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Abstract

This paper reports on the shared tasks orga-
nized by the 20th IWSLT Conference. The
shared tasks address 9 scientific challenges
in spoken language translation: simultane-
ous and offline translation, automatic subti-
tling and dubbing, speech-to-speech transla-
tion, multilingual, dialect and low-resource
speech translation, and formality control. The
shared tasks attracted a total of 38 submis-
sions by 31 teams. The growing interest to-
wards spoken language translation is also wit-
nessed by the constantly increasing number
of shared task organizers and contributors to
the overview paper, almost evenly distributed
across industry and academia.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spoken
language translation (SLT). IWSLT is organized
by the Special Interest Group on Spoken Lan-
guage Translation (SIG-SLT), which is supported
by ACL, ISCA and ELRA. Like in all previous
editions (Akiba et al., 2004; Eck and Hori, 2005;
Paul, 2006; Fordyce, 2007; Paul, 2008, 2009; Paul

et al., 2010; Federico et al., 2011, 2012; Cettolo
et al., 2013, 2014, 2015, 2016, 2017; Niehues
et al., 2018, 2019; Ansari et al., 2020; Anasta-
sopoulos et al., 2021, 2022),this year’s conference
was preceded by an evaluation campaign featur-
ing shared tasks addressing scientific challenges in
SLT.

This paper reports on the 2023 IWSLT Eval-
uation Campaign, which offered the following 9
shared tasks:

• Offline SLT, with focus on speech-to-text
translation of recorded conferences and inter-
views from English to German, Japanese and
Chinese.

• Simultaneous SLT, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to German,
Japanese and Chinese.

• Automatic Subtitling, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish.

• Multilingual SLT, with focus on speech-to-
text translation of recorded scientific talks from
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Team Organization
ALEXA AI Amazon Alexa AI, USA (Vishnu et al., 2023)
APPTEK AppTek, Germany (Bahar et al., 2023)
BIGAI Beijing Institute of General Artificial Intelligence, China (Xie, 2023)
BIT Beijing Institute of Technology, China (Wang et al., 2023b)
BUT Brno University of Technology, Czechia (Kesiraju et al., 2023)
CMU Carnegie Mellon University, USA (Yan et al., 2023)
CUNI-KIT Charles University, Czechia, and KIT, Germany (Polák et al., 2023)
FBK Fondazione Bruno Kessler, Italy (Papi et al., 2023b)
GMU George Mason University, USA (Mbuya and Anastasopoulos, 2023)
HW-TSC Huawei Translation Services Center, China (Li et al., 2023; Wang et al., 2023a)

(Guo et al., 2023; Shang et al., 2023; Rao et al., 2023)
I2R Institute for Infocomm Research, A*STAR, Singapore (Huzaifah et al., 2023)
JHU Johns Hopkins University, USA (Hussein et al., 2023; Xinyuan et al., 2023)
KIT Karlsruhe Institute of Technology, Germany (Liu et al., 2023)
KU Kyoto University, Japan (Yang et al., 2023)
KU X UPSTAGE Korea University X Upstage, South Korea (Wu et al., 2023; Lee et al., 2023)
MATESUB Translated Srl, Italy (Perone, 2023)
MINETRANS U. of Sci. and Techn. of China, Tencent AI Lab, State Key Lab. of Cognitive Intelligence (Du et al., 2023)
NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2023)
NAVER NAVER Labs Europe, France (Gow-Smith et al., 2023)
NIUTRANS NiuTrans, China (Han et al., 2023)
NPU-MSXF Northwestern Polytechnical U., Nanjing U., MaShang Co., China (Song et al., 2023)
NEURODUB NeuroDub, Armenia
NEMO NVIDIA NeMo, USA(Hrinchuk et al., 2023)
ON-TRAC ON-TRAC Consortium, France (Laurent et al., 2023)
QUESPA Northeastern U, USA, U. de Pompeu Fabra, Spain, CMU, USA(Ortega et al., 2023)
UPC Universitat Politècnica de Catalunya, Spain (Tsiamas et al., 2023)
SRI-B Samsung R&D Institute Bangalore, India (Radhakrishnan et al., 2023)
UCSC U. of California, Santa Cruz, USA (Vakharia et al., 2023)
UM-DFKI U. of Malta, Malta, and DFKI, Germany (Williams et al., 2023)
USTC U. of Science and Technology of China (Deng et al., 2023; Zhou et al., 2023)
XIAOMI Xiaomi AI Lab, China (Huang et al., 2023)

Table 1: List of Participants

English into Arabic, Chinese, Dutch, French,
German, Japanese, Farsi, Portuguese, Russian,
and Turkish.

• Speech-to-speech translation, focusing on
natural-speech to synthetic-speech translation
of recorded utterances from English to Chinese.

• Automatic Dubbing, focusing on dubbing of
short video clips from German to English.

• Dialect SLT, focusing on speech translation of
recorded utterances from Tunisian Arabic to
English.

• Low-resource SLT, focusing on speech trans-
lation of recorded utterances from Irish to En-
glish, Marathi to Hindi, Maltese to English,
Pashto to French, Tamasheq to French, and
Quechua to Spanish.

• Formality Control for SLT, focusing on for-
mality/register control for spoken language
translation from English to Korean, Viet-
namese, EU Portuguese, and Russian.

The shared tasks attracted 38 submissions by 31
teams (see Table 1) representing both academic
and industrial organizations. The following sec-
tions report on each shared task in detail, in par-
ticular: the goal and automatic metrics adopted for
the task, the data used for training and testing data,
the received submissions and the summary of re-
sults. Detailed results for some of the shared tasks
are reported in a corresponding appendix.

2 Offline SLT

Offline speech translation is the task of translating
audio speech in one language into text in a differ-
ent target language, without any specific time or
structural constraints (as, for instance, in the si-
multaneous, subtitling, and dubbing tasks). Un-
der this general problem definition, the goal of
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the offline ST track (one of the speech tasks with
the longest tradition at the IWSLT campaign) is to
constantly challenge a technology in rapid evolu-
tion by gradually introducing novelty aspects that
raise the difficulty bar.

2.1 Challenge
In continuity with last year, participants
were given three sub-tasks correspond-
ing to three language directions, namely
English→German/Japanese/Chinese. Partici-
pation was allowed both with cascade architec-
tures combining automatic speech recognition
(ASR) and machine translation (MT) systems
as core components, or by means of end-to-end
approaches that directly translate the input speech
without intermediate symbolic representations.
Also this year, one of the main objectives was
indeed to measure the performance difference
between the two paradigms, a gap that recent
research (Bentivogli et al., 2021) and IWSLT find-
ings (Ansari et al., 2020; Anastasopoulos et al.,
2021, 2022) indicate as gradually decreasing.

The other main objective of this round was to
assess the ability of SLT technology to deal with
complex scenarios involving different types of in-
put characterized by phenomena like spontaneous
speech, noisy audio conditions and overlapping
speakers. In light of this, the main novelty of the
2022 offline SLT task lies in a richer variety of
speech data to be processed. To this aim, in addi-
tion to the classic TED talks test set, two novel test
sets were released:

• ACL presentations, in which a single
speaker is presenting on a stage. Although
similar to the TED talks scenario, additional
challenges posed by this test set include the
presence of non-native speakers, different ac-
cents, variable recording quality, terminol-
ogy, and controlled interactions with a second
speaker.

• Press conferences and interviews, in which
two persons interact on different topics.
Inherent challenges, therefore, include the
presence of spontaneous speech, non-native
speakers, different accents, and controlled in-
teraction with a second speaker.

All the test sets were used for evaluation in
the English-German sub-task, while only TED
Talks and ACL presentations were used to test the

submissions to the English-Japanese and English-
Chinese sub-tasks.

2.2 Data and Metrics

Training and development data. Participants
were offered the possibility to submit systems built
under three training data conditions:

1. Constrained: the allowed training data is
limited to a medium-sized framework in
order to keep the training time and re-
source requirements manageable. The com-
plete list1 of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) does not include any pre-
trained language model.

2. Constrained with large language models
(constrained+LLM ): in addition to all the con-
strained resources, a restricted selection1 of
large language models is allowed to give par-
ticipants the possibility to leverage large lan-
guage models and medium-sized resources.

3. Unconstrained: any resource, pre-trained
language models included, can be used with
the exception of evaluation sets. This setup is
proposed to allow the participation of teams
equipped with high computational power and
effective in-house solutions built on addi-
tional resources.

The development data allowed under the con-
strained condition consist of the dev set from
IWSLT 2010, as well as the test sets used for
the 2010, 2013-2015 and 2018-2020 IWSLT cam-
paigns. Besides this TED-derived material, ad-
ditional development data were released to cover
the two new scenarios included in this round of
evaluation. For the ACL domain, 5 presentations
from the ACL 2022 conference with translations
and transcriptions were provided. Due to addi-
tional constraints, these references were gener-
ated by human post-editing of automatic transcrip-
tions and translation. For the press conferences
and interviews domain, 12 videos (total duration:
1h:3m) were selected from publicly available in-
terviews from the Multimedia Centre of the Euro-
pean Parliament (EPTV)2.

