@inproceedings{juvekar-etal-2023-semantically,
title = "Semantically Informed Data Augmentation for Unscoped Episodic Logical Forms",
author = "Juvekar, Mandar and
Kim, Gene and
Schubert, Lenhart",
editor = "Amblard, Maxime and
Breitholtz, Ellen",
booktitle = "Proceedings of the 15th International Conference on Computational Semantics",
month = jun,
year = "2023",
address = "Nancy, France",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.iwcs-1.14",
pages = "116--133",
abstract = "Unscoped Logical Form (ULF) of Episodic Logic is a meaning representation format that captures the overall semantic type structure of natural language while leaving certain finer details, such as word sense and quantifier scope, underspecified for ease of parsing and annotation. While a learned parser exists to convert English to ULF, its performance is severely limited by the lack of a large dataset to train the system. We present a ULF dataset augmentation method that samples type-coherent ULF expressions using the ULF semantic type system and filters out samples corresponding to implausible English sentences using a pretrained language model. Our data augmentation method is configurable with parameters that trade off between plausibility of samples with sample novelty and augmentation size. We find that the best configuration of this augmentation method substantially improves parser performance beyond using the existing unaugmented dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="juvekar-etal-2023-semantically">
<titleInfo>
<title>Semantically Informed Data Augmentation for Unscoped Episodic Logical Forms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mandar</namePart>
<namePart type="family">Juvekar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gene</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lenhart</namePart>
<namePart type="family">Schubert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 15th International Conference on Computational Semantics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maxime</namePart>
<namePart type="family">Amblard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ellen</namePart>
<namePart type="family">Breitholtz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Nancy, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Unscoped Logical Form (ULF) of Episodic Logic is a meaning representation format that captures the overall semantic type structure of natural language while leaving certain finer details, such as word sense and quantifier scope, underspecified for ease of parsing and annotation. While a learned parser exists to convert English to ULF, its performance is severely limited by the lack of a large dataset to train the system. We present a ULF dataset augmentation method that samples type-coherent ULF expressions using the ULF semantic type system and filters out samples corresponding to implausible English sentences using a pretrained language model. Our data augmentation method is configurable with parameters that trade off between plausibility of samples with sample novelty and augmentation size. We find that the best configuration of this augmentation method substantially improves parser performance beyond using the existing unaugmented dataset.</abstract>
<identifier type="citekey">juvekar-etal-2023-semantically</identifier>
<location>
<url>https://aclanthology.org/2023.iwcs-1.14</url>
</location>
<part>
<date>2023-06</date>
<extent unit="page">
<start>116</start>
<end>133</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantically Informed Data Augmentation for Unscoped Episodic Logical Forms
%A Juvekar, Mandar
%A Kim, Gene
%A Schubert, Lenhart
%Y Amblard, Maxime
%Y Breitholtz, Ellen
%S Proceedings of the 15th International Conference on Computational Semantics
%D 2023
%8 June
%I Association for Computational Linguistics
%C Nancy, France
%F juvekar-etal-2023-semantically
%X Unscoped Logical Form (ULF) of Episodic Logic is a meaning representation format that captures the overall semantic type structure of natural language while leaving certain finer details, such as word sense and quantifier scope, underspecified for ease of parsing and annotation. While a learned parser exists to convert English to ULF, its performance is severely limited by the lack of a large dataset to train the system. We present a ULF dataset augmentation method that samples type-coherent ULF expressions using the ULF semantic type system and filters out samples corresponding to implausible English sentences using a pretrained language model. Our data augmentation method is configurable with parameters that trade off between plausibility of samples with sample novelty and augmentation size. We find that the best configuration of this augmentation method substantially improves parser performance beyond using the existing unaugmented dataset.
%U https://aclanthology.org/2023.iwcs-1.14
%P 116-133
Markdown (Informal)
[Semantically Informed Data Augmentation for Unscoped Episodic Logical Forms](https://aclanthology.org/2023.iwcs-1.14) (Juvekar et al., IWCS 2023)
ACL