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Abstract

Sparse word embeddings models (SPINE,
SINr) are designed to embed words in inter-
pretable dimensions. An interpretable dimen-
sion is such that a human can interpret the se-
mantic (or syntactic) relations between words
active for a dimension. These models are use-
ful for critical downstream tasks in natural lan-
guage processing (e.g. medical or legal NLP),
and digital humanities applications. This work
extends interpretability at the vector level with
a more manageable number of activated dimen-
sions following recommendations from psy-
cholinguistics. Subsequently, one of the key
criteria to an interpretable model is sparsity: in
order to be interpretable, not every word should
be represented by all the features of the model,
especially if humans have to interpret these fea-
tures and their relations. This raises one ques-
tion: to which extent is sparsity sustainable
with regard to performance? We thus intro-
duce a sparsification procedure to evaluate its
impact on two interpretable methods (SPINE
and SINr) to tend towards sustainable vector
interpretability. We also introduce stability as a
new criterion to interpretability. Our stability
evaluations show little albeit non-zero variation
for SPINE and SINr embeddings. We then
show that increasing sparsity does not necessar-
ily interfere with performance. These results
are encouraging and pave the way towards in-
trinsically interpretable word vectors.

1 Introduction

Word embeddings models (Mikolov et al., 2013;
Pennington et al., 2014; Devlin et al., 2018) al-
lowed tremendous evolution in natural language
processing. However, they embed the lexicon in
dense representation spaces with opaque dimen-
sions. It is possible to obtain an understanding
of these models via probing (Rogers et al., 2021)
and embedding matrix analysis (Shin et al., 2018).
However such methods are subject to criticism

with regard to the interpretation that can actually
be drawn from them (Hewitt and Liang, 2019;
Ravichander et al., 2021; Elazar et al., 2021). This
a posteriori approach to understanding models’ de-
cisions corresponds to the explainability paradigm
in machine learning.

On the other hand, interpretability (Rudin, 2019)
is defined for word embedding models as the pos-
sibility to find semantic (or syntactic) consistency
in the dimensions of the embedding space (Mur-
phy et al., 2012; Faruqui et al., 2015; Subrama-
nian et al., 2018; Prouteau et al., 2022). Models
such as SPINE (Subramanian et al., 2018) and
SINr (Prouteau et al., 2021) meet this requirement:
Table 1 illustrates the interpretability of the dimen-
sions resulting from such methods. These inher-
ently interpretable approaches to represent the lex-
icon are deemed preferable for high-stakes down-
stream use such as medical or legal NLP (Rudin,
2019). Interpretability also eases connection be-
tween word embeddings and linguistic models of
the lexicon, since consistent semantic dimensions
can be grasped as semantic features, which are
used in a variety of theoretical models (Jackendoff,
1983; Pottier, 1963; Rastier, 2009).

As far as we know, only the interpretability of
dimensions is considered in the literature and hu-
man evaluations such as the Word Intrusion Detec-
tion (Murphy et al., 2012) are targeted specifically
towards this aspect. In this paper, we introduce
vector-level interpretability and define it as the
capacity for a speaker to make sense of the set of
activated dimensions in a word vector. It is pos-
sible only if the set of dimensions to describe the
word is limited. The size of this set is bounded by
two different kinds of psychological experiments:
semantic features production (Garrard et al., 2001;
McRae et al., 2005) and features retention (Miller,
1956; Peterson and Peterson, 1959). This body of
literature comes to an agreement at roughly ten fea-
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tures. We consider in this paper that this number
of features is a desirable horizon for vector-level
interpretability. Following this objective and to fur-
ther reduce the amount of information provided to
the speaker, we also consider binary word vectors
as in Faruqui et al. (2015). Moreover, this binary
approach is consistent with componential analysis
(Goodenough, 1956; Katz and Fodor, 1963).

Considering these criteria, and to tend towards
more interpretability, our work offers the following
contributions :

• Refine interpretability by introducing addi-
tional criteria: stability and increased sparse-
ness for vector-level interpretability.

• Evaluate the effects of increased word vector
sparseness and binarity on performance.

• Illustrate the effects of increasing vector
sparseness on the embedding space.

To this end, we introduce Section 2 the criteria
for interpretability and their different settings in the
literature. Section 3 introduces the models consid-
ered for our experiments. In Section 4, we detail
the experimental setup adopted to evaluate the im-
pact of sparsity as well as binarity on performance
and vector-level interpretability. In Section 5, we
demonstrate that the trade-off between sparsity and
interpretability is not as strong as one would think.
Finally, Section 6 illustrates the impact of sparsity
on word vectors and discusses its benefits.