1See the IWSLT 2023 offline track web page: https:
//iwslt.org/2023/offline

2https://multimedia.europarl.europa.
eu
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Test data. Three new test sets were created for
the three language directions. The new test sets
include heterogeneous material drawn from each
scenario. For the traditional TED scenario, a new
set of 42 talks not included in the current public
release of MuST-C was selected to build the en-de
test set.3 Starting from this material, the talks for
which Japanese and Chinese translations are avail-
able were selected to build the en-zh and en-ja test
sets (respectively, 38 and 37 talks). Similar to the
2021 and 2022 editions, we consider two different
types of target-language references, namely:

• The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions
to adhere to the TED subtitling guidelines.4

This makes them less literal compared to
standard, unconstrained translations;

• Unconstrained translations. These references
were created from scratch5 by adhering to the
usual translation guidelines. They are hence
exact translations (i.e. literal and with proper
punctuation).

For the ACL presentation scenario, paper pre-
sentations from ACL 2022 were transcribed and
translated into the target languages. A detailed de-
scription of the data set can be found in Salesky
et al. (2023). There are 5 presentations in each of
the dev and test sets with a total duration 1h per
split. Talks were selected to include diverse paper
topics and speaker backgrounds. This test set is
shared with the Multilingual task (§5).

For the press conferences and interviews sce-
nario, the test set comprises 10 EPTV videos of
variable duration (6m on average), amounting to a
total of 1h:1m. The details of the new test sets are
reported in Table 2.

Metrics. Systems were evaluated with respect
to their capability to produce translations similar
to the target-language references. The similarity
was measured in terms of BLEU and COMET (Rei
et al., 2020a) metrics. The submitted runs were

3This set of 42 TED talks is also referred to as the
“Common” test set (not to be confused with MuST-C “tst-
COMMON”) because it serves in both Offline and Simul-
taneous https://iwslt.org/2023/simultaneous
tasks.

4http://www.ted.com/participate/
translate/subtitling-tips

5We would like to thank Meta for providing us with this
new set of references.

Talks / Videos Duration
English-German
TED 42 3h:47m:53s
ACL 5 59m:22s
EPTV 10 1h:1m
English-Chinese
TED 37 3h:2m:22s
ACL 5 59m:22s
English-Japanese
TED 38 3h:19m:34s
ACL 5 59m:22s

Table 2: Statistics of the official test sets for the IWSLT
2023 offline speech translation task.

ranked based on the BLEU calculated on the con-
catenation of the three test sets by using automatic
resegmentation6 of the hypotheses based on the
reference translations. For the BLEU computed
on the concatenation of the three test sets, the new
unconstrained ones have been used for the TED
data. As observed on IWSLT 2022 manual eval-
uation of simultaneous speech-to-text translation
(Macháček et al., 2023), COMET is correlating
with human judgments best and BLEU correlation
is also satisfactory. Moreover, to meet the requests
of last year’s participants, a human evaluation was
performed on the best-performing submission of
each participant.

2.3 Submissions
This year, 10 teams participated in the offline task,
submitting a total of 37 runs. Table 3 provides a
breakdown of the participation in each sub-task
showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained+LLM , unconstrained), the
number of submitted runs obtained with cascade
and direct systems.

• BIGAI (Xie, 2023) participated both with
cascade and direct models for en-de, en-ja,
and en-zh translations, which were trained
under the constrained+LLM condition.
The cascade is the concatenation of an
ASR model and an MT system. The ASR
consists of the first 12 Transformer layers

6Performed with mwerSegmenter - https:
//www-i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz
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English-German
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 1 Cascade 1 Cascade 2
6 16 2

Direct 1
12

Direct 11
2

Direct -
English-Chinese

Participants Runs Constrained Constrained+LLM Unconstrained
Cascade 3 Cascade 1 Cascade 7

7 16 5
Direct 2

3
Direct 2

8
Direct 1

English-Japanese
Participants Runs Constrained Constrained+LLM Unconstrained

Cascade 1 Cascade 1 Cascade 1
3 5 2

Direct 1
2

Direct 1
1

Direct -

Table 3: Breakdown of the participation in each sub-task (English→German, English→Chinese,
English→Japanese) of the IWSLT offline ST track. For each language direction, we report the number of par-
ticipants, the number of submitted runs and, for each training data condition (constrained, constrained+LLM , un-
constrained), the number of submitted runs obtained with cascade and direct systems.

from wav2vec2-large-960h-lv60-self and
an adapter model to compress the feature
vectors. Transcripts are obtained through
a CTC greedy decoding step. The MT is
based on mbart-large-50-one-to-many-mmt.
The direct model consists of two separate
encoders for speech and text, followed by
a shared decoder. The speech and text
encoders are respectively based on the
cascade ASR and MT encoders. An adapter
model is introduced to connect the two
encoders. The direct model combines the
cross entropy loss for MT and the CTC loss
for ASR, together with a hyperparameter to
balance the weights between the two losses.
The training procedure involves dedicated
fine-tuning steps, data filtering and audio
re-segmentation into shorter segments.

• I2R (Huzaifah et al., 2023) participated
with a direct approach for en-de trans-
lation, which was trained under the
constrained+LLMcondition. The model
consists of two separate encoders for speech
and text, followed by a shared encoder and
a decoder. The speech encoder is initialised
with WavLM large, while DeltaLM base is
used to initialise the text encoder, the shared
encoder and the decoder. To leverage both
text and speech sources, the shared encoder
is induced to learn a joint multimodal repre-
sentation obtained through forced alignment
of speech and text data. The resulting mixed

speech-text representation is passed to the
shared encoder initially pre-trained on text
data only. A DeltaLM-based MT model
incrementally trained on in-domain and
out-of-domain data is used as a teacher
during fine-tuning of the ST system. The
ST model is built on a mix of ASR, ST and
synthetic data. Additional techniques applied
include on-the-fly audio augmentation to
increase robustness to variable audio quality,
domain tagging to condition the ST output
to the different output styles of the test data,
and ST model ensembling.

• HW-TSC (Li et al., 2023) participated with
cascade systems for all language directions
and in all three training data conditions. The
ASR model used for the constrained train-
ing condition is the Conformer. For the
constrained+LLM condition, the encoder of
wav2vec2 and the decoder of mBART50 are
combined to fine-tune on all data an ASR
model trained on MuST-C. Whisper (Rad-
ford et al., 2022), fine-tuned on MuST-C, is
instead used for the unconstrained training
condition. All models are built using au-
dio inputs augmented with SpecAugment and
CTC. The MT component is a Transformer-
based model trained in a one-to-many mul-
tilingual fashion. It exploits data filter-
ing and data augmentation techniques, com-
bined with dropout regularization and do-
main adaptation methods, as well as solutions
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to increase robustness to ASR noise (through
synthetic noise generation and data augmen-
tation).

• MINETRANS (Du et al., 2023) participated
with en-zh cascade systems trained under
constrained and unconstrained conditions.
The submitted runs are obtained with a
pipeline of ASR, punctuation recognition,
and MT components. The ASR is an RNN-
Transducer. For the unconstrained condi-
tion, GigaSpeech is added to the training
data allowed in the constrained setting. In
both conditions, pre-processing and filter-
ing techniques are applied to improve data
quality, while SpecAugment is used for data
augmentation. Before being passed to the
MT component, the unpunctuated ASR out-
put is processed by means of a BERT-based
punctuation recognition model. For the MT
component, two strategies are implemented.
The first one relies on different Transformer-
based models for supervised training. A
base Transformer and an M2M 100 model
are used for the constrained condition. A
translation model trained on additional in-
house corpora is used for the unconstrained
condition. The second strategy adopted for
the MT component relies on a large language
model (Chat-GPT) for prompt-guided trans-
lation.

• NIUTRANS (Han et al., 2023) participated
with a direct en-zh system trained under
the constrained condition. It consists of
two separate encoders for speech and text
with an adapter in between, followed by a
decoder. The speech encoder is pre-trained
with an ASR encoder, while the textual
encoder and the decoder with pre-trained
MT components. Different architectures
with variable size were tested both for ASR
(enhanced with CTC loss and inter-CTC loss
to speed up convergence) and MT (used to
generate pseudo-references so as to increase
the size of the SLT data). The final system
is an ensemble aiming at maximizing the
diversity between models.

• NEURODUB7 participated with a cascade

7Unofficial participant, as no system paper is available.

en-de system trained under the unconstrained
condition. It consists of a 4-staged process
including the ASR, the punctuation module
performing both sentence extraction and
punctuation placement, the speaker- and
gender distinction component, and the
translation model. Every stage is trained on
the crawled data from the web.

• NEMO (Hrinchuk et al., 2023) participated
with direct systems for all language di-
rections in the constrained training data
condition. Pre-trained models and synthetic
training data are exploited in different ways
to cope with the scarcity of direct ST data. A
Conformer-based ASR model trained on all
allowed speech-to-text data is used to initial-
ize the SLT encoder. A Transformer-based
NMT model trained on all allowed parallel
data and fine-tuned on TED talks is used to
generate synthetic translation alternatives for
all available speech-to-text and text-to-text
data. A TTS model based on Fast Pitch
(Łańcucki, 2021) and trained on the English
transcripts of all TED-derived data is used
to generate the synthetic speech version of
English texts in the available text corpora.
The submitted SLT systems are based on
a Conformer-based encoder followed by a
Transformer decoder trained on this mix
of (gold and synthetic) speech-to-text and
text-to-text data.

