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Abstract

Understanding inferences from text requires
more than merely recovering surface argu-
ments, adjuncts, or strings associated with the
query terms. As humans, we interpret sen-
tences as contextualized components of a nar-
rative or discourse, by both filling in missing
information, and reasoning about event conse-
quences. In this paper, we define the process
of rewriting a textual expression (lexeme or
phrase) such that it reduces ambiguity while
also making explicit the underlying seman-
tics that is not (necessarily) expressed in the
economy of sentence structure as Dense Para-
phrasing (DP). We apply the DP techniques on
the English procedural texts from the cooking
recipe domain, and provide the scope and de-
sign of the application that involves creating a
graph representation of events and generating
hidden arguments through paraphrasing. We
provide insights on how this DP process can
enrich a source text by showing that the dense-
paraphrased event graph is a good resource to
large LLMs such as GPT-3 to generate reli-
able paraphrases; and by experimenting base-
lines for automatic DP generation. Finally, we
demonstrate the utility of the dataset and event
graph structure by providing a case study on
the out-of-domain modeling and different DP
prompts and GPT models for paraphrasing.

1 Introduction

Two of the most important components of under-
standing natural languages involve recognizing that
many different textual expressions can correspond
to the same meaning, and detecting those aspects
of meaning that are not present in the surface form
of an utterance or narrative. Together, these in-
volve broadly three kinds of interpretive processes:
(i) recognizing the diverse variability in linguistic
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forms that can be associated with the same underly-
ing semantic representation (paraphrases); (ii) iden-
tifying semantic factors or variables that accom-
pany or are presupposed by the lexical semantics
of the words present in the text, through “hidden”
arguments (e.g., “stir vigorously.”; the argument of
stir is not in the surface form); and (iii) interpreting
or computing the dynamic consequences of actions
and events in the text (e.g., slicing an onion brings
about onion slices).

The first of these, the problem of paraphrasing,
has been addressed computationally since the early
days of natural language processing (NLP). The
other two mentioned above, however, are more
difficult to model with current machine learning
approaches, which rely heavily on explicit textual
strings to model semantic associations between the
elements in the input. Many Question Answering
(QA) systems, for example, rely on such syntag-
matic forms in the training data for modeling po-
tential associations that contribute to completion
or generation task performance. Hence, if pred-
icates or arguments are missing, implied, or in-
terpreted from context, there is rarely anything to
encode, and consequently little to decode as output,
as well. Consider the following example from the
traditional paraphrasing task. The text difference
between the input and output only comes from a
lexical substitution, rather than the rephrasing or
addition of hidden arguments.

(1) Paraphrasing:
Chop onions, saute until browned. −→
Cut onions, saute until done.

To solve this problem, some recent attempts have
been made to enrich surface forms that are miss-
ing information through “decontextualization” pro-
cedures that textually supply information which
would make the sentence interpretable out of its
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local context (Choi et al., 2021; Elazar et al., 2021;
Wu et al., 2021).

The Focus of the decontextualization is on en-
riching text through anaphora resolution and knowl-
edge base augmentation, which works well on ar-
guments or concepts that can be linked back to
existing knowledge sources, such as Wikipedia.
Consider the following example of the this task. It
is able to decontextualize Barilla sauce in (2a), but
does not reintroduce any semantically hidden argu-
ments from the context in (2b), making inferences
over such sentences difficult or impossible.

(2) Decontextualization:
a. Add Barilla sauce, salt and red pepper flakes. −→
Add Barilla sauce, the tomato sauce, salt and red pep-
per flakes.
b. Simmer 2 minutes over medium heat. −→
Simmer 2 minutes over medium heat.

In this paper, we argue that the problems of para-
phrasing and decontextualization are closely re-
lated for the purpose of clarifying meaning through
verbal, nominal, or structural restatements that pre-
serve (and enhance) meaning (Smaby, 1971; Ka-
hane, 1984; Mel’cuk, 1995; Mel’Čuk, 2012). We
propose Dense Paraphrasing, the process for the
enrichment of the expression through both its lexi-
cal semantics and its dynamic contribution to the
text in the whole narrative, which are less focused
on by other work.

Consider the DPs of the sentences from exam-
ples (1) and (2), illustrated below in (3). Compared
to the aforementioned tasks, DP aims to recover
the semantically hidden arguments that fit the local
context of the event (e.g., pan for the saute event)
or carry a broader view of the context of the text
(e.g., sauted chopped onions shows its transforma-
tion through multiple events).