2 Related work

Interpretability : criteria and models. The sem-
inal article of (Murphy et al., 2012) paves the
way towards psycholinguistically plausible distri-
butional representations. The authors fix the follow-
ing set of constraints on the representation space:
sparseness, positivity and performance. Sparseness
is justified by the difficulty to cover a vast vocab-
ulary comprised of many different topics with a
small set of features. Thus, a large number of di-
mensions is needed, but only some of those are
activated for the description of each word. Posi-
tivity is motivated by the fact that storing null or
negative features for each item of the lexicon is
not cognitively efficient (Palmer, 1977; Lee and
Seung, 1999). The performance criterion is needed
since it is possible to produce interpretable repre-
sentations of the lexicon (e.g raw co-occurrence
matrices) with subpar performances on intrinsic

or extrinsic evaluations. This sparse interpretable
word model research is carried on with SPOWV
(Faruqui et al., 2015), SPINE (Subramanian et al.,
2018) and SINr (Prouteau et al., 2021). The first
two models transform previously trained dense rep-
resentations into sparse word embeddings while
the latter builds a sparse embedding space from a
word co-occurrence matrix. The word intrusion
tests (Murphy et al., 2012; Senel et al., 2018; Sub-
ramanian et al., 2018; Prouteau et al., 2022) are
designed to assess the internal consistency of di-
mensions in the embedding space. As introduced
Section 1, we wish to allow interpretability at the
vector level which might benefit from a smaller set
of activated components in word vectors.

Stability. Pierrejean (2020) demonstrate the non-
determinism of neural models’ training which lead
to variations in evaluation scores and word neigh-
borhoods. On the front of explicability, new deter-
ministic methods are emerging (Zafar and Khan,
2021). However, Rudin (2019) encourages to pri-
oritise interpretable approaches over explicable ap-
proaches, motivating this work.

From these observations and as stated Section 1,
we refine the criteria necessary to enable vector-
level interpretability by redefining sparsity and
adding stability.

Binary embeddings. Prototypicality theory
(Rosch, 1975; Rosch et al., 1976) introduced the
paradigm of weighted features in psychology
and linguistics. However, feature-based analysis
preempted this theoretical framework with compo-
nential analysis. This approach based on binary
features was used by anthropological linguists
(Goodenough, 1956), in structuralist work (Pottier,
1963) and in cognitively informed generativist
frameworks (Katz and Fodor, 1963). Faruqui
et al. (2015) construct binary vectors using sparse
coding to sparsify dense word embeddings in
more dimensions than the original space—called
overcomplete vectors (SPOWV). The model is
then binarized simply by setting each non-zero
value to one. In computer science, another use to
binary models is to reduce the memory footprint
of word embeddings by replacing floats with bits
and also the compute needed to exploit these
representations. It is especially critical in low-
resource embedded systems—e.g mobile phones.
Tissier et al. (2019) and Navali et al. (2020)
introduce autoencoder approaches to binarize
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Word2Vec SPINE SINr

insulin
scalar, tablespoon, vesicular, dystrophy
antiserum, falsifiable, experimenter, internat
PBS, NC, arginine, IFN

glutathione, pancreas, gastroduodenal, vitamin
immunologically, hyperplasia, transgene, nociceptive
insulin, sulphasalazine, interferon, cholangitis

hypertriglyceridaemia, mellitus, porcine, insulin
aldosterone, aminotransferase, creatinine, glycated
ulcerative, sulphasalazine, colitis, sera

mint
scalar, tablespoon, vesicular, dystrophy
cube, geranium, Berowne, curiosities
polyunsaturated, misfire, margarine, methile

spoonfuls, parsnips, kebabs, preheat
onion, basil, yogurt, coriander
dial, screams, vibration, spadefoot

tbsp, oregano, diced, dijon
Gibson, gigged, charvel, Ibanez
minted, minting, hoards, coinages

oxygen
scalar, tablespoon, vesicular, dystrophy
herbicides, menstrual, deprave, angiotensin
pou, tenascin, cytoplasm, platelet

glutathione, pancreas, gastroduodenal, vitamin
lipid, crypt, tris, calcium
monoxide, oxides, sulphuric, nitrogen

monoxide, dioxide, nitrous, oxides
supplemental, hypoxaemic, electrocardiographic, gastroscopy
diastolic, systolic, transfusion, transfusions

Table 1: Words with the highest values on the top three dimensions of ”insulin”, ”mint” and ”oxygen” in Word2Vec,
SPINE and SINr sparsified to 100 active dimensions per vector according to the protocol described Section 4.

dense representations. Both of these models
optimize for non-redundancy among dimensions
and conservation of semantic information. Once
vectors are binary, classical evaluation tasks such
as word similarity or analogy may be redefined
with bitwise operations (Sokal and Michener,
1958; Tissier et al., 2019). These models achieve
competitive results to the baseline considering
their small footprint.