• XIAOMI (Huang et al., 2023) participated
with a direct en-zh system trained under the
constrained+LLM condition. It consists of
a speech encoder, a text encoder, and a text
decoder, with all parameters initialized using
the pre-trained HuBERT and mBART mod-
els. The speech encoder is composed of a
feature extractor based on convolutional neu-
ral networks and a Transformer encoder. In
addition to the cross-entropy loss, ASR, MT,
and a contrastive loss, which tries to learn an
encoder that produces similar representations
for similar instances independently from the
modalities, are added. Self-training is also
used to leverage unlabelled data. In addition
to the allowed datasets, a large set of pseudo
references are generated translating the
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transcripts of the ASR corpora. During train-
ing, a second fine-tuning is performed on
MuST-C as in-domain data. The final system
is an ensemble of the two best-performing
models.

• UPC (Tsiamas et al., 2023) participated
with a direct en-de system trained under the
constrained+LLM condition. It consists of
a speech encoder, a textual encoder, and a
text decoder. The speech encoder includes
a semantic encoder to align speech and
text encoder representations. The coupling
modules include the CTC and Optimal
Transport (OT) losses to the outputs of the
acoustic and semantic encoders, and the
addition of a second auxiliary OT loss for
the inputs of the semantic encoder. The
speech encoder is based on wav2vec 2.0,
while the textual encoder uses mBART50.
Knowledge distillation is used to generate
additional data to fine-tune part of the SLT
model architecture (the feature extractor, the
acoustic encoder, and the CTC module are
frozen during fine-tuning).

USTC (Zhou et al., 2023) participated with
cascade and direct en-zh models trained un-
der the unconstrained condition. For the ASR
of the cascade, two approaches are imple-
mented. The first one exploits a fusion mod-
els trained on the allowed data expanded with
speed perturbation, oversampling, concate-
nation of adjacent voices and synthetic data
generation via TTS. The second approach is
based on Whisper large (Radford et al., 2022)
and SHAS for audio segmentation. The MT
component of the cascade system exploits an
ensemble of Transformer-based models en-
hanced with knowledge distillation, domain
adaptation and robust training strategies. For
direct SLT, two approaches are implemented.
The first one is an encoder-decoder initial-
ized with the ASR and MT models of the
cascade. The second approach is a Stacked
Acoustic-and-Textual Encoding extension of
SATE (Xu et al., 2021). The final sub-
missions also include ensembles obtained by
combining cascade and direct systems.

2.4 Results

Also this year, the submissions to the IWSLT Of-
fline translation task were evaluated both with au-
tomatic metrics and through human evaluation.
The results for each sub-task are shown in detail
in the Appendix.

2.4.1 Automatic Evaluation
The results for each of the language pairs are
shown in the tables in Appendix B.1. We present
results for English-German (Table 14), English-
Chinese (Table 16) and English-Japanese (Table
15). The evaluation was carried out in terms of
BLEU (the primary metric, in continuity with pre-
vious years), and COMET. We report individual
scores for the three (or two, as in the case of en-ja
and en-zh) different test sets as well as metrics cal-
culated on the concatenation of the different test
sets. For each sub-task, systems are ranked based
on the BLEU score computed on the concatenated
test sets.

End-to-End vs Cascaded This year the cas-
caded systems performed in general better than
the end-to-end systems. For English-to-German,
for nearly all metrics, the cascaded systems are al-
ways ranked best. For English-to-Japanese, the
results show a similar situation to English-to-
German, with the cascade systems outperforming
the end-to-end model. The supremacy of the cas-
cade models is confirmed by all the metrics, with
a clear gap in performance between the worst cas-
cade and the best end-to-end models. For English-
to-Chinese, the picture is not as clear. However,
the only participant who submitted a primary sys-
tem using the cascaded and one using the end-
to-end paradigm (USTC), the cascaded performed
better in all metrics.

Metrics For English-to-German, in general, the
results of the BLEU metric correlate quite well
with the scores of the COMET metric. Except for
relatively small changes, e.g. the order is different
for the different HW-TSC systems. One excep-
tion is the submissions by UPC and NeMo that are
ranked differently in the two metrics. Therefore, a
comparison to the human evaluation will be inter-
esting. In the English-to-Japanese task, the scores
of the HW-TSC systems are very close to each
other and some swaps are visible between BLEU
and COMET. However, the changes are only re-
lated to the HW-TSC systems and do not mod-
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ify the overall evaluation of the systems. In the
English-to-Chinese task, there are two situations
where the metrics differ significantly. The rank-
ing for USTC end-to-end compared to the HW-
TSC systems is different with respect to COMET,
which rewards the HW-TSC submissions. A sim-
ilar situation is visible for NiuTrans and Xiaomi,
where BLEU favors the NiuTrans translations,
while COMET assigns higher scores, and ranking,
to the Xiaomi submissions.

Data conditions For the different data condi-
tions, the gains by using additional large language
models or additional data are not clear. HW-
TSC submitted three primary systems for each
data condition and they all perform very similarly.
However, for en-zh the unconstrained system by
USTC was clearly the best and for en-de the best
system except HW-TSC was also an unconstrained
one. The additional benefit of the pre-trained mod-
els is even less clear. There is no clear picture that
the systems with or without this technology per-
form better.

Domains One new aspect this year is the evalu-
ation of the systems on three different test sets and
domains. First of all, the absolute performance on
the different domains is quite different. The sys-
tems perform clearly worse on the EPTV test sets.
For the relationship between ACL and TED, the
picture is not as clear. While the BLEU scores
on ACL are higher, the COMET scores are lower.
Only for English-to-Japanese, both metrics are
higher on the ACL test set. One explanation could
be that the references for the ACL talks are gen-
erated by post-editing an MT output. This could
indicate that the post-edited references inflate the
BLEU score, while the COMET score seems to be
more robust to this phenomenon. When compar-
ing the different systems, the tendency is for all
cases the same. However, some perform slightly
better in one condition. For example, the end-
to-end system from USTC performs very well on
TED compared to other systems but less well on
ACL.

2.4.2 Human Evaluation

At the time of writing, human evaluation is still in
progress. Its results will be reported at the confer-
ence and they will appear in the updated version
of this paper in Appendix A.

3 Simultaneous SLT

Simultaneous speech translation means the system
starts translating before the speaker finishes the
sentence. The task is essential to enable people
to communicate seamlessly across different back-
grounds, in low-latency scenarios such as transla-
tion in international conferences or travel.

This year, the task included two tracks: speech-
to-text and speech-to-speech, covering three lan-
guage directions: English to German, Chinese and
Japanese.

3.1 Challenge
There are two major updates compared with pre-
vious years:

• Removal of the text-to-text track. The task
focuses on the real-world live-translation set-
ting, where the speech is the input medium.

• Addition of a speech-to-speech track. Trans-
lation into synthetic speech has gained in-
creasing attention within the research com-
munity, given its potential application to real-
time conversations.

To simplify the shared task, a single latency
constraint is introduced for each track: 2 sec-
onds of Average Lagging for speech-to-text, and
2.5 seconds of starting offset for speech-to-speech.
The participants can submit no more than one
system per track / language direction, as long as
the latency of the system is under the constraint.
The latency of the system is qualified on the open
MuST-C tst-COMMON test set (Di Gangi et al.,
2019a).

The participants made submissions in a format
of docker images, which were later run by orga-
nizers on the blind-test set in a controllable en-
vironment. An example of implementation was
provided with the SimulEval toolkit (Ma et al.,
2020a).

3.2 Data
The training data condition of the simultaneous
task follows “constrained with large language
models” setting in the Offline translation task, as
described in Section 2.2

The test data has two parts:

Common TED talks. This is the the same as in
the Offline task, as described in Section 2.2. For
English to German, Chinese and Japanese.
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Non-Native see Appendix A.1.1. For English to
German.

3.3 Evaluation
Two attributes are evaluated in the simultaneous
task: quality and latency.

For quality, we conducted both automatic and
human evaluation. BLEU score (Papineni et al.,
2002a) is used for automatic quality evaluation.
For speech output, the BLEU score is computed
on the transcripts from Whisper (Radford et al.,
2022) ASR model. The ranking of the submis-
sion is based on the BLEU score on the Com-
mon blind test set. Furthermore, we conducted
BLASER (Chen et al., 2022) evaluation on the
speech output. We also conducted human evalu-
ation on speech-to-text translation quality, includ-
ing general human evaluation for all three lan-
guage pairs, and task specific human evaluation on
German and Japanese outputs.

For latency, we only conducted automatic eval-
uation. We report the following metrics for each
speech-to-text systems.