(3) DP:
Chop onions, saute until browned. −→
Chop onions on a cutting board with a knife to get
chopped onions, saute chopped onions on a pan with
a spatula, resulting in sauted onions until browned.
——————————————————
Add Barilla sauce, salt and pepper to the saucepan. Sim-
mer 2 minutes over medium heat. −→
Add Barilla sauce, salt and pepper to the saucepan by
hand to get sauce mixture. Simmer the sauce mixture
2 minutes in the saucepan over medium heat to get sim-
mered sauce mixture.

We argue that our work can potentially help and
complement these generation tasks by enriching the
source text with information that is not expressed
in the surface structure. Table 1 shows a complete

Passage: Peel and cut apples into wedges. Press apple
wedges partly into batter. Combine sugar and cinnamon.
Sprinkle over apple. Bake at 425 degF for 25 to 30 minutes.
Dense Paraphrased (DP’ed) Passage:
Using peeler, peel apples, resulting in peeled apples; and
using knife on cutting board, cut peeled apples into peeled
wedges.
Using hands, press apple wedges partly into batter in the
cake pan.
Combine sugar and cinnamon in a bowl, resulting in cinna-
mon sugar.
Sprinkle cinnamon sugar over apple wedges in batter in
cake pan, resulting in appelkoek.
In oven, bake appelkoek at 425 degF for 25 to 30 minutes,
resulting in baked appelkoek.

Table 1: Example DP’ed document from our dataset.
Color-coded text spans represent locations of events in
the input text where dense paraphrases are generated to
enrich local context. Underlined text shows the appear-
ance of the ingredient “apple” with transformation in a
chain of events. Hidden arguments are added back to
the text following simple syntactic rules (e.g., using X,
do Y in/on/at Z, resulting in R).

dense paraphrased document that shows how DP is
applied on a multi-sentence level. To show the us-
age of our method, we experiment with baselines of
neural models for text generation tasks that involve
dense paraphrased text, based on datasets that are
heavily annotated with event-participant structures.

In the remainder of the paper, we first review
related work and background (§2), and give more
detailed definitions of the DP schema (§3). We
then apply the DP techniques on a cooking recipe
dataset to show its ability to enrich the raw text with
paraphrases (§4). §5 provide details of experiments
we conducted to validate the utility of the proposed
methodology, along with a discussion of our results.
§6 explores the case studies on applying DP on the
out-of-domain data and the comparison between
GPT models on the paraphrasing task. We then
conclude our work in §7. The source code and data
will be publicly available.

2 Related Work

There is a long history in linguistics, dating back
to the early 1960s, of modeling linguistic syntag-
matic surface form variations in terms of transfor-
mations or sets of constructional variants (Harris,
1954, 1957; Hiż, 1964). (Smaby, 1971) formally
defines this process of preserving the meaning from
lexical, phrasal, or sentential expressions Ei to Ej

as paraphrasing.
For NLP uses, paraphrasing has been a major

part of machine translation and summarization
system performance (Culicover, 1968; Goldman,
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1977; Muraki, 1982; Boyer and Lapalme, 1985;
McKeown, 1983; Barzilay and Elhadad, 1999; Bha-
gat and Hovy, 2013). In fact, statistical and neural
paraphrasing is a robust and richly evaluated com-
ponent of many benchmarked tasks, notably MT
and summarization (Weston et al., 2021), as well
as Question Answering (Fader et al., 2013) and
semantic parsing (Berant and Liang, 2014). To this
end, significant efforts have gone towards the col-
lection and compilation of paraphrase datasets for
training and evaluation.

In addition to the meaning-preserving para-
phrase strategies mentioned above, there are several
directions currently explored that use strategies of
“decontextualization” or “enrichment” of a textual
sequence, whereby missing, elliptical, or under-
specified material is re-inserted into the expression.
The original and target sentences are compared
and judged by an evaluation as a text generation
or completion task (Choi et al., 2021; Elazar et al.,
2021; Gao et al., 2022; Chai et al., 2022; Eisen-
stein et al., 2022; Tu et al., 2022b; Ye et al., 2022;
Katz et al., 2022). Our work applies both strate-
gies of paraphrasing to the procedural text domain,
which is new to the field. Unlike typical paraphrase
generation tasks (Zhou and Bhat, 2021) which para-
phrase full sentences and favor different wording
and structure, our task performs at the entity-level.