3 Interpretable word embeddings

SPINE and SPOWV achieve close results on intrin-
sic and downstream evaluations but SPINE scores
better in terms of interpretability (Subramanian
et al., 2018), we thus do not consider SPOWV in
the experiments that follow. Furthermore, SINr
performances and interpretability are on a par with
SPINE, we thus consider both SPINE and SINr
as our reference interpretable models.

SPINE. SPINE, first introduced in Subrama-
nian et al. (2018) derives sparse word embeddings
from a previously trained dense model such as
Word2Vec (Mikolov et al., 2013) or GloVe (Pen-
nington et al., 2014). Architecturally, it is an au-
toencoder whose hidden layer is of higher dimen-
sion than the dense input—e.g sparsifying from
300 dense dimensions to 1000 sparse dimensions.
Three losses are implemented to enforce sparsity
and interpretability. The Reconstruction Loss pe-
nalizes the poor reconstruction of the input rep-
resentation from the output of the hidden layer,
the Average Sparsity Loss and the Partial Spar-
sity Loss enforce sparse representations by limiting
the number of active dimensions and skew vector
values towards 0 or 1. SPINE has multiple hyper-
parameters: the minimum sparseness, the number
of epochs and the vector output dimension.

SINr. Introduced in Prouteau et al. (2021), SINr
is a graph-based approach to word embeddings.
From a co-occurrence matrix extracted on a cor-

pus, SINr builds a weighted word co-occurrence
graph—words are represented by nodes and the
number of co-occurrences by edges. A community
detection algorithm, the Louvain method (Blondel
et al., 2008), then uncovers dense groups of co-
occurring words in the graph. SINr then leverages
the distribution of each node over this partition
to derive a sparse representation—not all words
co-occur with words from each community. The
representation is sparse by design, each component
of the embedding space is related to a community.
Community detection is an unsupervised process
admitting a single parameter allowing to potentially
control the number of communities detected.

4 Methodology

Models. Alongside the models presented Sec-
tion 3, Word2Vec is used as a baseline. We use
the Skip-gram with negative sampling (SGNS) ar-
chitecture and the parameters described in Levy
and Goldberg (2014). Word2Vec embeddings
have 300 dimensions with a context window of
5 words. Since SPINE’s number of dimensions is
adjustable when SINr’s is not—it is dependent on
the number of communities detected—we base the
number of dimensions of SPINE on SINr. Op-
timal performances for SINr are observed with
the hyperparameter controlling the number of com-
munities set to 50 resulting in 4460 dimensions
for OANC (Nancy et al., 2011) and 8454 for BNC

(Consortium, 2007) —the English corpora we use
in our experiments is presented at the end of the
next section. SPINE embeddings are trained from
the Word2Vec model previously presented. The
sparsity parameter of SPINE has little impact on
the sparsity of the output. Subsequently, after
several rounds of training, the model selected is
that which achieves the best performances on the
similarity task with a sparseness—95% after 1000
epochs—allowing further sparsification according
to our experimental setup described hereinafter.
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Figure 1: Sparseness of SPINE and SINr according
to the maximum number of activated dimensions per
vector on OANC (top) and BNC (bottom). First data point
of each model is sparseness before sparsification.

Experimental framework. We introduce an ex-
perimental framework allowing to evaluate word
embedding interpretability. We first consider a
performance-sparsity compromise. Our hypoth-
esis is that sparse vectors are both more inter-
pretable and psycholinguistically plausible. To
control sparseness, we introduce our sparsification
method: from each embedding model, we keep
only the k top strongest dimensions by value in
each vector—k is in range 250− 10. Components
not in the top k for the vector are set to zero. Fig-
ure 1 presents the sparseness of SPINE and SINr
with regard to the active dimensions threshold. In
the case of Word2Vec, we keep the top k dimen-
sions out of the absolute values from the vectors.

