better quality.
Previous research typically approached figure
caption generation as a vision-to-language task, i.e.,

“Equal contribution.
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creating captions based on the image. For instance,
Hsu et al. (2021) used an end-to-end approach with
CNN+RNN structures, which extracted feature rep-
resentation from the image and converted it into
caption text. Qian et al. (2021) took a slightly
different approach: first understanding what is in
the image, pulling out key information, and then
using a preset template to create the caption. How-
ever, although achieving some success in synthetic
data (Kahou et al., 2017; Kafle et al., 2018; Chen
et al., 2020a; Zhu et al., 2021), these approaches
often struggled to caption real-world figures. For
example, Hsu et al. (2021)’s end-to-end approach,
trained and tested using arXiv figures, achieved a
BLEU-4 score of only 2.91.

In this paper, we argue that figure captioning in
scientific documents can be more effectively tack-
led as a text-summarization task: The caption
can be generated by summarizing the paragraphs
mentioning the figure (as shown in Figure 1.) Sci-
entific figures typically come with extensive text
in the scientific document that can aid caption gen-
eration. Our analysis (Section 5) shows that, in
arXiv, over 75% of words in figure captions can be
aligned with the words in the paragraphs referenc-
ing those figures, which motivates our approach.
The automatic evaluation shows that summarizing
paragraphs referencing the figures results in bet-
ter captions than prior vision-based methods. In a
human evaluation by external domain experts, our
best-performing model’s captions were preferred
over the original captions 46.67% of the time.

We further conducted an in-depth investigation
focused on two key challenges: (i) the common
presence of low-quality author-written captions and
(i) the lack of clear standards for good captions.
Surprisingly, 53.88% of the author-written captions
in our sample was deemed unhelpful. This has
implications for the design of future captioning
systems, underscoring the influence of data quality
on captioning performance.

Proceedings of the 16th International Natural Language Generation Conference, pages 80-92
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Figure 1: Figure captioning can be addressed as a text-summarization task. The figure’s caption can be generated by
summarizing the paragraphs mentioning the figure. The caption is generated by the model Pegasusp +0+g. The
example shown in this figure is extracted from the paper (Doulaty et al., 2015).

2 Related Work

Prior figure captioning works can be broadly cat-
egorized into two approaches: caption generation
(i) based on the image of the figure or (ii) based on
the data chart underlying the figure.

Earlier image-based approaches focused on auto-
mated image understanding, which involved pars-
ing images to extract the figure’s key attributes and
converting parsed data into captions, e.g., using pre-
defined templates (Kahou et al., 2017; Kafle et al.,
2018; Methani et al., 2020; Qian et al., 2021; Siegel
et al., 2016). Recently, with the advance of deep
learning, more works are adopting an end-to-end
paradigm, generating captions straight from the
neural representations of images (Mahinpei et al.,
2022; Pelka et al., 2021; Hsu et al., 2021; Chen
et al., 2019; Kantharaj et al., 2022; Chen et al.,
2020a). Our work contrasts with prior studies by
focusing on text to generate captions instead of vi-
suals. To the best of our knowledge, no existing
figure-caption datasets explicitly contain the fig-
ures’ accompanying documents (Pelka et al., 2021;
Hsu et al., 2021; Chen et al., 2019), as this task has
generally been approached as a vision task. Most
recently, a knowledge-augmented image caption-
ing method that uses both image and text data was
introduced (Yang et al., 2023), suggesting the po-
tential of using text from documents.

Some approaches generate captions using the
underlying tabular data of a figure rather than
the figure’s image. Earlier approaches often em-
ployed rule-based techniques (Corio and Lapalme,
1999; Demir et al., 2008; Fasciano and Lapalme,
1996; Mittal et al., 1998), while newer ones fa-
vor learning-based methods (Barzilay and Lapata,
2005; Wiseman et al., 2017; Moraes et al., 2014;
Zhu et al., 2021; Kantharaj et al., 2022; Obeid
and Hoque, 2020; Reiter et al., 2005; Parikh et al.,
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2020; Chen et al., 2020b; Gong et al., 2019; Su
etal., 2021; Chen et al., 2020c). Despite these ap-
proaches’ ability to utilize tabular and meta data,
they necessitate access to the figure’s raw data.
Contrarily, our work uses the rich textual informa-
tion in scientific documents to generate captions.