Recent studies in procedural texts focus on track-
ing the state of events and entities in artificial cor-
pora from arbitrary domains (Dalvi et al., 2019;
Kazeminejad et al., 2021; Tandon et al., 2020).
Some works also treat recipes as a rich resource for
procedural texts. (Bosselut et al., 2017; Yamakata
et al., 2020) leverage structured representations of
domain-specific action knowledge for modeling a
process of actions and their causal effects on en-
tities. Other works try to resolve the anaphoric
relations between recipe ingredients (Fang et al.,
2022; Jiang et al., 2020). While these works all
create corpora suitable for their own problems, our
work, in contrast, embeds enriched information of
both entities and events in the recipe using dense
paraphrasing.

Enrichment of VerbNet predicates can be seen
as an early attempt to provide a kind of Dense
Paraphrasing for the verb’s meaning. In Im and
Pustejovsky (2009, 2010), the basic logic of Gen-
erative Lexicon’s subevent structure was applied
to VerbNet classes, to enrich the event represen-
tation for inference. The VerbNet classes were

associated with event frames within an Event Struc-
ture Lexicon (ESL), encoding the subevent struc-
ture of the predicate. If the textual form of the
verb is replaced by the subeventual description
itself, classes such as change of location and
change of possession can help encode and de-
scribe event dynamics in the text, as shown in
(Brown et al., 2018; Dhole and Manning, 2021;
Brown et al., 2022). For example, the VerbNet
entry drive is enriched with the ESL subevent struc-
ture below:

(4) drive in John drove to Boston
se1: pre-state: not located in (john,boston)

se2: process: driving (john)

se3: post-state: located in (john,boston)

Such techniques will be utilized as part of our
Dense Paraphrasing strategy to enrich the surface
text available for language modeling algorithms.

3 Method

In this section, we detail the procedure involved in
creating DPs. The DP method can be seen as the
method for creating sets of semantically “enriched,
but consistent” expressions, that can be exploited
by either human consumption (e.g., natural lan-
guage paraphrases) or machine consumption (e.g.,
configurable graphs). Specifically, we currently
adopt a template-based method along with heuris-
tics to generate DPs that account for hidden entities
and entity subevent structure.

Sub-Event Structure DP starts by identifying
events from the text. As mentioned above, ESL
represents an event as having three parts: begin
(Be), inside (Ie), and end (Ee). In our method,
we use this subevent structure not only to track
the begin and end state of an event, but to create
textual redescriptions of the changed event argu-
ments. To illustrate, in Table 1 the peel and cut
events form a two-event sequence through the DP
subevent descriptions of the beginning and ending
entities (apples → peeled apples → apple wedges).

Hidden Arguments DP also recovers hidden ar-
guments that are not present in the surface form
of the text to ensure the richness of the subevents.
The changed entities associated with the begin or
end events can be either hidden or explicit. For
example, the bake event from Table 1 has both the
hidden beginning and ending entity. In addition,
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DP also recovers relevant arguments in the same
context of the event (e.g., the bake event occurs in
the oven).

4 Experiment 1: Dense Paraphrasing
from annotation

We use the text data from the subdomain of cooking
recipes to demonstrate the application of the DP.
Compared to texts of news or narratives, procedural
text such as recipes tend to be task-oriented and
highly contextualized, allowing the DP to focus
on the hidden information and changes that are
taking place in the course of a sequence of events
in the narrative. Specifically, we apply the DP
on the existing Coreference under Transformation
Labeling (CUTL) dataset (Rim et al., 2023). CUTL
consists of a subset of 100 cooking recipes from a
larger Recipe-to-Video Questions (R2VQ) dataset
(Tu et al., 2022a). It contains rich annotation of the
cooking-related events and entities (both explicit
and hidden), as well as the coreference relations
between the entities.

4.1 Event structure for Dense Paraphrasing

To prepare the CUTL dataset for the DP, we trans-
form the annotation into a set of “events”, as events
are primary anchors for applying DP. Adapted from
(Rim et al., 2023), we define an event as an event
predicate, a set of cooking-related entities and re-
lations. The ingredient entities are associated with
the begin and end subevents (of the event predicate)
and re-described to show the subevent change. An
example is shown in Figure 1. The entity can be
hidden or explicit, and the entity types include the
EVENT-HEAD, INGREDIENT, TOOL and HABITAT.
The relations include BEGINNING and ENDING for
ingredients, as well as PARTICIPANT-OF for tools
and habitats. Each event has only one predicative
verb (EVENT-HEAD), and all the relations within
the event are linked from corresponding entities to
the predicate. In addition, the event must have at
least one beginning ingredient entity and one end-
ing ingredient entity. Table 2 shows the statistics
of the events in the dataset. The high ratio of the
hidden entities makes it effective to demonstrate
the utility of the DP.