In our second setup, we study the impact of
switching to binary vectors. The binarization step
is straightforward, we simply replace all non-zero
values in each sparsified and unsparsified model by
1 as in Faruqui et al. (2015).

To evaluate the quality of the representations af-
ter sparsification and binarization, we use the word
similarity evaluation—the correlation between the
cosine similarity of words in our model and sim-
ilarity rated by humans. Selected datasets model
a variety of relations : MEN (Bruni et al., 2014),
WS353 (Agirre et al., 2009), SCWS (Huang et al.,
2012). To evaluate the stability of vectors produced
by SPINE and SINr, our second criterion to in-
terpretability, we learn 10 models and present the
averaged results.

As similarity datasets are mostly available in En-
glish, we use the British National Corpus (BNC)
(Consortium, 2007) and the text part of the Open
American National Corpus (OANC) (Nancy et al.,

MEN WS353 SCWS

BNC

Pearson σ Pearson σ Pearson σ

Word2Vec 0, 72 0, 002 0, 65 0, 005 0, 57 0, 002

SPINE 0, 65 0, 006 0, 57 0, 01 0, 60 0, 004

SINr 0, 66 0, 0006 0, 62 0, 002 0, 54 0, 001

MEN WS353 SCWS

OANC

Pearson σ Pearson σ Pearson σ

Word2Vec 0, 43 0, 002 0, 50 0, 005 0, 46 0, 003

SPINE 0, 36 0, 009 0, 43 0, 01 0, 39 0, 01

SINr 0, 39 0, 0008 0, 44 0, 002 0, 39 0, 002

Table 2: Stability results for the word similarity evaluation on BNC (top), and OANC (bottom). Average Pearson
correlation coefficient and standard deviation σ over 10 runs.
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2011) to train our models. BNC contains 100 mil-
lion tokens and OANC 11 million. Both corpus are
composite in domain and genres. Those relatively
small corpora, considering the standards in natu-
ral language processing, are chosen because doc-
umented corpora allow for finer interpretations of
dimensions. Text preprocessing was performed us-
ing spaCy : tokenization with named-entity chunk-
ing, deletion of words shorter than three characters,
of punctuation and of numerical characters. The
minimum frequency for a type is set to 20. After
preprocessing, OANC contains 20,814 types and
roughly 4 million tokens, 58,687 types and 40 mil-
lion tokens for BNC.

5 Results

Stability. The first property we consider with re-
gards to interpretability is the stability of the mod-
els trained. This experiment is twofold, it allows
to show whether methods are stable and also sets
reference values for the similarity evaluation prior
to sparsifying. Each model was run ten times on
the same data with the same hyperparameters.

As reported in Table 2, the three models achieve
scores in close ranges, with all models showing
some degree if variability, their standard deviation
being non-zero across ten runs. While Word2Vec
and SINr seem more stable than SPINE, the over-
all observed variability on the small samples of
the vocabulary present in the similarity datasets
hinders reproducibility and is a flaw to the three
model’s interpretability.

Impact of sparsity on similarity. Results pre-
sented Figure 3 show the Pearson correlation scores
on the similarity evaluation with regard to the num-
ber of components activated. The similarity scores
are given with regard to the maximum number of
top values kept in each vector according to our
sparsification procedure. First, the three models
achieve comparable results to those reported Ta-
ble 2 up until 50 dimensions. More surprisingly,
sparsifying SINr embeddings seems to improve
performances. Sparsification may filter out noise
from the base SINr model. Subsequently, there is
not necessarily a trade-off between sparseness and
efficiency. Furthermore, the fact that results remain
satisfactory on our Word2Vec control model de-
spite the sparsification is an unexpected behavior
and is interesting with regard to how the semantic
information is organized in its vectors.

In order to approach the sparsity objective of 10

dimensions presented Section 1, the experiment is
also conducted at this level. Although we observe
an overall drop in performance and especially for
Word2Vec, a significant part of the semantic in-
formation is retained within these ten dimensions.
Indeed, they allow to solve at least partially the sim-
ilarity task. Even though the usefulness of this rep-
resentation for downstream tasks can be discussed,
it still allows to build interpretable word vectors
despite the drop in performance. The low number
of active dimensions render these models compat-
ible with theoretical models leveraging semantic
features, thus paving the way for new empirical
opportunities.

