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Abstract

We propose a novel approach that employs
token-level Levenshtein operations to learn a
continuous latent space of vector representa-
tions to capture the underlying semantic infor-
mation with regard to the document editing
process. Though our model outperforms strong
baselines when fine-tuned on edit-centric tasks,
it is unclear if these results are due to do-
main similarities between fine-tuning and pre-
training data, suggesting that the benefits of
our proposed approach over regular masked
language-modelling pre-training are limited.

1 Introduction

Editing documents has become a pervasive compo-
nent of many human activities (Miltner et al., 2019).
For example, right before a conference deadline
technical papers worldwide are finalized and pol-
ished, often involving common fixes for grammar,
clarity, and style (Yin et al., 2019). In light of this,
it is reasonable to wonder if it would be possible
to automatically extract rules from these common
edits. This has led researchers to work on the task
of learning distributed representations of edits (Yin
et al., 2019; Marrese-Taylor et al., 2021; Reid and
Neubig, 2022).

Auto-encoding approaches such as the ones pro-
posed by Yin et al. (2019); Marrese-Taylor et al.
(2021) have been used previously in the context
of representation learning initially in the visual
domain, but more recently have been extended to
the natural language and video modalities. These
approaches largely form the foundation of “self-
supervised learning“ which enables the learning of
representations via objectives which solely require
a source datum. An instance of this relevant to
Natural Language Processing (NLP) is that of the
pre-trained masked language model, BERT (De-
vlin et al., 2019), in which a source text is initially
corrupted with a mask token [MASK] and then

reconstructed into the original form with a Trans-
former encoder.

As an alternative to this approach, other works
have instead produced representations of edits in an
indirect manner, by instead focusing on edit-centric
downstream tasks such as edit-based article qual-
ity estimation on Wikipedia (Sarkar et al., 2019;
Marrese-Taylor et al., 2019), English grammatical
error correction (GEC), and machine translation
post-editing.

In this paper, differently from existing prior
work, we propose a continued pre-training task
not based on auto-encoding, which aims at learn-
ing distributed representations of natural language
edits. In particular, we look at using the Leven-
shtein algorithm as a form of supervision to en-
courage a model to learn to convert a given input
sequence into a desired output sequence, namely
an edit. In particular, we look to answer whether
creating a “neural Levenshtein algorithm” is con-
ducive to improved downstream performance on
edit-based tasks, given the edit-centricity of the al-
gorithm. In addition to this, we also propose and
test two complementary loss functions that help the
encoder retain valuable information about the edit.

Our Edit Aware Representation Learning model,
or EARL, is trained in large datasets of edits col-
lected from Wikipedia, and we test it on a selec-
tion of edit-centric downstream tasks, including
adversarial paraphrasing detection, grammatical
error correction and edit-level article quality es-
timation. Our results show that EARL outper-
forms strong baselines when fine-tuned on such
edit-centric tasks. However, it is unclear if these
improvements are due to domain similarities be-
tween fine-tuning and pre-training data, suggesting
that the benefits of our proposed approach over reg-
ular masked language-modelling pre-training are
limited. We release1 our code and trained models
to encourage further research in this direction.

1github.com/epochx/earl
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2 Related Work

Our work is primarily related to Yin et al. (2019),
who did seminal work in proposing to directly learn
distributed representations of edits by means of a
task specifically designed for this purpose, based
on auto-encoding. The work of Zhao et al. (2019)
proposed a similar approach that was specifically
tailored at source code. After that, Marrese-Taylor
et al. (2021) proposed a variation of this model
where a latent variable is introduced as a means to
capture properties of natural language edits, which
is then tested on a selection or edit-centric tasks.

Our approach is also related to prior work on edit-
based generative models, which have utilized semi-
autoregressive sequence generation approaches for
various tasks. One such example is the work of
Guu et al. (2018), who proposed a sentence-level
generative model that first samples a prototype sen-
tence and then edits it into a new sentence. Though
related, our approach is fundamentally different as
in our setting edits are clearly identified by two
distinct versions of each item.

In the context of semi-autoregressive language
generation, our approach is also related to prior
work utilizing the Levenshtein algorithm for such
goals. For example, the work of Gu et al. (2019)
has explored non-autoregressive methods that use
an iterative generation process for machine transla-
tion. More recently, the works of Reid and Zhong
(2021); Reid and Neubig (2022) have relied on the
Levenshtein algorithm to propose edit-based gen-
erative approaches for general-purpose tasks. In
the former, an iterative edit-based generative model
was proposed for the task of style-transfer, where a
coarse-to-fine editor transforms text using Leven-
shtein edit operations similar to ours. In the latter,
the authors extend this idea and propose a generic
framework to describe the likelihood of multi-step
edits, also describing neural models that can learn
a generative model of sequences based on these.