• Average Lagging (AL; Ma et al., 2019,
2020b)

• Length Adaptive Average Lagging (LAAL;
Polák et al., 2022; Papi et al., 2022)

• Average Token Delay (ATD; Kano et al.,
2023)

• Average Proportion (AP; Cho and Esipova,
2016)

• Differentiable Average Lagging (DAL;
Cherry and Foster, 2019)

We also measured the computation aware version
of the latency metrics, as described by Ma et al.
(2020b). However, due to the new synchronized
SimulEval agent pipeline design, the actual com-
putation aware latency can be smaller with care-
fully designed parallelism.

For speech-to-speech systems, we report start-
offset and end-offset. The latency metrics will not
be used for ranking.

3.4 Submissions
The simultaneous shared task received submis-
sions from six teams, whereas all the teams par-
ticipated in at least one language direction in
speech-to-text translation. Among the teams, five

teams entered the English-to-German track; four
teams entered the English-to-Chinese track; three
teams entered the English-to-Japanese track. Even
though this year is our first time introducing the
simultaneous speech-to-speech track, three teams
out of six, submitted speech-to-speech systems.

• CMU(Yan et al., 2023) participated in both
the speech-to-text and speech-to-speech
tracks for English-German translation.
Their speech-to-text model combined
self-supervised speech representations, a
Conformer encoder, and an mBART decoder.
In addition to the cross-entropy attentional
loss, the translation model was also trained
with CTC objectives. They used machine
translation pseudo labeling for data aug-
mentation. Simultaneous decoding was
achieved by chunking the speech signals
and employing incremental beam search.
For their speech-to-speech system, they
incorporated a VITS-based text-to-speech
model, which was trained separately.

• HW-TSC (Guo et al., 2023; Shang et al.,
2023) participated in both the speech-to-
text and speech-to-speech tracks for all
three language directions. Their model was
a cascaded system that combined an U2
ASR, a Transformer-based machine trans-
lation model, and a VITS-based text-to-
speech model for speech-to-speech transla-
tion. The MT model was multilingual and
offered translation in all three directions by
conditioning on language embeddings. For
data augmentation, they adopted data di-
versification and forward translation tech-
niques. Their simultaneous decoding policy
employed chunk-based incremental decod-
ing with stable hypotheses detection. They
also utilized additional TTS models for the
speech-to-speech track.

• NAIST(Fukuda et al., 2023) participated in
the speech-to-text translation direction for
all three language directions and English-to-
Japanese speech-to-speech translation. Their
system consisted of a HuBERT encoder and
an mBART decoder. They employed three
techniques to improve translation quality:
inter-connection to combine pre-trained rep-
resentations, prefix alignment fine-tuning for
simultaneous decoding, and local agreement
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to find stable prefix hypotheses. They also
utilized an additional Tacotron2-based TTS
model for speech-to-speech translation with
the wait-k decoding policy.

• FBK(Papi et al., 2023b) participated in the
English-to-German speech-to-text translation
track, using an end-to-end Conformer-based
speech-to-text model. Considering computa-
tional latency, their focus was on efficient us-
age of offline models. They employed three
simultaneous policies, including local agree-
ment, encoder-decoder attention, and EDATT
v2, to achieve this.

• CUNI-KIT(Polák et al., 2023) partici-
pated in the English-to-German speech-to-
text translation track. Their system utilized
WavLM and mBART as the base framework.
The key highlights of their system were in the
decoding strategy and simultaneous policies.
They applied empirical hypotheses filtering
during decoding and adopted CTC to detect
the completion of block inference.

• XIAOMI(Huang et al., 2023) participated
in both the speech-to-text and speech-to-
speech tracks for English-Chinese transla-
tion. Their end-to-end system utilized Hu-
BERT and mBART with a wait-k decoding
strategy and an Information-Transport-based
architecture. They further enhanced their sys-
tem by applying data filtering on long sen-
tences and misaligned audio/text, data aug-
mentation with pseudo labeling, and punctu-
ation normalization. They also incorporated
contrastive learning objectives.

3.5 Automatic Evaluation
We rank the system performance based on BLEU
scores. The detailed results can be found in Ap-
pendix B.2.

3.5.1 Speech-to-Text
English-German On the Common test set, the
ranking is HW-TSC, CUNI-KIT, FBK, NAIST,
CMU, as shown in Table 17. Meanwhile, on the
Non-Native test set, the ranking differs consider-
ably. While HW-TSC performs best on Common
test set, they end up second to last on Non-Native.
The situation is reversed for NAIST and CMU
who end up at the tail of Common scoring but
reach the best scores on the Non-Native set. We

attribute this to better robustness of NAIST and
CMU towards the noise in Non-Native test set.

English-Chinese The ranking is HW-TSC,
CUNI-KIT, XIAOMI, NAIST, as shown in
Table 18.

English-Japanese The ranking is HW-TSC,
CUNI-KIT, NAIST, as shown in Table 19.

3.5.2 Speech-to-Speech
Despite the great novelty and difficulty of speech-
to-speech track, there are 5 submissions in total:
2 in German, 2 in Chinese and 1 in Japanese.
The full results can be seen in table Table 20.
For English-to-German, the ranking is CMU, HW-
TSC. For English-to-Chinese, HW-TSC is the
only participant. For English-to-Japanese, the
ranking is HW-TSC, NAIST.

We also provide the BLASER scores, which
directly predict the quality of translations based
on speech embeddings. We note that since refer-
ence audios are not available in our datasets, we
use text LASER (Heffernan et al., 2022) to embed
reference text to compute the scores. While the
BLASER scores indicate the same quality rank-
ing for English to German as BLEU scores, on
the Japanese output they are similar. It’s pos-
sible that BLASER is adequately developed on
Japanese outputs

3.6 Human Evaluation

In the Simultaneous task, speech-to-text track,
English-German and English-Japanese were man-
ually evaluated, each with a different scoring
method.

3.6.1 English-German
For English-to-German, we used the same human
evaluation method as last year, originally inspired
by Javorský et al. (2022). We evaluated (1) the
best system selected by BLEU score, and (2) tran-
scription of human interpretation, the same as used
in last year evaluation (more details can be found
in Anastasopoulos et al. (2022), Section 2.6.1).

Figure 1 plots automatic and manual evalua-
tion in relation with each other. We confirm the
generally good correlation with BLEU (Pearson
.952 across the two test set parts), as observed by
Macháček et al. (2023), although individual sys-
tem results are rather interesting this year.
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Figure 1: Manual and automatic evaluation of Simulatenous speech-to-text English-to-German translation on the
Common (TED talks) and Non-Native test sets. The error bars were obtained by bootstrap resampling, see the
caption of Table 22.

On the Common test set, HWTSC performed
best in terms of BLEU but the manual scor-
ing seems to prefer CUNI-KIT and FBK. CMU
and NAIST are worst in BLEU but on par with
HWTSC in terms of manual scores.

The situation is very different on the Non-
Native test set: CMU and NAIST score best both
in manual scores and in BLEU while CUNI-KIT
and esp. FBK get much worse scores, again, both
manual and automatic.

The Non-Native test set is substantially harder
with respect to sound conditions, and the striking
difference drop observed for both CUNI-KIT and
FBK can be an indication of some form of over-
fitting towards the clean input of Common (TED
talks).

Appendix A.1.1 presents details of the human
evaluation and results are shown in Table 22.

3.6.2 English-Japanese

For English-to-Japanese, we also followed the
methodology in the last year. We hired a profes-
sional interpreter for human evaluation using JTF
Translation Quality Evaluation Guidelines (JTF,
2018) based on Multidimensional Quality Metrics
(MQM; Lommel et al., 2014). We applied the
error weighting by Freitag et al. (2021a). Ap-
pendix A.1.2 presents details of the human eval-
uation.

The human evaluation results are shown in Ta-
ble 23. The error score almost correlates with
BLEU against the additional reference, but the dif-
ference in the error scores was very small between
HW-TSC and CUNI-KIT in spite of the 0.8 BLEU
difference.

3.7 Final remarks
This year, we simplified the conditions by focus-
ing solely on low-latency systems to reduce the
burden of submission and evaluation. We also
introduced the novel and challenging speech-to-
speech track, and were happy to receive 5 submis-
sions.

We note potential modifications for future edi-
tions:

• Providing further simplified submission for-
mat.

• Ranking with better designed metrics to ad-
dress the overfitting towards BLEU scores.

• Aligning more with offline tasks on more test
domains and evaluation metrics.

4 Automatic Subtitling

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention, as we have
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seen a surge in the amount of movies, series and
user-generated videos which are being streamed
and distributed all over the world.

For the first time, this year IWSLT proposed a
specific track on automatic subtitling, where par-
ticipants were asked to generate subtitles of audio-
visual documents, belonging to different domains
with increasing levels of complexity.

4.1 Challenge

The task of automatic subtitling is multi-faceted:
starting from speech, not only the translation has
to be generated, but it must be segmented into
subtitles compliant with constraints that ensure
high-quality user experience, like a proper read-
ing speed, synchrony with the voices, the maxi-
mum number of subtitle lines and characters per
line, etc. Most audio-visual companies define
their own subtitling guidelines, which can differ
slightly from each other. Participants were asked
to generate subtitles according to some of the tips
listed by TED, in particular:

• the maximum subtitle reading speed is 21
characters / second;

• lines cannot exceed 42 characters, white
spaces included;

• never use more than two lines per subtitle.