Impact of binarization on similarity. Results
presented Figure 3 follow the same display than
sparsity results except that all models are binarized.
Overall, we observe drops in performance across
all models but to drastically varying extents. While
SPINE and SINr lose some semantic information
compared to the sparsified weighted models, they
tend to retain performances of the same magnitude.
This is especially true for models trained on BNC,
considering that the models trained on OANC show
bigger drops in word similarity performance. On
the other hand, overall Word2Vec performances
crumble with binarized vectors. This result is to be
expected since Word2Vec is a dense model.

We can observe a common pattern across all
models, where performance of binarized embed-
dings increases with sparsification until 100 or 50
activated dimensions. Binarizing while maintain-
ing a lot of active dimensions flattens the hierarchy
between components with strong values and others
with low activations, thus otherwise very weak ac-
tivations may gain weight in the vector as a result
of binarization. In this case, the sparsification may
remove noise from representations, by restoring a
hierarchy between the few strong dimensions, acti-
vated with a 1 value, and the others set to 0. This
denoising behavior resulting from sparsification
seems common to binarized models, and weighted
SINr.

6 Discussion

Our results show that there is not necessarily a
trade-off between interpretability and performance.
On the contrary, stability and increased sparseness
of interpretable models can even improve results.
At thresholds close to what is described in psy-
cholinguistics, performances may remain accept-
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Figure 2: Word similarity performance (Pearson correlation) against maximum number of activated dimensions per
vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC are reported in yellow,
and performances on BNC in blue.
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Figure 3: Word similarity performance (Pearson correlation) on binary models against maximum number of
activated dimensions per vector for Word2Vec (left), SPINE (middle) and SINr (right). Performances on OANC
are reported in magenta, and performances on BNC in cyan.

able considering the number of dimensions acti-
vated. Interpretability is hard to visualize without
a set objective. In the discussion ensuing, we illus-
trate the interpretability of models through visual-
izations on selected items.

Interpretability of the dimension. Interpretabil-
ity of the dimensions can be assessed after con-
ducting a word intrusion evaluation with humans,
both SPINE and SINr’s dimension interpretabil-
ity have been previously evaluated without prior
sparsification (Subramanian et al., 2018; Prouteau
et al., 2022). The goal is to evaluate whether dimen-
sions are interpretable—words with highest values
on a dimension should be related. We present Ta-
ble 1 top dimensions for three words as a glimpse

into how interpretable dimensions of SPINE and
SINr are in comparison with Word2Vec. As in
previous evaluations, Word2Vec does not exhibit
dimensions with related terms. If we consider the
term ”insulin”, words on the first three strongest
dimensions in the vectors are all related to medi-
cal conditions or biological functions. The word
”mint” presents interesting dimensions, for SPINE,
the first two dimensions are related to food and
ingredients, the third one is less interpretable as
one has trouble linking ”spadefoot”, a frog specie
to ”dial”. SINr captures the polysemous nature
of the word ”mint” with top dimensions unrelated
with one another. The first one is most probably
related to mint as an aromatic, meanwhile, the sec-
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(a) SPINE

(b) SINr

(c) SPINE 100 active dimensions

(d) SINr 100 active dimensions

Figure 4: Shared dimensions across 50 most and least similar words to ”mint” in SPINE and SINr. The models
are trained on BNC both without sparsification, and with a threshold set to 100 dimensions on BNC. The top half of
each figure represents the most similar words and the bottom half the least similar words.

ond one as the adjective describing guitars in mint
condition, and the third one as a verb, to mint, in
the sense of producing and managing currency. The
same analysis can be drawn for the word ”oxygen”
where the use in the medical field is represented
alongside chemical characteristics.

Interpretability of the vector. We evaluated in-
creasingly sparsified word embeddings with the
hypothesis that fewer features makes interpreting
words vectors themselves easier. Our evaluations
show that this gain in interpretability is not nec-
essarily at the cost of model performances, the
sparsification of representation can even increase
performances up to a certain sparseness level. The
following paragraphs aim to illustrate interpretabil-
ity at the word vector level.