4.2 Paraphrasing Hidden Entities

In this stage, we propose a semi-automatic ap-
proach to paraphrase the hidden entities that are
annotated and represented in text placeholders

(hand) (cake pan) Sprinkle over apple (cinnamon sugar) (applekoek)
TOOL HABITAT EVENT-HEAD INGRE. INGRE. INGRE.

par.-of

par.-of

beginning

beginning

ending

Figure 1: Annotated event example (combined R2VQ
and CUTL annotations). Hidden entities are enclosed
in parenthesis.

Avg. # of entities per recipe Explicit Hidden
EVENT-HEAD 10.6 N/A
TOOL 0.8 2.7
HABITAT 2.1 4.0
INGREDIENT (beginning) 12.0 9.4
INGREDIENT (ending) 1.0 10.4

Table 2: Statistics of the events in the CUTL dataset.

(verb.RES) from the CUTL annotation. For-
mally, it involves two steps: generate text real-
izations of the hidden entities, and paraphrase the
text realization to be useful for DP or other down-
stream tasks. We propose two methods to create
the text realization of hidden entities: prefix para-
phrasing (PP) and subgraph linearization. For the
latter, we apply GPT-3 (Brown et al., 2020) on
the text realizations to generate paraphrases, and
then compare the generated PP paraphrase, the sub-
graph paraphrase, and the PP text directly used as
the paraphrase.

Text Realization PP is a heuristic method intro-
duced by (Tu et al., 2022b) for question generation,
which enriches the textual description of entities to
reflect changes due to actions. We adopt this idea
by first separating all the event predicates appearing
in the data into three categories: TRANSFORMA-
TION, LOCATION-CHANGE, and neither. For trans-
formation events, the paraphrased entity has the
format eventPrefix + entity (e.g. boiled
water, drained soaked peas). For location change
events or neither, the paraphrased entity has the
same text form as the event input.

Given the graphical nature of the coreference
graph from the DP events, we also use linearized
graphs as the text realization, which has shown to
be useful in various tasks such as syntactic parsing
and AMR parsing (Vinyals et al., 2015; Bevilacqua
et al., 2021). Specifically in our task, we extract the
subgraph that is rooted in the hidden entity mention
node, and then linearize it into a string literal. Ex-
amples from text realization methods are presented
in Figure 2. PP converts transformation verbs into



43

prefixes (e.g., heated, seasoned) and drops location
change verbs (e.g., place). It also uses the iden-
tity link from the graph to find single entity texts
that can substitute parts of the prefix-paraphrased
text (e.g., chicken breast 2 at the bottom of
fig. 2 replaces the PP text for RES.season in the
target realization.). Subgraph realization, on the
other hand, records all the subevent state changes
relevant to the target entity, and the events are also
typed with the relations based on the verb sense and
the number of beginning and ending ingredients
that are connected to the verb.

Figure 2: Text realization from PP and subgraph. Sub-
graph realization is wrapped and indented for readability.
Event verbs are typed with: AGG (aggregation), TRANS
(transformation), COL (change of location), etc.

Paraphrase Generation We prepare the para-
phrasing data for evaluation by extracting all the
ingredient mention nodes from the graph that sat-
isfy: (1) the node is linked to a begin subevent,
and to another end subevent; (2) the node has ex-
plicit text form. Such a node is connected to its
placeholder text with the IDENTITY relation, as
shown in Figure 2. Then we use the text of such
nodes as the gold paraphrase to the hidden entity
placeholder. In the end, we collected 273 gold
paraphrase pairs from our dataset. Considering
the scarcity of gold paraphrase in the dataset (2.7
pairs per recipe), we formalize the task as few-shot
prompting and apply the GPT-3-davinci model to
generate the paraphrases. Figure 3 shows the ex-
ample prompts used in the GPT-3 paraphrasing
methods. In each prompt, we use a single set of

Paraphrase BERTScore Intrinsic

PREFIXP 81.15 3.08
PREFIXP-GPT 84.45 (±0.46) 3.97 (±0.08)
SUBGRAPH-GPT 86.08 (±0.15) 4.15 (±0.02)

Table 3: Paraphrase generation results on the gold para-
phrase pairs. PREFIXP uses PP realization directly as
the paraphrase; PREFIXP/SUBGRAPH-GPT uses DP/-
subgraph realizations as exemplars in GPT-3 prompting.

eight exemplars from the gold pairs and a human-
created instruction on the task and how to interpret
the input from different text realizations.