It was expected that participants used only the au-
dio track from the provided videos (dev and test
sets), the video track being of low quality and pro-
vided primarily as a means to verify time syn-
chronicity and other aspects of displaying subtitles
on screen.

The subtitling track requires to automatically
subtitle in German and/or Spanish audio-visual
documents where the spoken language is always
English, and which were collected from the fol-
lowing sources:

• TED talks;8

• press interviews from the Multimedia Centre
of the European Parliament (EPTV);9

• physical training videos offered by Peloton;10

• TV series from ITV Studios.11

8https://www.ted.com/
9https://multimedia.europarl.europa.

eu
10https://www.onepeloton.com
11https://www.itvstudios.com

domain set AV hh:m ref subtitles
docs h:mm de es

TED
dev 17 04:11 4906 4964
test 14 01:22 1375 1422

EPTV
dev 12 01:03 960 909
test 10 01:01 891 874

Peloton
dev 9 03:59 4508 4037
test 8 02:43 2700 2661

ITV
dev 7 06:01 4489 4763
test 7 05:08 4807 4897

Table 4: Statistics of the dev and test sets for the subti-
tling task.

4.2 Data and Metrics

Data. This track proposed two training condi-
tions to participants: constrained, in which only
a pre-defined list of resources is allowed, and un-
constrained, without any data restrictions. The
constrained setup allowed to use the same training
data as in the Offline Speech Translation task (see
Section 2.2 for the detailed list), with the inclusion
of the MuST-Cinema corpus (Karakanta et al.,
2020) and the obvious exclusion of the parallel re-
sources not involving the English-{German, Span-
ish} pairs. In addition, two monolingual German
and Spanish text corpora built on OpenSubtitles,
enriched with subtitle breaks, document meta-info
on genre and automatically predicted line breaks,
have been released.

For each language and domain, a development
set and a test set were released. They were all new
sets, never released before, except for: the devel-
opment set of the EPTV domain, for which the Eu-
roparlInterviews test set by (Papi et al., 2023a) was
reused. Table 4 provides some information about
these sets.

The evaluation was carried out from three per-
spectives, subtitle quality, translation quality and
subtitle compliance, through the following auto-
matic measures:

• Subtitle quality vs. reference subtitles:

– SubER, primary metric, used also for
ranking (Wilken et al., 2022);12

– Sigma (Karakanta et al., 2022b).13

• Translation quality vs. reference translations:

12https://github.com/apptek/SubER
13https://github.com/fyvo/EvalSubtitle
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– BLEU14 and CHRF15 via sacreBLEU;
– BLUERT (Sellam et al., 2020).

Automatic subtitles are realigned to the ref-
erence subtitles using mwerSegmenter (Ma-
tusov et al., 2005a)16 before running sacre-
BLEU and BLEURT.

• Subtitle compliance:17

– rate of subtitles with reading speed
higher than 21 char / sec (CPS);

– rate of lines longer than 42 char (CPL);
– rate of subtitles with more than two lines

(white spaces included) (LPB).

4.3 Submissions
Three teams submitted automatically generated
subtitles for the test sets of this task.

• APPTEK (Bahar et al., 2023) submitted runs
in the constrained setup for both language
pairs. The primary submissions came from a
cascade architecture composed of the follow-
ing modules: neural encoder-decoder ASR,
followed by a neural Machine Translation
model trained on the data allowed in the con-
strained track, with the source (English) side
lowercased and normalized to resemble raw
ASR output, as well as adapted to the IWSLT
subtitling domains, followed by a subtitle line
segmentation model (intelligent line segmen-
tation by APPTEK). A contrastive run was
generated for the en→de pair only by a direct
speech translation system with CTC-based
timestamp prediction, followed by the intel-
ligent line segmentation model of APPTEK.
The system was trained on the constrained al-
lowed data plus forward translated synthetic
data (translations of allowed ASR transcripts)
and synthetic speech data for selected sen-
tences from the allowed parallel data. For the
en→de pair, APPTEK also submitted a run in
the unconstrained setup, where a cascade ar-
chitecture was employed consisting of: neu-
ral encoder-decoder CTC ASR, followed by
a neural punctuation prediction model and

14sacreBLEU signature: nrefs:1|case:mixed|
|eff:no|tok:13a|smooth:exp|version:2.0.0

15sacreBLEU signature: nrefs:1|case:mixed|
|eff:yes|nc:6|nw:0|space:no|version:2.0.0

16https://www-i6.informatik.
rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

17https://github.com/hlt-mt/
FBK-fairseq/blob/master/examples/speech_
to_text/scripts/subtitle_compliance.py

inverse text normalization model, followed
by an MT model adapted to the IWSLT do-
mains (sentences similar in embedding sim-
ilarity space to the development sets of the
four domains TED, EPTV, ITV, Peloton), fol-
lowed by a subtitle line segmentation model
(intelligent line segmentation by APPTEK).

• FBK (Papi et al., 2023b) submitted primary
runs for the two language pairs, generated
by a direct neural speech translation model,
trained in the constrained setup, that works
as follows: i) the audio is fed to a Subtitle
Generator that produces the (un-timed) sub-
title blocks; ii) the computed encoder repre-
sentations are passed to a Source Timestamp
Generator to obtain the caption blocks and
their corresponding timestamps; iii) the sub-
title timestamps are estimated by the Source-
to-Target Timestamp Projector from the gen-
erated subtitles, captions, and source times-
tamps.

• MATESUB (Perone, 2023) submitted primary
runs for the two language pairs, automatically
generated by the back-end subtitling pipeline
of MATESUB, its web-based tool that sup-
ports professionals in the creation of high-
quality subtitles (https://matesub.com/). The
MATESUB subtitling pipeline is based on a
cascade architecture, composed of ASR, text
segmenter and MT neural models, which al-
lows covering any pair from about 60 lan-
guages and their variants, including the two
language pairs of the task. Since MATESUB

is a production software, its neural models
are trained on more resources than those al-
lowed for the constrained condition, there-
fore the submissions fall into the uncon-
strained setup.

4.4 Results
Scores of all runs as computed by automatic met-
rics are shown in Tables 24 and 25 in the Ap-
pendix. Averaged over the 4 domains, APPTEK

achieved the lowest SubER scores with their pri-
mary submission for en→de in the constrained and
unconstrained condition, with the overall best re-
sults for the latter. For en→es, MATESUB obtained
the overall lowest SubER with their unconstrained
system.

We observe that in terms of domain difficulty,
the TV series (from ITV) pose the most challenges
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for automatic subtitling. This has to do with di-
verse acoustic conditions in which speech is found
in movies and series - background music, noises,
shouts, and cross-talk. All of this makes the task
of recognizing speech quite challenging, which
results in error accumulation in the downstream
components. Unconstrained systems by APPTEK

and MATESUB perform significantly better on this
domain, which shows the importance of training
on additional data that is more representative of
real-life content.

The second-hardest domain are the fitness
videos from Peloton. Here, despite a gener-
ally clear single-speaker audio with reduced back-
ground noise, the challenge is the MT: some of the
fitness- and sports-specific terminology and slang
pose significant challenges in translation to their
German and Spanish equivalents.

Surprisingly, even the EPTV interviews pose
significant challenges for subtitling, despite the
fact that the topics discussed in the interviews
are found in abundance in the allowed speech-
to-text and text-to-text parallel data for the con-
strained condition (Europarl, Europarl-ST). Here,
the issues such as spontaneous speech with many
pauses, as well as speaker separation may have
been cause of some of the errors.

The TED talks which have been the main
domain for the IWSLT evaluations in the past
years are the easiest to be automatically subti-
tled. Whereas the current level of subtitle quality
for TED talks may require minimal human cor-
rections or can even be shown unedited on the
screen, for the other three domains the automatic
subtitles will require significant post-editing. This
shows the importance of running evaluations not
only under very controlled conditions as in the
case of TED talks, but on a variety of real-life con-
tent where multiple research challenges in speech
translation are yet to be overcome.

This year’s direct speech translation systems
seem to be too weak to compete with the cascaded
approaches. In particular, a full end-to-end ap-
proach (Papi et al., 2023a) like the one from FBK
that directly generates subtitle boundaries is cur-
rently inferior in comparison with the systems that
adopt a specific solution for segmenting the text
(intelligent line segmentation by APPTEK and a
neural text segmenter by MATESUB). Such spe-
cific solutions lead to almost perfect subtitle com-
pliance. But even in terms of pure speech trans-

lation quality as measured e.g. with BLEU and
BLEURT the cascaded systems currently provide
better translations even under constrained training
data conditions.