3 Problem Statement and Terminology

A document D contains n figures, F1 to Fy, where
Fi has a caption C; that was written by the doc-
ument author. In document D, j sentences, M; 1
to M j, explicitly mention F; (e.g., “As shown in
Fi...”). The objective of this work is to automati-
cally generate a high-quality caption, C; for figure
Fi using only its mentions (M 1 to M; j) and the
surrounding text of the mentions in document D.
In the rest of the paper, we use these terms:

* A “Mention” refers to a sentence in a document
that explicitly mentions the target figure, e.g.,
“As shown in Figure 6...” If there are multiple
Mentions, the first Mention is referred to.

A “Paragraph” refers to a section of text con-
taining a Mention. In this work, the boundaries
of a Paragraph are determined by the <p> tag
produced by PDF parsing.

Sentences near a Mention may contain relevant
information, so we extracted n preceding sen-
tences and m following sentences to form the
“Window[n, m]” text snippet. For instance,
“Window[1, 2] refers to a snippet of four sen-
tences, including one preceding sentence, the
Mention sentence, and two following sentences.

An “OCR” refers to the textual information (e.g.,
legends, labels, etc.) extracted from the image,
by optical character recognition (OCR) software.



Random Mention

Source

Paragraph OCR Window[0, 1] Window[1, 0] Window[1, 1] Window][2, 2]

S P +0OCR +0OCR

+OCR +0OCR +OCR +OCR

Caption 35.23 44.43 5343 60.16 75.19 76.68 34.75 60.85 65.43 59.09 64.19 65.20 68.73 69.09 7177
Source 32.52 19.52 39.51 18.78 1253 9.39 20.79 30.49 17.19 3240 17.33 2510 1555 19.84 13.45

Table 1: Macro coverage rates (percentage) between captions and relevant texts (S: Sentence and P: Paragraph).
Caption coverage gives the percentage of words in the caption that can be found in the source texts and vice versa
(punctuation and stop words are excluded.) The results show that 76.68% of the words in captions could be found in
Paragraph+OCR, motivating us to generate captions by text summarization.

4 Dataset

Before diving into our experiments and analyses,
we first describe the dataset upon which our study
is grounded. Our results are based on a scientific
figure caption dataset, SCICAP, and several pre-
processing steps to fit it into our workflow.
ScICAP is a dataset that contains over 416,000
line charts and captions extracted from more than
290,000 arXiv papers (Hsu et al., 2021). It was one
of the first large-scale figure-captioning datasets
based on real-world scientific figures. However,
it does not contain the paragraphs that mention
the figure. To address this, we downloaded all the
PDF files of the original arXiv papers used in Sci-
CAP and extracted all the Mentions and Paragraphs
as outlined in Section 6.1. Detailed information
on preprocessing, including the dataset resplit and
OCR extraction, are described in Appendix B.

5 Motivating Analysis

To understand the correlation between mentions
and captions, we performed a series of analyses
using the data described in Section 4. Specifically,
we investigated the extent to which the words in
the figure captions are represented in the corre-
sponding figure-mentioning paragraphs. We used
awesome-align (Dou and Neubig, 2021) to obtain
the alignment between the source texts (mentions,
paragraphs, and OCRs) and captions. Awesome-
align compared the similarity of the words’ con-
textual embeddings and assigned an alignment be-
tween words if the similarity passed a threshold.
We used SciBERT (Beltagy et al., 2019) to obtain
contextual embeddings and softmax threshold =
0.99 to reduce false alignments.

After obtaining the alignments, we computed
what percentage of information in the caption could
be found in the source texts. The results shown
in Table 1 indicate that 76.68% of the caption’s
information could be found in Paragraph and
OCR, motivating us to generate figure captions by
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summarizing Paragraph. We also observed that a
randomly selected sentence and paragraph from the
same paper can cover 35.23% and 44.43% of the
caption, respectively, showing that there was some
generic information-sharing across the paper. We
also conducted a study using the exact overlapping
(i.e., BLEU score) in Appendix A.

6 Generating Figure Captions as a Text
Summarization Task

Figure 1 overviews the proposed pipeline. This
section describes each step of the pipeline.

6.1 Extracting Mentions and Paragraphs

The system first extracts Mentions and their asso-
ciated Paragraphs (as defined in Section 3.) In
this paper, we used Grobid (kermitt2, 2022), a
publicly-available tool for converting PDF files into
structured XML documents, to extract plain text
from the paragraphs (including the <p> tags) in
each paper. This plain text was then segmented
into sentences using BlingFire (microsoft, 2022).
We developed regular expressions to identify sen-
tences mentioning specific figures. For instance,
sentences such as “As shown in Figure 6, ...” were
first identified and then linked to Figure 6. To as-
sess the performance of these regular expressions,
we conducted a manual evaluation of 300 sam-
ples from our experimental dataset. The results
showed a high level of precision (99.58%) and re-
call (94.44%).