We present Figure 4 the distribution of values in
the 50 most (top of each figure) and least similar
(bottom of each figure) words to ”mint” for SPINE
(a; c) and SINr (b; d) on BNC. Lines appearing
vertically across figures show shared dimensions
between vectors in the embedding space. The first
two figures (a; b) represent the shared features in

the model prior to sparsification. SPINE presents
vertical lines spanning most similar and least simi-
lar vectors, the embeddings seemingly share a large
number of dimensions. SINr, on the other hand,
exhibits a clear distinction between most and least
similar words. One can clearly see shared dimen-
sions among close neighbors of SINr for the word
”mint”. These first two distributions need to be com-
pared with the distributions observed after sparsify-
ing the vectors (c; d). At the 100 active dimensions
sparsity setup, SINr seems to display more shared
dimensions than SPINE for the word ”mint”. We
assume that the performance gain in the similarity
task observed for SINr Figure 2 is due to a process
of noise reduction induced by the sparsification of
the model.

The interesting results on similarity evaluation
showed by sparsified interpretable models seems
to indicate that the most important part of the se-
mantic information is stored in the few strongest
components of each vector. This observation al-
lows us to analyze these models through the lens
of our constrained version of interpretability di-
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Figure 5: Word vectors on the set of top 5 shared di-
mensions for ”mint”, ”insulin” and ”oxygen” and their
respective closest neighbors for SPINE (top) and SINr
(bottom) on BNC.

rected towards the interpretation of word vectors.
A speaker might want to interpret word embed-
dings by composing the meaning of a word with
a limited subset of the features that describe it. In
this case, the stability of the models becomes an
increasingly important issue. Indeed, interpreting
dimensions amounts to finding a consistency to a
set of words that strongly interpret a dimension.
However, interpreting a word vector relies both on
this consistency and the strength of the activation of
each dimension for a given vector. Thereby, even
subtle variations in the representation across runs
may induce different interpretations.

Binary representations. Our last experiment
aims to quantify the benefit of weighted features
over binary features. Considering results Figure
4, it appears that a significant part of the semantic
information for sparse interpretable models is en-
coded in the mere activation of a dimension by a
vector. Binarity is a means of reducing time and
memory complexity of semantic models and is un-
doubtedly beneficial in embedded applications with
low latency requirements or low resource hardware.
We observe with Figure 5 that a SINr weighted
model tends to have fewer and more strongly acti-
vated dimensions than a SPINE weighted model,
which makes the former more alike binarized repre-
sentations. This property facilitates the interpreta-
tion at the vector level: for example, dimensions 12
to 15 are strongly activated for ”mint” and ”thyme”,
and not at all for the other words, in the SINr repre-
sentation. Recognizing the similarity of ”mint” and
”thyme”, and their opposition to the other words, is

easier when there is a clear gap between a strong
activation and no activation of the dimension con-
sidered, like in a binarized vector.

Taking a step back, the comparison between
weighted and binarized vectors performances allow
us to pinpoint where the information is encoded.
A significant part of the semantic information is
stored in the activation of a few dimensions for
each word vector, but the dimensions weights are
needed to reach the most competitive performances.
This assessment is coherent with the theoretical
paradigm shift mentioned Section 2. Furthermore,
it appears that, while binarizing embeddings rep-
resents a cost in performance, sparsifying them is
not necessarily a trade-off. In some cases, it might
even be beneficial.

7 Conclusion

Previously, the interpretability of embedding
spaces focused mainly on dimension, this work re-
defined interpretability from the vector standpoint.
We state that stability of the models and sparsity are
necessary conditions to intepretability. Constrain-
ing on sparsity echoes psycholinguistic plausibility,
it is essential to find semantic coherence within
dimension of the embedding space but also to de-
scribe a word with a limited set of these dimensions.
We hypothesize that vectors constrained following
this protocol are interpretable by a speaker, since it
becomes possible to manipulate this small number
of dimensions in working memory.

Interpretable word embedding models achieve
good results on the intrinsic word similarity evalua-
tion task even with higher sparseness levels. SINr
even benefits from being sparsified. Furthermore,
we show through examples that dimensions remain
interpretable even on sparsified vectors and that,
indeed words that are close in the embedding space
are represented by a common set of dimensions.
Lastly, we show that real-valued vectors are a slight
improvement upon binary representation.

These results allow to reconsider the inter-
pretability performance for distributed represen-
tations. A following step would be to conceive
an evaluation framework to measure vector-level
interpretability, allowing us to investigate if and
how speakers would make sense of interpretable
word vectors. Such models also open up new per-
spectives in which theoretical models describing
the lexicon benefit from semantic features of word
embeddings. In the field of semantic drift detection,
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it would also allow to easily characterize the drift
by keeping track of the few dimensions at stake.

Acknowledgments

The work has been funded by the ANR project
DIGING (ANR-21-CE23-0010).

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
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