Finally, other works have instead produced rep-
resentations of edits in an indirect manner, by fo-
cusing on specific edit-centric downstream tasks.
For example, Sarkar et al. (2019) proposed ob-
taining edit representations that are useful to pre-
dict changes in the quality of articles and similarly
Marrese-Taylor et al. (2019) proposed to improve
quality assessment by jointly predicting the quality
of a given edit and generating a description of it in
natural language.

3 Levenshtein Prediction

Differently from previous work, here we instead
look to see if we can include the Levenshtein
objective from a natural language understanding
(NLU) perspective. In particular, we look to assess
whether Transformer encoder representations can
be trained to contain information relevant to an edit,
which we hypothesize can be achieved by directly
predicting relevant operations and their associated
tokens —as produced by an oracle Levenshtein
algorithm.

Concretely, we propose a new pre-training task
based on self-supervision and look at using the
Levenshtein algorithm as a means of pushing a
model to learn to convert a given input sequence
into a desired output sequence. Let x− be the orig-
inal version of an object, and x+ its form after
a change/edit has been applied. We assume that
both x− and x+ are sequences of tokens such that
x− = [x1−, . . . , x

n
−] and x+ = [x1+, . . . , x

m
+ ]. We

use a fast implementation of the Levenshtein al-
gorithm to identify spans of tokens that have been
replaced, inserted or deleted as a result of the edit,
and define token-level edit operation labels to indi-
cate how each token was changed.

To process each edit, we first tokenize the pair
(x−, x+), then use the Levenshtein algorithm to
identify the text spans that have changed, and fi-
nally further process this output to assign token-
level labels capturing the transformations required
to convert x− into x+.

Let xi:j− be the sub-span on x− that goes from
positions i to j, our post-processing works on a
case-by-case manner, as follows.

1. When a span has been inserted between po-
sitions xi:j− , such that it appears in xk:j+ , we
label the tokens in the latter as w+, and also
label token xi−1

− , as +. We do this to provide
the model with context of where the insertion
was performed, in terms of x−.

2. Similarly, if the span xi:j− has been replaced
by the span xk:l− , we label the tokens on the
respective spans as ⇔ and w⇔.

3. If the span xi:j− has been removed from the
sequence as a result of the edit, we label each
token as −.

4. Tokens that have not been involved in the edit
are label with an empty tag, denoted as =.
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[CLS] My name is John [SEP] My last name is Wayne
= + = = ⇔ = = w+ = = w⇔

Figure 1: Example of model input-output for the edit
defined by the sequences “My name is John“ and “ My
last name is Wayne“ (using whitespace tokenization),
where the label = denotes tokens that have not been
directly involved in the edit.

As a result of our post-processing, each token in
both x− and x+ is mapped to a single Levenshtein
operation label: ⇔, w⇔, + or w+, as shown in
Figure 1. The end goal of our task is to predict
these token-level Levenshtein operations relevant
to transform x− into x+.

The input to our model is constructed by first
prepending the [CLS] token to x− and x+, which
are separated using the [SEP] token, whose total
length we denote as l = m+ n+ 2. This input is
embedded and then fed to a Transformer encoder
that returns a sequence of hidden representations
h0, . . .hl. We add a classification head (a linear
classifier) and require the model to predict the cor-
responding label for each token, ignoring tokens
that have not been directly involved in the edit (la-
bel =), using a cross entropy loss (Llev).

We also consider an additional mechanism to
enrich the quality of the learned representations,
based on techniques that have proven useful in
previous work (Marrese-Taylor et al., 2021). Con-
cretely, we note that the vector associated to the
[CLS] token (h0) is frequently used to represent
the complete model input when using Transformer
models such as ours. Since there is no specific
token-level Levenshtein label associated to this to-
ken, we encourage its representation to contain
information about the overall edit. We do this by
requiring our model to predict the set of tokens
that have been changed in the edit in an unordered
fashion, using a separate model head (again, a sim-
ple linear projection) which receives this as input,
setting f = MLP(h0) ∈ R|V|, where |V| is the
vocabulary size.

Lx∆ := − log p(x∆|h0) = − log

|x∆|∏

t=1

exp(fxt)∑V
j exp(fj)

(1)

We then let our model minimize the loss function
defined in Equation 1, above, where x∆ is the set
of tokens that have been involved in the change
(inserted, replaced or removed).