Evaluation We use BERTScore (Zhang et al.,
2019) for automatic evaluation and a 5-point Lik-
ert scale as intrinsic evaluation for the correct-
ness, relevance, and appropriateness. For each
type of realization, we perform two rounds of
GPT-3 prompting with different sets of gold ex-
emplars, and present the overall results in Table
3. While ROUGE (Lin, 2004) has been widely
used in text-generation tasks, it is shown that these
token-matching metrics do not align well with hu-
man annotation (Shen et al., 2022), and this finding
aligns with what we observed in our experiments.

The BERTScore from all paraphrases is over 80,
indicating the higher semantic similarity between
the gold and model output. PREFIXP has the low-
est BERTScore due to the text addition from verb
prefixes and the lack of summarization ability over
a list entities in the input. For intrinsic evaluation,
SUBGRAPH-GPT performs better than PREFIXP-
GPT, suggesting that the subgraph realization is
a better resource for GPT-3 to recover and sum-
marize the essential information in paraphrasing.
PREFIXP performs the worst in the intrinsic evalua-
tion. From the summary of annotators’ feedback on
the evaluation, we observe that the PP paraphrase
of the entity from later steps tends to be lengthy and
redundant without signaling the salient entity (aver-
age token numbers of PP paraphrase is 7.4, whereas
it is 2.4 in GPT-generated paraphrases). In addition,
PP paraphrase alone is less natural and less under-
standable to humans.1 At the end, we validate the
paraphrasing results from SUBGRAPH-GPT, and
incorporate them into the following experiments.

1One low-scored example of the DP paraphrase: stirred
egg and water and black pepper and garlic granules.
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Figure 3: GPT-3 Prompt templates for the PREFIXP-GPT (top) and the SUBGRAPH-GPT (bottom).

5 Experiment 2: End-to-end DP

In this section, we present experiments of the task
for automatic generation of the DP text. we ex-
plore baselines from language models and provide
further insights on our data. We formalize DP gen-
eration as the task of identifying textual event men-
tions from cooking recipe text as well as their asso-
ciated hidden entities or text mentions.

Experiment Setup We use the recent sequence-
to-sequence generation model T5 (Raffel et al.,
2020) as the baseline. We set the output sequence
to be ‘label-enclosed’ text with special symbols to
mark up the patterns that can be effectively pro-
cessed by the models (Zhai et al., 2022). An exam-
ple sequence is shown in Figure 4. We randomly
sample 80 recipes for training and hold out 20 for
testing. Model performance was evaluated using
F1-score. We fine-tune the T5-base model on the
training set, and leverage the effect from either us-
ing single sentence or aggregated sentences as the
input sequence, and using additional recipe data
for the augmentation.

Model Details We fine-tune the T5 text genera-
tion model (Raffel et al., 2020) to perform the task
on the training set with a maximum of 512 input
and out tokens. For each experiment run, we fine-

Figure 4: Example of T5 model input and output for
DP generation task. Each cooking role is wrapped by a
pair of curly brackets ({...}). Cooking roles at the same
position are separated by hashtags (#).

tune T5-BASE model for 8 epoches on 4 NVIDIA
Titan Xp GPUs. It took roughly an hour to finish
the training 2. For the augumentation setting, we
map the ingredient entities that are linked with the
PARTICIPANT-OF and RESULT-OF relations from
the R2VQ dataset (Tu et al., 2022a) to the BEGIN-
NING and ENDING subevents. R2VQ didn’t assume
the event participant/result is necessary so the map-
ping can only recover partial annotations under our
subevent definition. In practce, we first use the
entities and mapped relations from the 900 recipes
as the “silver” data to pretrain the T5 model, and
then fine-tune/train the pretrained T5 with the 80
recipes from the CUTL dataset.

2training script adopted from https://huggingfac
e.co/valhalla/t5-base-qa-qg-hl

https://huggingface.co/valhalla/t5-base-qa-qg-hl
https://huggingface.co/valhalla/t5-base-qa-qg-hl
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SINGLE-T5 AGG.-T5 AGG.+AUG.-T5
Label E. H. E. H. E. H. Count
TOOL 71.42 60.28 72.63 61.59 75.09 64.50 73
HABITAT 73.62 64.28 73.87 64.69 80.93 68.69 129
INGREDIENT (beginning) 81.33 31.92 82.18 32.63 88.22 32.13 405
INGREDIENT (ending) 60.03 44.68 59.13 45.59 59.53 46.19 221
ALL 73.57 42.56 73.89 43.64 78.27 44.43 828

Table 4: DP generation results from T5 under different settings. F1 score is reported for both explicit (E.) and hidden
(H.) entities. SINGLE-T5 uses one sentence as single model input; AGG.-T5 aggregates every three continuous
sentences as single input and only evaluates on the third sentence from each input; AGG.+AUG.-T5 uses the rest of
900 R2VQ recipes as augmented data for training.