Regarding the automatic metrics used in the
evaluation, we observed that the metric Sigma pro-
vides scores which are not consistent with the
other measures: for example, German subtitles
from MATESUB seem to be the worst as measured
by Sigma, but this is unlikely based on the val-
ues of the other metrics. Yet the pure MT quality
metrics also exhibit some discrepancies in how the
performance of the same system on the four do-
mains is ranked. This ranking sometimes differs
depending on whether you choose BLEU, ChrF, or
BLEURT as the “primary” metric. The two most
striking cases are:

• the en→de APPTEK unconstrained primary
submission, for which the BLEU score for
the ITV test data was 14.43 and for Pelo-
ton 10.47, but the BLEURT scores were very
similar: 0.4069 and 0.4028;

• the en→de FBK constrained primary system,
for which the BLEU score was 7.73 on the
Peloton part of the test data vs. 8.05 on the
ITV part, but the BLEURT scores showed a
better quality for Peloton translations: 0.3137
vs. 0.2255.

All of these discrepancies highlight the impor-
tance of human evaluation, which we have not
conducted this time. One of the reasons for this
is that in most prior research (Matusov et al.,
2019; Karakanta et al., 2022a) the automatic sub-
titling quality is evaluated in post-editing scenar-
ios, which are too expensive to be run on signifi-
cant amounts of data as they require professional
subtitle translators. On the other hand, as men-
tioned above, for 3 out of 4 domains the quality of
the automatically generated subtitle translations is
low, so that an evaluation of user experience when
watching subtitles would be also challenging, es-
pecially if the users would have to assign evalu-
ation scores to individual subtitles or sentences.
With all of this in mind, we decided to postpone
any human evaluation to the next edition of the
subtitling track at IWSLT.

Overall, this first edition of the subtitling track
emphasised the crucial role of the following com-
ponents related to speech processing: noise re-
duction and/or speech separation, speaker diariza-
tion, and sentence segmentation. So far they
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have been underestimated in speech translation re-
search. Current automatic solutions do not reach
the level of quality that is necessary in subti-
tling. Therefore, we encourage further research
into these areas, for which subtitle translation is
a good test case.

5 Multilingual SLT

The NLP and speech communities are rapidly ex-
panding with increasing focus on broader lan-
guage coverage and multilinguality. However, de-
spite the community’s efforts on ASR and SLT, re-
search is rarely focused on applying these efforts
to the data within the scientific domain. It is clear
from recent initiatives to caption technical presen-
tations at NLP and speech conferences that tran-
scription and translation in the technical domain
is needed, desired, and remains a disproportionate
challenge for current ASR and SLT models com-
pared to standard datasets in these spaces. Mo-
tivated by the ACL 60-60 initiative18 to translate
the ACL Anthology to up to 60 languages for the
60th anniversary of ACL, which will be reported
on at this year’s ACL conference co-located with
IWSLT, this year’s Multilingual Task evaluates the
ability of current models to translate technical pre-
sentations to a set of ten diverse target languages.

5.1 Challenge

Translating technical presentations combines sev-
eral challenging conditions: domain-specific ter-
minology, recording conditions varying from
close-range microphones to laptop microphones
with light background noise or feedback, diverse
speaker demographics, and importantly unseg-
mented speech typically 10-60 minutes in dura-
tion. This task focuses on one-to-many translation
from English to ten target languages. Providing
English ASR was optional though encouraged. In-
domain data is scarce, particularly parallel data,
though all language pairs are covered by current
publicly available corpora; further challenging for
current domain adaptation techniques, monolin-
gual data is typically available for the source lan-
guage (English) only. We present two conditions:
constrained (using only the out-of-domain data
allowed and provided for other tasks this year)
and unconstrained (allowing any additional data,
included crawled, which may facilitate e.g., do-

18https://www.2022.aclweb.org/
dispecialinitiative

main adaptation). To evaluate submissions, we
use evaluation sets curated from presentations at
ACL 2022 which were professionally transcribed
and translated with the support of ACL and the 60-
60 initiative as described in Salesky et al. (2023).

5.2 Data and Metrics

Data. We use the ACL 60-60 evaluation sets cre-
ated by Salesky et al. (2023) to evaluate this chal-
lenge task. The data comes from ACL 2022 tech-
nical presentations and is originally spoken in En-
glish, and then transcribed and translated to ten
target languages from the 60/60 initiative: Ara-
bic, Mandarin Chinese, Dutch, French, German,
Japanese, Farsi, Portuguese, Russian, and Turk-
ish. The resulting dataset contains parallel speech,
transcripts, and translation for ten language pairs,
totaling approximately one hour for the develop-
ment set and one hour for the evaluation set.

During the evaluation campaign, the only in-
domain data provided is the development set. To
simulate the realistic use case where recorded
technical presentations would be accompanied by
a research paper, in addition to the talk audio
we provide the corresponding paper title and ab-
stract, which are likely to contain a subset of
relevant keywords and terminology and could be
used by participants to bias or adapt their systems.
Constrained training data follows the Offline task
(see Sec. 2.2) with pretrained models and out-of-
domain parallel speech and text provided for all
10 language pairs. The unconstrained setting al-
lowed participants to potentially crawl additional
in-domain data to assist with adaptation, as was
done by one team (JHU). For the official rankings,
we use the official evaluation set, which was held
blind until after the evaluation campaign.

To mimic realistic test conditions where the
audio for technical presentations would be pro-
vided as a single file, rather than gold-sentence-
segmented, for both the development and evalu-
ation sets we provided the full unsegmented wav
files, as well as an automatically generated base-
line segmentation using SHAS (Tsiamas et al.,
2022) to get participants started. Two teams used
the baseline segmentation, while one (JHU) used
longer segments which improved the ASR qual-
ity of their particular pretrained model. To evalu-
ate translation quality of system output using any
input segmentation, we provided gold sentence-
segmented transcripts and translations, which sys-
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tem output could be scored with as described be-
low in ‘Metrics.’

Metrics. Translation output was evaluated us-
ing multiple metrics for analysis: translation out-
put using chrF (Popović, 2015a), BLEU (Pap-
ineni et al., 2002b) as computed by SACREBLEU
(Post, 2018), and COMET (Rei et al., 2020b) and
ASR output using WER. For BLEU we use the
recommended language-specific tokenization in
SACREBLEU for Chinese, Japanese, Korean, and
the metric-default otherwise. Translation metrics
were calculated with case and punctuation. WER
was computed on lowercased text with punctua-
tion removed. NFKC normalization was applied
on submitted systems and references. All offi-
cial scores were calculated using automatic reseg-
mentation of the hypothesis based on the refer-
ence transcripts (ASR) or translations (SLT) by
mwerSegmenter (Matusov et al., 2005b), using
character-level segmentation for resegmentation
for those languages which do not mark whites-
pace. The official task ranking is based on average
chrF across all 10 translation language pairs.

5.3 Submissions
We received 11 submissions from 3 teams, as de-
scribed below:

• BIT (Wang et al., 2023b) submitted a single
constrained one-to-many multilingual model
to cover all 10 language pairs, trained using a
collection of multiple versions of the MuST-
C dataset (Di Gangi et al., 2019b). They use
English ASR pre-training with data augmen-
tation from SpecAugment (Park et al., 2019),
and multilingual translation finetuning for all
language pairs together. The final model is an
ensemble of multiple checkpoints. No adap-
tation to the technical domain is performed.

• JHU (Xinyuan et al., 2023) submitted two
cascaded systems, one constrained and one
unconstrained, combining multiple differ-
ent pretrained speech and translation mod-
els, and comparing different domain adap-
tation techniques. Their unconstrained sys-
tem uses an adapted Whisper (Radford et al.,
2022) ASR model combined with NLLB
(NLLB Team et al., 2022), M2M-100 (Fan
et al., 2020), or mBART-50 (Tang et al.,
2020) MT models depending on the lan-
guage pair, while the constrained system

uses wav2vec2.0 (Baevski et al., 2020a) and
mBART-50 or M2M-100. They compare us-
ing talk abstracts to prompt Whisper to train-
ing in-domain language models on either the
small amount of highly-relevant data in the
talk abstract or larger LMs trained on signifi-
cantly more data they scraped from the ACL
Anthology and release with their paper. They
see slight improvements over the provided
SHAS (Tsiamas et al., 2022) segments us-
ing longer segments closer what Whisper ob-
served in training. They show that prompting
Whisper is not competitive with in-domain
language models, and provide an analysis of
technical term recall and other fine-grained
details.

• KIT (Liu et al., 2023) submitted multiple
constrained multilingual models, both end-
to-end and cascaded, which combine several
techniques to adapt to the technical domain
given the absence of in-domain training data,
using pretrained speech and translation mod-
els as initializations (WavLM: Chen et al.
2021, DeltaLM: Ma et al. 2021, mBART-
50: Tang et al. 2020). These include kNN-
MT to bias generated output to the techni-
cal domain; data diversification to enrich pro-
vided parallel data; adapters for lightweight
finetuning to the language pairs for trans-
lation (though they note that this does not
necessarily stack with data diversification);
and for their cascaded model, adaptation of
the ASR model to the target technical do-
main using n-gram re-weighting, noting that
it is typically easier to adapt or add lexical
constraints to models with separate LMs, as
opposed to encoder-decoder models. Addi-
tional techniques (ensembling, updated ASR
encoder/decoder settings, knowledge distilla-
tion, synthesized speech) are also used for
further small improvements.