6.2 Generating Captions Using Text
Summarization Models

As shown in Figure 1, our system then auto-
matically summarizes all the extracted Mentions
(or Paragraphs) into a figure caption. In this
work, we used PEGASUS, an abstractive sum-
marization model (Zhang et al., 2020), and fine-
tuned it on our dataset. Five Pegasus models,
Pegasusy,, Pegasusp, Pegasuso, Pegasusm+o,



and Pegasusp +o, were trained utilizing five dis-
tinct input combinations, including (i) Mention,
(ii) Paragraph, (iii) OCR output of the target
figure image, (iv) Mention+OCR, and (v) Para-
graph+OCR. Pegasusp +o encompasses the most
of relevant information in the document and thus is
expected to yield the optimal summary.

Additionally, we built Pegasusp +o0+g, a spe-
cialized version of the model designed to be
trained on a subset of higher-quality captions,
(vi) Paragraph+OCR-Better. Given the absence
of reliable automated ways to assess the quality
of captions, we followed a guideline from pre-
vious studies indicating that longer captions en-
hance reader comprehension (Hartley, 2003; Gel-
man et al., 2002). We trained the model using
captions with 30 or more tokens. The average cap-
tion length was 26.8 tokens, so we set 30 tokens as
the threshold. The training was performed using
Paragraph+OCR inputs.

We identified two major challenges in generating
captions for scientific figures in real-world scenar-
ios. We discuss these challenges in the following
subsections, with an in-depth analysis in Section 8.

6.2.1 Challenge 1: Addressing Unreliable
Quiality of Real-World Data

Low-quality captions often occur in scholarly ar-
ticles. Our analysis (see Section 8.1) showed that
50% of line charts’ author-written captions in arXiv
¢s.CL papers were deemed unhelpful by domain
experts. The impact of this unreliable data qual-
ity is that developers could train and test caption-
ing models with unhelpful captions. The lack of
automatic methods for evaluating caption quality
makes it hard to identify suitable training exam-
ples and eliminate poor ones. To address this issue,
we included Pegasusp +o+pg that was trained on
longer captions, which is suggested by literature
to be more helpful to readers (Hartley, 2003; Gel-
man et al., 2002). To account for low-quality test
data, we conducted both human and automatic eval-
uations. The data quality of figure captions was
analyzed and is presented in Section 8.2.

6.2.2 Challenge 2: Defining a Clear Standard
for “Good” Figure Captions

The deeper issue is the lack of a set of well-defined
and actionable criteria for determining the use-
fulness of a figure caption. Although there are
guidelines for writing effective scientific figure
captions (Rougier et al., 2014; Biegel and Kamat,
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2019), their translation into algorithmic models can
be challenging. From a modeling standpoint, the
lack of a clear goal presents a challenge, as it is
uncertain what to optimize for once fluency has
been achieved. In this paper, we focus on demon-
strating the feasibility of generating captions via
text summarization. Although we did not incorpo-
rate specialized goals in the model, we examine the
criteria for a “good” caption in Section 8.2.

7 Experimental Results

A Simple Baseline: Using Extracted Mentions as
Captions. Motivated by our information overlap
study (Section 5), we created the Reuse baselines.
These baselines simply repurpose portions of the
input text as the prediction.

Vision-to-Language Baselines. The vision-to-
language generation treated this task as an image-
captioning task that took the scientific figure im-
age as input and generated a text to describe it.
We compared two vision-to-language models as
baselines. First, we built a sequence-to-sequence
model by combining BEIT (Bao et al., 2022) and
GPT-2 (Radford et al., 2019). We also selected the
TrOCR (Li etal., 2021) model, a transformer-based
sequence-to-sequence model pre-trained for OCR
tasks. Compared to image encoders like ViT (Doso-
vitskiy et al., 2021) and BEIT (Bao et al., 2022),
which were trained on photos, OCR models trained
on printed and handwritten documents align more
closely with the scientific paper domain. All fig-
ures from Sc1CAP (106,391 training samples) were
used for training since no mentions were required.