Results Table 4 shows the model results on the
DP generation task. Compared to SINGLE-T5,
AGG.-T5 gains a better performance (73.9/43.6
F1), suggesting the importance of contextual in-
formation from previous sentences in procedural
text. AGG.+AUG.-T5 performs the best overall
(78.3/44.3 F1 F1) due to the additional data from
the R2VQ annotation. For individual labels, iden-
tifying hidden entities are still challenging to the
baseline model, especially for the INGREDIENT.
AGG.+AUG.-T5 performs worse on hidden begin-
ning ingredients than explicit ones by a large mar-
gin (53.1 F1). Compared to the hidden TOOL and
HABITAT, hidden INGREDIENT has more variants
from the context of DP events (e.g., onions, onion
slices, sauted onions, etc). In addition, each DP
event can have multiple beginning or ending in-
gredients (e.g., mix water and flour), which also
increases the difficulty of the task.

Overall, the above experiment shows that the
inference and reasoning over all the hidden text
remains a very challenging task to current large lan-
guage models. For our data specifically, the higher
ratio of the hidden entities and the entity variance
from the dense paraphrasing makes it a challenging
task to the model. Attempts to improve the results
may include multi-task learning to generate entity
types and values separately, and iterative training to
utilize the data more efficiently. We further explore
the DP method and data by showing the case study
on out-of-domain DP text generation and GPT-3
paraphrasing.

6 Case Study

6.1 Out-of-Domain DP Modeling
We explore the scenarios that the DP strategy and
datasets can be adapted to raw data in the same
style (e.g., procedural text) but out of the domain
under a transfer learning setting. We show a case

study of the results by applying the DP generation
model that is fine-tuned on our training set to Wiki-
How articles. For this experiment, we use the arti-
cles from the WikiHow corpus curated by (Zhang
et al., 2020) that is originally for the goal-step in-
ference tasks. Specifically, we pick four articles
from different domains and apply the fine-tuned
DP generation model from §5 on these articles.

The generation results on the four unseen Wiki-
How articles are shown in Figure 5. The first article
is an in-domain recipe (shortened in the Figure),
so the model performs very well on identifying the
relations and hidden entities. The ingredient enti-
ties also show the subevent state change through
sentences (e.g., fried arepas to baked arepas). The
results on the second article shows the effectiveness
of the DP strategy being applied to out-of-domain
data. Our defined DP event structure can be natu-
rally transferred to text with clear steps and inter-
mediate goals (e.g., Mix a mild cleaner with warm
water). The model could mispredict the actual val-
ues of the hidden entities due to the limitations from
the domain-specific vocabulary inventory. E.g., the
predicted hidden entity is oil from the sentence

“Scrub down the brush ...”. The subevent entity
paraphrasing, however, is still effective. For exam-
ple, the hidden result ingredient of the event mix is
cleaner water. Similarly in the last sentence, we
are able to generate rinsed brush that carries the
subevent state effectively.

Compared to the first two, we find the last two
articles to be more challenging to the model. Al-
though the text is short, the third article involves
rather complex spatial actions (e.g., snap off, peel
downward, etc.) that may confuse the model. The
part-whole relations of entities (e.g., banana vs.
skin vs. stem) can also lead to semantically ambigu-
ous subevent paraphrases such as snapped stem /
banana, peeled skin / banana. The last article is
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Figure 5: DP generation on example WikiHow articles.
The left shows the article title and steps; the right shows
the model output. Green spans mark the entities and
relations; red spans mark the paraphrased entities.

different from the others in the sense that it has a
less clear step-goal structure and the events are not
actions interacting with physical objects. These
differences make texts of this type less suitable to
the proposed method. In general, the case study
shows the usefulness of the DP strategy and the
dataset we created under a transfer learning sce-
nario to procedural texts with the similar format.
Future work includes expanding the DP evaluation
on general procedural texts so that a quantitative
study can be conducted.