5.4 Results

All task results are shown in Appendix B.4. The
official task ranking was determined by the aver-
age chrF across all 10 target languages after reseg-
mentation to the reference translations.Table 26.
Scores for all submissions by individual language
pairs are shown in Table 28 (chrF), Table 29
(COMET), and Table 30 (BLEU).

Overall, the majority of approaches combined
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strong pretrained speech and translation mod-
els to do very well on the ACL 60-60 evalua-
tion data. For this task, cascaded models per-
formed consistently better than direct/end-to-end
approaches; all of the top 6 submissions were cas-
cades, and 4/5 of the lowest-performing systems
were direct. Optional English ASR transcripts
were submitted for 3 systems (JHUunconstrained,
KITprimary, JHUconstrained), all of which were
cascades; we see that WER aligns with speech
translation performance in these cases. The only
unconstrained model, from JHU, utilized larger
pretrained models and crawled in-domain lan-
guage modeling data for ASR to great success, and
was the top system on all metrics (Table 26). The
remaining submissions were all constrained (here
meaning, used the white-listed training data and
smaller pretrained models). The KITprimary sys-
tem was the best performing constrained model.
While BIT trained models from scratch on TED
to reasonable performance on MuST-C, large pre-
trained models and domain adaptation were key
for high performance on the technical in-domain
test set. chrF and BLEU result in the same sys-
tem rankings, while COMET favors the end-to-
end models slightly more, though not affecting
the top 3 systems (JHUunconstrained, KITprimary,
KITconstrastive1).

Domain adaptation techniques had consistent
positive impact on system performance. The KIT
team submitted constrained systems only and thus
were limited to the dev bitext and talk abstracts
for domain adaptation. Despite its small size
(<500 sentences) they were able to generate con-
sistent improvements of up to ∼1chrF and ∼ 1
BLEU using kNN-MT (primary/contrastive1 vs
contrastive2); with this method, extending the dev
data to include the abstracts for the evaluation set
talks (primary vs contrastive1) had neglible ef-
fect on all 3 metrics. The JHU submissions saw
that decoding with interpolated in-domain lan-
guage models outperformed knowledge distilla-
tion or prompting pretrained models with informa-
tion for each talk in this case; small talk-specific
LMs did provide slight improvements in WER, but
significant improvements of 2-3 WER were gained
by extending the limited highly relevant data from
talk abstracts and the dev set to the larger domain-
general data crawled from the 2021 ACL confer-
ence and workshop proceedings.

Without in-domain target-language monolin-
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Figure 2: Official task metric performance (chrF) vs
terminology recall for teams’ primary submissions.

gual data, conventional techniques for adaptation
of end-to-end ST models did not apply (finetun-
ing, backtranslation, ...). The data diversifica-
tion applied by KIT via TTS ‘backtranslation’
(contrastive5, contrastive7) did not affect chrF or
BLEU, but did provide small (0.5-0.6) improve-
ments on COMET.

In addition to the overall evaluation set, we look
at the recall of specific terminology annotated for
the ACL evaluation sets. For the three submissions
(JHUunconstrained, KITprimary, JHUconstrained)
which provided supplementary ASR, we first in-
vestigate terminology recall and propagation be-
tween ASR and downstream ST. Recall that the
overall WER of these systems was 16.9, 23.7, and
34.1, respectively. Of the 1107 labeled terminol-
ogy words and phrases from the ACL 60-60 eval-
uation set annotations, 87.8% / 77.3% / 71.7% in-
dividual instances were correctly transcribed by
these systems, respectively. Of these, 12.0% /
7.4% / 7.9% were then maintained and correctly
translated to each target language respectively on
average. We plot the official task metric (chrF)
against terminology recall in Figure 2 for all pri-
mary submissions. We see that there were consis-
tent differences across languages in how terminol-
ogy was maintained, which generally but not fully
corresponds to overall performance (ex: Dutch,
Turkish). While the domain adaptation techniques
used ensured strong transcription performance for
the JHU and KIT submissions, this was not gen-
erally maintained for translation with a significant
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drop, converging with BIT which did not perform
domain adaptation. Additional work is needed to
ensure targeted lexical terms are correctly tran-
scribed and translated, both in general as well as
comparably across different languages.

While the JHU submissions finetuned to each
target language individually, the KIT systems fine-
tuned multilingually; no contrastive systems were
submitted with which to ablate this point, but both
teams’ papers describe consistently worse perfor-
mance finetuning multilingually rather than bilin-
gually, which KIT was able to largely mitigate
with language adapters in development in isola-
tion but in their final submission on eval language
adapters were consistently slightly worse (con-
trastive4 ‘with’ vs contrastive3 ‘without.’). It re-
mains to be seen the degree to which one-to-many
models can benefit from multilingual training.

The Offline task additionally used the ACL 60-
60 evaluation sets as part of their broader evalu-
ation for 3 language pairs (en→ de, ja, zh), en-
abling a wider comparison across 25 total sys-
tems. We show the Multilingual task submissions
compared to the Offline on these languages in Ta-
ble 27. On these three language pairs, perfor-
mance is generally higher than the remaining lan-
guage pairs in the Multilingual task. We again
consistently see stronger performance on this task
from cascaded models, and unconstrained sub-
missions or those with larger pretrained LLMs,
though there are notable outliers such as the HW-
TSC constrained model. The Offline submissions
did not perform domain adaptation specifically to
the technical ACL domain, but appear to be benefit
from better domain-general performance in some
cases, particularly for submissions targeting only
Chinese. We note slight differences in system
rankings between metrics (COMET and BLEU)
and target languages, particularly for Japanese and
Chinese targets, possibly highlighting the differ-
ence in metric tokenization for these pairs.

6 Speech-to-Speech Translation

Speech-to-speech translation (S2ST) involves
translating audio in one language to audio in an-
other language. In the offline setting, the transla-
tion system can assume that the entire input audio
is available before beginning the translation pro-
cess. This differs from streaming or simultaneous
settings where the system only has access to par-
tial input. The primary objective of this task is to

encourage the advancement of automated methods
for offline speech-to-speech translation.

6.1 Challenge
The participants were tasked with creating speech-
to-speech translation systems that could translate
from English to Chinese using various methods,
such as a cascade system (ASR + MT + TTS or
end-to-end speech-to-text translation + TTS), or
an end-to-end / direct system. They were also al-
lowed to use any techniques to enhance the per-
formance of the system, apart from using uncon-
strained data.

6.2 Data and Metrics
Data. This task allowed the same training data
from the Offline task on English-Chinese speech-
to-text translation. More details are available in
Sec. 2.2. In addition to the Offline task data,
the following training data was allowed to help
build English-Chinese speech-to-speech models
and Chinese text-to-speech systems:

• GigaS2S, target synthetic speech for the Chi-
nese target text of GigaST (Ye et al., 2023)
that was generated with an in-house single-
speaker TTS system;

• aishell 3 (Shi et al., 2020), a multi-speaker
Chinese TTS dataset.

It’s noted that several datasets allowed for the
Offline task such as Common Voice (Ardila
et al., 2019) actually contain multi-speaker Chi-
nese speech and text data that could help for this
task.

Metrics. All systems were evaluated with both
automatic and human evaluation metrics.

Automatic metrics. To automatically evaluate
translation quality, the speech output was auto-
matically transcribed with a Chinese ASR sys-
tem19 (Yao et al., 2021), and then BLEU20 (Pa-
pineni et al., 2002a), chrF21 (Popović, 2015b),
COMET22 (Rei et al., 2022) and SEScore223 (Xu

19https://github.com/wenet-e2e/wenet/
blob/main/docs/pretrained_models.en.md

20sacreBLEU signature: nrefs:1|case:mixed|
eff:no|tok:zh|smooth:exp|version:2.3.1

21sacreBLEU signature: nrefs:1|case:mixed|
eff:yes|nc:6|nw:0|space:no|version:2.3.1

22https://huggingface.co/Unbabel/
wmt22-comet-da

23https://github.com/xu1998hz/SEScore2

18



et al., 2022) were computed between the generated
transcript and the human-produced text reference.
BLEU and chrF were computed using SacreBLEU
(Post, 2018). Furthermore, the output speech
could be evaluated directly using BLASER (Chen
et al., 2022). More information could be found at
stopes24 (Andrews et al., 2022).

Human evaluation. Output speech translations
were evaluated with respect to translation quality
and speech quality.

• Translation quality: Bilingual annotators
were presented with the source audio, source
transcript and the generated target audio, then
gave scores on the translation quality be-
tween 1 and 5 (worst-to-best)). There were
4 annotators per sample and we retained the
median score.

• Output speech quality: In addition to trans-
lation quality (capturing meaning), the qual-
ity of the speech output was also human-
evaluated. The annotators were requested to
give an overall score by considering three di-
mensions: naturalness (voice and pronunci-
ation), clarity of speech (understandability),
and sound quality (noise and other artifacts).
Each sample was assessed by 4 annotators
and scored on a scale of 1-5 (worst-to-best)),
with a minimum score interval of 0.5.

The detailed guidelines for output speech qual-
ity evaluation were similar to last year (Anasta-
sopoulos et al., 2022).

6.3 Submissions

We received eight submissions from five teams.
The MINETRANS team submitted four systems
and each of the other teams submitted one system.