Finally, given the success of the masked lan-
guage modelling task in model pre-traning (Devlin

Dataset Edits Avg. Len

WIKIATOMICEDITS
Insertions 13.7M 24.5
Deletions 9.3M 25.1

WIKIEDITSMIX 114K 61.6

Table 1: Details of the data utilized for pre-training.

et al., 2019; Liu et al., 2019) we also experiment
combining the Levenshtein prediction task with
masked language modeling. Since our model in-
put has a special structure, we propose a modified
procedure to generate masks. Concretely, for each
example, we either mask the tokens on x− or on
x+, with a probability of 50% each. Once one
side is chosen, we overall follow the approach by
Liu et al. (2019) (RoBERTa) to choose which/how
many tokens to mask. However, we require the to-
kens with the relevant Levenshtein operation labels
(⇔, w⇔, +, w+ or −) to always be masked. Once
the locations of the masks have been determined,
we require the model to predict the masked tokens
using the standard masked language modelling loss
LMLM . Finally, the total loss used to train our
Edit Aware Representation Learning model is the
simple summation of the above introduced losses,
L = Llev + Lx∆ + LMLM .

4 Experimental Setup

Pre-training We leverage large available corpora
containing natural language edits in a variety of
domains. We specifically rely on two datasets of
edits extracted from Wikipedia, WIKIEDITSMIX

(Marrese-Taylor et al., 2021) and WIKIATOMICED-
ITS (Faruqui et al., 2018), from which we use the
insertions and deletions portions together. Please
see details in Table 1. Since pre-training is compu-
tationally very expensive, we first use WIKIED-
ITSMIX, which is much smaller, as a test-bed
and for ablation experiments regarding our pro-
posed Lx∆ and LMLM losses. To evaluate the pre-
training phase, we utilize the overall and per-token
F1-score.

Downstream Tasks We consider a broad selec-
tion of datasets and probe the ability of the model
to solve three edit-related downstream tasks.

• Paraphrasing Detection: we measure the abil-
ity of our edit encoder to model structure, con-
text, and word order information, by means
of using PAWS (Yang et al., 2019), an ad-
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Model WikiEditsMix (F1-score) PAWS WikiEdits GEC

+ w+ ⇔ w⇔ − All ZS Ft ZS Ft ZS Ft

Llev 89.4 96.1 90.6 88.6 93.7 91.8 56.8 94.9 56.8 78.1 49.5 52.4
Llev+ Lx∆ 87.8 95.6 89.9 88.7 93.5 91.2 63.8 94.9 56.7 78.2 48.6 53.4
Llev+ LMLM 80.0 94.7 93.8 86.3 95.6 90.2 60.7 95.0 64.8 78.4 48.8 53.1

Table 2: Results of our ablation experiments on WIKIEDITSMIX.

versarial dataset for paraphrasing detection.
Naturally, paraphrases are strongly correlated
to edits, as paraphrases are defined as sen-
tences that are semantically similar to each
other. PAWS main focus is on sentence pairs
that have high lexical overlap but are not para-
phrases, with a total of 49,401 pairs for train-
ing, and 8K sentences for validation and test-
ing.

• Edit-level Article Quality Estimation: we
evaluate the quality of edit representations
by means of running a multi-class classifica-
tion to predict the quality labels on WIKIED-
ITSMIX (Marrese-Taylor et al., 2021). Con-
cretely, the task is edit-level quality prediction
with 4 labels: spam, vandalism, attack OK,
each corresponding to a different quality of
the edit.

• Classification of Grammatical Errors: since
grammatical errors consist of many differ-
ent types, we follow previous work (Marrese-
Taylor et al., 2021) and use the WI + LOC-
NESS (Bryant et al., 2019) dataset for GEC,
where each example is labeled into one of
3 CEFR levels (A (beginner), B (intermedi-
ate), and C (advanced). We test the ability
of the models to classify each edit using a
multi-class setting over these three labels.

For evaluation on these downstream tasks, we
use accuracy for PAWS, and F1-score for the other
datasets. Following previous work, we test our
model on two different settings, fine-tuning (Ft)
and zero-shot (ZS). For the former, we simply add
a new randomly-initialized classification head to
our transformer model, and then train all the pa-
rameters using a cross-entropy loss based on the
labeled data. For the latter, we feed the training
examples through our models and extract the vec-
tor associated to the [CLS] token (h0) to represent
each edit. These representations are then passed
through a randomly-initialized MLP to perform
classification.

Finally, we compare our model to relevant base-
lines selected from previous work. On the one
hand, we consider the encoder proposed by Yin
et al. (2019), but we omit the copy mechanism
proposed in the paper in order to make our results
comparable. On the other hand, we compare with
EVE (Marrese-Taylor et al., 2021), which also uses
an auto-encoding loss for training, but does so in
variational inference framework. We additionally
consider the approach by Guu et al. (2018), but
skip their sampling procedure. As our task requires
the model to capture structure, context, and word
order information, we initialize our model with
ROBERTA-base (Liu et al., 2019), which we also
adopt as a baseline for downstream experiments.