6.2 Subgraph for GPT-3 Paraphrasing

We briefly characterize the common differences
in the output paraphrases between PREFIXP-GPT
and SUBGRAPH-GPT, and present several exam-
ples in Table 5. In comparison, PREFIXP-GPT
tends to generate paraphrase as noun-noun compo-
nents, while PREFIXP-GPT tends to generate an
adjectival verb as the modifier to the entity. Score-
wise, both output format are acceptable, but minor
syntactic errors (mushroom[s] slices) and semantic
ambiguity (meat [mixture]) are spotted from the
NN components. PREFIXP-GPT also has a strong
tendency to rewrite or hallucinate new text. This
may be due to the fact that prefix-paraphrase has
no special symbol or text structure to regulate the
generation. Compared to SUBGRAPH-GPT which
preserves the event type and structure in the model
input, PREFIXP-GPT uses the ‘flattened’ text that
may put extra weight on the local event that is clos-
est to the entity to be paraphrased. Consider the
gold salad from the table. Based on the event text
season with salt and pepper, the PREFIXP-GPT
generates the realization such as seasoned pepper

GOLD PREFIXP-GPT SUBGRAPH-GPT

NN Comp.
mushrooms mushrooms slices (4) sliced mushrooms (5)

cooked bacon bacon bites (5) chopped bacon (5)
meat meat mixture (4) sauteed meat (5)

Hallucination
sewian fried noodles (2) fried sewian (5)

meat ground beef (4) minced meat (4)
soup stew (3) vegetable broth (4)

Locality
fish marinated chunks (4) marinated fish (5)

salad vinaigrette (2) salad (5)

Table 5: Common difference between the output para-
phrase from PREFIXP-GPT and SUBGRAPH-GPT, and
their intrinsic scores.

and salt and combined lemon juice and ..., whic
features the latest event and entities. A subgraph
allows one to trace all the visited events and thus
increase the model reasoning capability.

6.3 Does GPT-4 solve everything?
We further explore the performance of different
GPT models on the the task of paraphrase gener-
ation. In table 6, we select five examples which
SUBGRAPH-GPT performs poorly on (with an in-
trinsic score of 3 or lower), and anecdotally com-
pare the results with the paraphrases generated by
the latest GPT-4 (SUBGRAPH-GPT4). In the first
example, both GPT-3 and GPT-4 generate the same
incorrect paraphrase. This might be due to the
model has been trained biased towards a strong con-
nection between the action squeeze and the juice.
GPT-4 also doesn’t generate ideal paraphrase on
the second and the third example due to the noise
from the context, e.g., mussels or peas is a more
salient feature than the water. However, it is able
to provide more details in the paraphrases (cooked
peas v.s. peas). On the last two examples, GPT-4
performs better than GPT-3 by generating more ac-
curate entities (e.g., fillet v.s. fish) and richer states
(seasoned. marinated).

7 Conclusion

In this paper we define Dense Paraphrasing (DP),
the task of enriching a text fragment (lexeme,
phrase, or sentence) such that contextual ambigui-
ties are eliminated, contextual anchors or variables
are supplied, and any implied arguments are made
textually explicit. We outlined our DP procedure
that can be applied to enrich the textual dataset, and
provided insights on the transformer-based mod-
els as baselines for the DP text generation task.
We presented the case study for generating DP un-
der the out-of-domain setting, and the analysis on
paraphrasing from event graphs, which show the
feasibility of modeling DP and the challenges it
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CONTEXT
SUBGRAPH-
GPT

SUBGRAPH-
GPT4 GOLD

Prepared horseradish, squeeze it dry through a kitchen towel to get
[SQUEEZE.RES]. Combine the horseradish, sour cream ... horseradish juice horseradish juice horseradish

Wash mussels and de-beard, bring a pot of water to a boil to get [BOIL.RES]
and cook the mussels ... cooked mussels de-bearded and

cooked mussels boiled water

In a large pot, bring peas and water to boil over high heat and reduce to
simmer until tender to get [SIMMER.RES]. peas cooked peas soup

Add the salt and pepper ... place the fillets under the broiler, about 2 inches
from the heat source and cook for 2 minutes to get [COOK.RES] fish seasoned cooked

fillets
salmon
fillets

Cut chicken thighs in half ...Combine the paste with the chicken and mix
well; refrigerate several hours or overnight to get [REFRIGERATE.RES] chicken patties marinated

chicken chicken

Table 6: Output paraphrase comparison between different GPT models on five examples. Paraphrases are generated
for entities represented as [VERB.RES].

poses to current large language models.
We believe that DP has the potential to help in

a broad range of NLP applications. In particular,
applications and tasks involving abstractive infer-
encing can benefit from the dynamic tracking and
decontextualized redescriptions of entities appear-
ing in a coreference chain. The notion of following
an entity as it changes through a developing narra-
tive or text can be computationally encoded using
the technique described here, giving rise to a his-
tory or biographical model of an entity. We hope to
extend the DP procedure to include creating vector
representations of DP that can be fit into a broader
range of computational models. We also intend
to include reference to the “vertical typing” of an
expression (type inheritance) from online resources
with definitional texts, such as Wikipedia or Word-
Net (e.g., onion ∈ vegetable, poodles ∈ dogs). This
would further enhance the utility of the resulting
DP’ed data for logical inference tasks.