Experimental Setup. A total of 14 methods were
included for comparison: six reuse baselines with
six input variations (M, P, W[0, 1], W[0, 2], W[1,
1], and W[2, 2]); five text summarization models
with five inputs (M, M+0O, P, P+0O, and O); one
text summarization model using P+O with con-
trolled data quality; and two vision-to-language
models (BEiT+GPT-2 and TrOCR). Note that we
use subscripts of M, P, W, O, B to denote the input
features: Mention, Paragraph, Window, OCR, and
Better data quality, respectively. The model train-
ing details and decoding configuration are provided
in Appendix C.

7.1 Automatic Evaluation Results

Conventional Automatic Evaluation. We used
F1 of ROUGE-1, ROUGE-2, ROUGE-L (Lin,



Rouge-1 (F1) Rouge-2 (F1) Rouge-L (F1)

MoverScore BERTScore

Model Feature Length
Score Norm Score Norm Score Norm Score Norm Score Norm
M 33.2 291 1346 139 1.790 .239 1401 535 1.023 .628 1.064
P 238.3 171 1042 .089 1.006 .134 1.030 .503 1.004 .567 1.008
ReUse Wi[0,1] 50.3 281 1216 .132 1509 .224 1273 529 1.016 .620 1.048
WI[0,2] 68.0 259 1129 123 1.341 205 1186 524 1.013 .611 1.034
WI[1,1] 678 266 1.156 .124 1.346 .204 1.183 524 1.012 .613 1.037
WI[2,2] 987 235 1.082 .112 1.179 .180 1.105 517 1.007 .600 1.020
M 12.2 321 1.898 153 2907 .283 1971 553 1.065 .654 1.158
M+O 12.8 331 1909 .161 2945 292 1993 556 1.071 .661 1.166
Pegasus P 140 374 2067 .205 3507 .334 2201 570 1.095 .682 1.196
P+O 14.0 381 2106 .212 3.635 .340 2242 571 1.097 .685 1.202
P+O+B  38.3 321 1452 154 1916 .265 1537 546 1.044 .639 1.082
(@] 12.1 133 0.789 .026 0.495 .119 0.828 518 0.998 561 0.993
TrOCR Figure 10.0 220 1.464 .073 1.653 .195 1502 534 1.033 .610 1.096
BEIT+GPT2 15.8 164 0.864 .042 0.666 .144 0917 529 1.013 .592 1.031

Table 2: Task Performance with the best and second-best results highlighted. Pegasusp +o, the text-summarization
model with all available information (Paragraph+OCR), performed the best in all four metrics. Pegasusp +o+g, the
model trained with better captions, however, got lower scores.

Figure 2: The relationship between average text length and ROUGE-2 score (left: original ROUGE-2; right:
normalized ROUGE-2). The random baseline in the left figure shows that text lengths and scores are not independent.
For example, when the predicted text is shorter than 50 tokens, predicting longer texts generally results in a higher
ROUGE-2 score. The normalized scores indicate the proposed system’s performance gain over the random baseline
of the same length. Pegasusp +o+g and Reusep get closer to TrOCR after normalization, suggesting the need for

normalization for accurate interpretation of results.

2004; Nallapati et al., 2016), MoverScore (Zhao
et al., 2019), and BERTScore for automatic eval-
uation. When computing ROUGE scores using
rouge-score (google research, 2022), we turned
all text into lower case and stem words. As both
MoverScore and BERTScore are based on the se-
mantic similarity, we obtained contextual embed-
dings from SciBERT (Beltagy et al., 2019).

Automatic Evaluation with Normalization Over
Caption Length. ROUGE F1 tends to favor
longer texts within a certain length, leading to
a skewed comparison where models generating
longer texts receive higher scores (Sun et al., 2019).
We followed Sun et al. (2019)’s approach of nor-
malizing the scores with the corresponding random
baseline that generates texts of the same length.

Score

Random(length) @)

SCOrenormalized =
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where length is the average length of the texts
generated by the target system. We estimated
Random(length) by applying linear interpola-
tion on several (length, random score) pairs. The
(length, random score) pairs were obtained by ran-
domly selecting a certain number of sentences (1,
2, ..., 10 sentences) from the input paragraph as the
prediction. To get random scores of texts shorter
than a single sentence (around 30 tokens), we trun-
cated sentences to the desired length (4, 6, ..., 30
tokens). For each length setting, we ran 10 differ-
ent random seeds and reported the average. The
Random line in Figure 2-Left shows the behav-
ior of ROUGE-2 favoring longer texts within 50
tokens.? The normalized scores, as shown in Fig-
ure 2-Right, clearly indicate the superiority of our

!Similar trends for ROUGE-1, ROUGE-L, MoverScore,
and BERTScore are included in Appendix E.
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