4.1 Implementation Details

For pre-training, we split WIKIATOMICEDITS into
train/valid/testing splits randomly, and use the
splits provided by Marrese-Taylor et al. (2021) for
WIKIEDITSMIX. For fine-tuning, we respect the
original splits for each considered dataset.

Our pre-training is performed using data par-
allelism to speed up convergence time, but our
proposed model can run on single GPUs. We
use fairseq (Ott et al., 2019) to implement our
model and perform distributed pre-training using
16 NVIDIA V100-16 GB GPUs, and fine-tuning
with a single NVIDIA A100-40 GB GPU. We ac-
cess the former by means of nodes on a large clus-
ter, where each node has four GPUs. For WIKIED-
ITSMIX we used a single node with a maximum
training time of 24 hours (or 100 epochs). on WIKI-
ATOMICEDITS, we used 4 nodes simultaneously,
also for a maximum of 24 hours (or 100 epochs).

We use the Adam (Kingma and Ba, 2015) op-
timizer with a learning rate of 1e-4 during pre-
training, and of 1e-3 for fine-tuning on the down-
stream tasks. Instructions to replicate our experi-
ments and the details of the exact hyper-parameter
settings used for pre-training and fine-tuning can
be found in our code release.
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Model PAWS WikiEditsMix GEC

ZS
ROBERTA 58.1 63.2 50.7
EARLMix 63.8 56.7 48.6
EARLIns+Del 62.2 57.0 47.6

Ft

ROBERTA 94.5 78.9 54.0
Guu (2018) - 74.3 85.6
Yin (2019) - 66.8 83.1
EVE (2021) - 77.4 95.8
EARLMix 94.9 78.2 53.4
EARLIns+Del 94.5 78.3 54.5

Table 3: Results of our model on the downstream
tasks, compared to our baselines. EARLMix and
EARLIns+Del indicate models that have been pre-trained
on WIKIEDITSMIX and WIKIATOMICEDITS (Inser-
tions+Deletions), respectively.

5 Results

As can be seen in Table 2, all of our models attain
excellent performance on the pre-training task, with
an overall F1-Score of more than 90%. We believe
this shows that EARL is capable of successfully
predicting the operations generated by our oracle
Levenshtein editor, suggesting that the representa-
tions contain information relevant to the changes
that are introduced. This would also explain the
high performance attained when fine-tuning on
PAWS and WIKIEDITSMIX.

Regarding the impact of Lx∆ , we see that when
added, the overall performance of the model de-
creases slightly on the pre-training task, but leads to
improvements downstream, specially on the zero-
shot settings. We believe this result is consistent
with previous work, validating the contribution of
this loss applied to our setting. Finally, we also see
that LMLM further decreases performance on the
pre-training task, but again leads to improved per-
formance when fine-tuning on downstream tasks.

Based on the above findings, we use both losses
for our final experiments, which are summarized
in Table 3, where we also compare to previous
work. We see that when fine-tuned, EARL is able
to outperform ROBERTA in PAWS, suggesting
that the representations induced by our task help
the model learn relevant information about edits.
We also see that our model struggles to attain good
performance on the GEC tasks, falling considerably
behind previous work. We surmise this is due to
the pre-training domain being too different from
the task. We further note that the best performing
model in this task (EVE), is pre-trained on a large
corpus of unlabeled GEC edits, a fact that supports

our domain shift hypothesis.
Since our model is initialized with ROBERTA-

base, we further assessed the impact of our pre-
training on a standard NLP downstream task and
checked whether it leads to catastrophic forgetting.
We considered the widely-used GLUE benchmark
(Wang et al., 2018) and selected the MNLI dataset
(MNLI) as a test-bed. We find that both ROBERTA

and EARL obtain the same accuracy of 87.6, sug-
gesting that our training procedure is compatible
with masked language modelling pre-training.

Regarding the models pre-trained on different
datasets, we observe that the impact of additional
training data is marginal, as the performance of
models trained on WIKIEDITSMIX and WIKI-
ATOMICEDITS is similar across downstream tasks.
As these results are well-aligned with our findings
regarding the GEC tasks, we think this may sug-
gest the results we are observing are due to pre-
training/fine-tuning domain similarity, rather than
to the effectiveness of our proposed pre-training.

6 Conclusions and Future Work

This paper proposes a novel approach for training a
general-purpose edit representation model, which
is not based on auto-encoding. Concretely, we
propose a predictive task based on token-level Lev-
enshtein operations where the token-level labels
encode the set of operations necessary to transform
a given input sentence into an output sentence. Our
results show the task is effective at capturing ed-
its, but is not substantially better than the masked
language modeling task. We think this evidence
still supports the idea that creating a neural model
that implements the Levenshtein algorithm is con-
ducive to improved downstream performance on
edit-based tasks, suggesting a potential new path
for the future of pre-training.
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