References
Regina Barzilay and Michael Elhadad. 1999. Using

lexical chains for text summarization. Advances in
automatic text summarization, pages 111–121.

Jonathan Berant and Percy Liang. 2014. Semantic pars-
ing via paraphrasing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1415–
1425.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One spring to rule them both: Sym-
metric amr semantic parsing and generation without
a complex pipeline. In AAAI Conference on Artificial
Intelligence.

Rahul Bhagat and Eduard Hovy. 2013. What is a para-
phrase? Computational Linguistics, 39(3):463–472.

Antoine Bosselut, Omer Levy, Ari Holtzman, Corin
Ennis, Dieter Fox, and Yejin Choi. 2017. Simulating

action dynamics with neural process networks. arXiv
preprint arXiv:1711.05313.

Michel Boyer and Guy Lapalme. 1985. Generating
paraphrases from meaning-text semantic networks.
Computational Intelligence, 1(1):103–117.

Susan Windisch Brown, Julia Bonn, Ghazaleh Kazem-
inejad, Annie Zaenen, James Pustejovsky, and
Martha Palmer. 2022. Semantic representations for
nlp using verbnet and the generative lexicon. Fron-
tiers in artificial intelligence, 5.

Susan Windisch Brown, James Pustejovsky, Annie Zae-
nen, and Martha Palmer. 2018. Integrating generative
lexicon event structures into verbnet. In Proceedings
of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018).

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Haixia Chai, Nafise Sadat Moosavi, Iryna Gurevych,
and Michael Strube. 2022. Evaluating coreference
resolvers on community-based question answering:
From rule-based to state of the art. In CRAC.

Eunsol Choi, Jennimaria Palomaki, Matthew Lamm,
Tom Kwiatkowski, Dipanjan Das, and Michael
Collins. 2021. Decontextualization: Making sen-
tences stand-alone. Transactions of the Association
for Computational Linguistics, 9:447–461.

Peter W Culicover. 1968. Paraphrase generation and
information retrieval from stored text. Mech. Transl.
Comput. Linguistics, 11(3-4):78–88.

Bhavana Dalvi, Niket Tandon, Antoine Bosselut, Wen-
tau Yih, and Peter Clark. 2019. Everything happens
for a reason: Discovering the purpose of actions in

https://doi.org/10.18653/v1/D19-1457
https://doi.org/10.18653/v1/D19-1457


48

procedural text. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 4496–4505, Hong Kong, China. Association
for Computational Linguistics.

Kaustubh D. Dhole and Christopher D. Manning. 2021.
Syn-qg: Syntactic and shallow semantic rules for
question generation.

Jacob Eisenstein, Daniel Andor, Bernd Bohnet, Michael
Collins, and David Mimno. 2022. Honest students
from untrusted teachers: Learning an interpretable
question-answering pipeline from a pretrained lan-
guage model. ArXiv, abs/2210.02498.

Yanai Elazar, Victoria Basmov, Yoav Goldberg, and
Reut Tsarfaty. 2021. Text-based np enrichment.
arXiv e-prints, pages arXiv–2109.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1608–1618.

Biaoyan Fang, Timothy Baldwin, and Karin Verspoor.
2022. What does it take to bake a cake? the
RecipeRef corpus and anaphora resolution in pro-
cedural text. In Findings of the Association for Com-
putational Linguistics: ACL 2022, pages 3481–3495,
Dublin, Ireland. Association for Computational Lin-
guistics.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony
Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent
Zhao, N. Lao, Hongrae Lee, Da-Cheng Juan, and
Kelvin Guu. 2022. Rarr: Researching and revising
what language models say, using language models.

Neil M Goldman. 1977. Sentence paraphrasing from
a conceptual base. Sentence Paraphrasing from a
Conceptual Base, pages 481–507.

Zellig S Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Zellig S Harris. 1957. Co-occurrence and transforma-
tion in linguistic structure. Language, 33(3):283–
340.
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