• HW-TSC (Wang et al., 2023a) submitted a
cascaded system composed of an ensemble
of Conformer and Transformer-based ASR
models, a multilingual Transformer-based
MT model and a diffusion-based TTS model.
Their primary focus in their submission is to
investigate the modeling ability of the diffu-
sion model for TTS tasks in high-resource
scenarios. The diffusion TTS model takes
raw text as input and generates waveform

24https://github.com/facebookresearch/
stopes/tree/main/demo/iwslt_blaser_eval

by iteratively denoising on pure Gaussian
noise. Based on the result, they conclude that
the diffusion model outperforms normal TTS
models and brings positive gain to the entire
S2ST system.

• KU (Yang et al., 2023) submitted a cascade
system composed of a speech-to-text transla-
tion (ST) model and a TTS model. Their ST
model comprises a ST decoder and an ASR
decoder. The two decoders can exchange in-
formation with each other with the interactive
attention mechanism. For the TTS part, they
use FastSpeech2 as the acoustic model and
HiFi-GAN as the vocoder.

• NPU-MSXF (Song et al., 2023) submitted a
cascaded system of separate ASR, MT, and
TTS models. For ASR, they adopt ROVER-
based model fusion and data augmentation
strategies to improve the recognition accu-
racy and generalization ability. Then they use
a three-stage fine-tuning process to adapt a
pre-trained mBART50 model to translate the
output of ASR model. The three-stage fine-
tuning is based on Curriculum Learning and
it involves three sets of data: (1) the original
MT data, (2) the MT data in ASR transcrip-
tion format and (3) the ASR outputs. For
TTS, they leverage a two-stage framework,
using network bottleneck features as a ro-
bust intermediate representation for speaker
timbre and linguistic content disentangle-
ment. Based on the two-stage framework,
pre-trained speaker embedding is leveraged
as a condition to transfer the speaker timbre
in the source speech to the translated speech.

• XIAOMI (Huang et al., 2023) submitted a cas-
cade system composed of a speech-to-text
translation (ST) model and a TTS model. The
ST model is the same as the one they sub-
mitted to the Offline SLT track. It is based
on an encoder-decoder architecture from the
pre-trained HuBERT and mBART models.
For the TTS model, they use the Tacotron2
framework. It is first trained with AISHELL-
3 dataset and then finetuned with GigaS2S
dataset. Furthermore, they implement sev-
eral popular techniques, such as data filtering,
data augmentation, speech segmentation, and
model ensemble, to improve the overall per-
formance of the system.
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• MINETRANS (Du et al., 2023) submitted
three end-to-end S2ST systems (MINE-
TRANS E2E, including primary, con-
trastive1, and contrastive2), and a cascade
S2ST system (MINETRANS Cascade). Their
end-to-end systems adopt the speech-to-unit
translation (S2UT) framework. The end-
to-end S2UT model comprises a speech
encoder, a length adapter and an unit de-
coder. The S2UT model is trained to convert
the source speech into units of target speech.
A unit-based HiFi-GAN vocoder is finally
applied to convert the units into waveform.
Based on their results, they conclude that the
widely used multi-task learning technique
is not important for model convergence
once large-scale labeled training data is
available, which means that the mapping
from source speech to target speech units
can be learned directly and easily. Further-
more, they apply other techniques, such as
consistency training, data augmentation,
speech segmentation, and model ensemble
to improve the overall performance of the
system. Their cascade system consists of
ASR, MT and TTS models. Their ASR and
MT replicates those used for the Offline
SLT submission. Their TTS model is a
combination of FastSpeech2 and HiFi-GAN.

6.4 Results

Results as scored by automatic metrics are shown
in Table 31 and human evaluation results are
shown in Table 32 in the Appendix.

Overall results. According to the automatic
metrics used in the evaluation, XIAOMI obtained
the highest score in ASR-BLEU, ASR-chrF, ASR-
COMET and ASR-SEScore2. NPU-MSXF ob-
tained the second highest score, followed sub-
sequently by HW-TSC, MINETRANS E2E, KU
and MINETRANS Cascade. The BLEU, chrF,
COMET and SEScore2 rankings were exactly the
same. The scores for the test-expanded data were
lower than those for the test-primary data, likely
due to a domain mismatch with the training data.
For human evaluation along the translation quality
perspective, XIAOMI obtained the highest score,
followed by NPU-MSXF, then HW-TSC and
MINETRANS E2E, then MINETRANS Cascade,
and finally KU. This ranking was mostly con-
sistent with the automatic ranking, showing that

automatic metrics were useful in evaluating the
translation quality of systems. For human evalu-
ation along the speech quality perspective, NPU-
MSXF obtained the highest score, followed by
HW-TSC, XIAOMI, MINETRANS E2E, MINE-
TRANS Cascade and KU. With a equal weighting
of translation quality and speech quality, NPU-
MSXF obtained the highest overall score in hu-
man evaluation, followed by XIAOMI and the oth-
ers.

S2ST approaches. This year, all systems but
MINETRANS E2E were cascaded systems, with
three systems adopting an ASR + MT + TTS ap-
proach and two systems adopting an end-to-end
S2T + TTS approach. This showed that cascade
approach was still dominant in the community. Al-
though MINETRANS E2E performed better than
MINETRANS Cascade in all evaluation metrics,
we could not draw conclusions on the comparison
between cascade and end-to-end given the limited
data points. Future challenges can encourage more
direct or end-to-end submissions.

6.5 Conclusion

This is the second time that speech-to-speech
translation (S2ST) is presented in one of the
IWSLT tasks. S2ST is an important benchmark for
general AI as other NLP tasks, e.g. dialogue sys-
tem, question answering and summarization can
also be implemented in speech-to-speech manner.
Compared to the setting last year, the size of the
training data set available to the participants is
much larger. The BLEU scores obtained in this
challenge is high in general, compared to MT and
ST of the same language direction. Although not
required by the task, NPU-MSXF is the only
team that implemented speaker timbre transfer in
their system. We plan to include evaluation met-
rics addressing this aspect in the next edition.

7 Dialect SLT

The Dialect Speech Translation shared task is a
continuation of last year’s task. We use the same
training data as 2022 and evaluated systems on
the 2022 evaluation set to measure progress; in
addition, we added a new 2023 evaluation set as
blind test. From the organizational perspective, we
merged the call for shared task with the the Low-
Resource tasks (Section 8) in order to encourage
cross-submission of systems.
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7.1 Challenge
Diglossic communities are common around the
world. For example, Modern Standard Arabic
(MSA) is used for formal spoken and written com-
munication in most parts of the Arabic-speaking
world, but local dialects such as Egyptian, Moroc-
can, and Tunisian are used in informal situations.
Diglossia poses unique challenges to speech trans-
lation because local “low” dialects tend to be low-
resource with little ASR and MT training data, and
may not even have standardized writing, while re-
sources from “high” dialects like MSA provides
opportunities for transfer learning and multilin-
gual modeling.

7.2 Data and Metrics
Participants were provided with the following
datasets:

• (a) 160 hours of Tunisian conversational
speech (8kHz), with manual transcripts

• (b) 200k lines of manual translations of the
above Tunisian transcripts into English, mak-
ing a three-way parallel data (i.e. aligned au-
dio, transcript, translation) that supports end-
to-end speech translation models

• (c) 1200 hours of Modern Standard Arabic
(MSA) broadcast news with transcripts for
ASR, available from MGB-2

• Approximately 42,000k lines of bitext in
MSA-English for MT from OPUS (specifi-
cally: Opensubtitles, UN, QED, TED, Glob-
alVoices, News-Commentary).

In 2022, we constructed three conditions: The
basic condition trains on (a) and (b), provided by
the Linguistic Data Consortium (LDC); the di-
alect adaptation condition trains on (a), (b), (c),
(d); the unconstrained condition can use any addi-
tional data and pre-trained models. In 2023, due
to the coordinated organization with other Low-
Resource Tasks this year, we renamed basic con-
dition as “constrained condition”, and the other
two conditions are merged as the “unconstrained
condition”.

All train and test sets are time-segmented at
the utterance level. Statistics are shown in Table
5. There are three test sets for evaluation with
BLEU25.

25
SacreBLEU signature for dialect speech translation task:

nrefs:1|case:lc|eff:no|tok:13a|smooth:exp|version:2.0.0

• test1: Participants are encouraged to use this
for internal evaluation since references are
provided. This is part of LDC2022E01 re-
leased to participants for training and devel-
opment, obtained by applying the standard
data split and preprocessing26.

• test2: official evaluation for 2022, from
LDC2022E02

• test3: official evaluation for 2023, from
LDC2023E09

7.3 Submissions
We received submission from four teams:

• GMU (Mbuya and Anastasopoulos, 2023)
participated in five language-pairs in the
Low-Resource tasks as well as this task.
They focused on investigating how different
self-supervised speech models (Wav2vec 2.0,
XLSR-53, and HuBERT) compare when ini-
tialized to an end-to-end (E2E) speech trans-
lation architecture.

• JHU (Hussein et al., 2023) submitted both
cascaded and E2E systems, using transformer
and branchformer architectures. They inves-
tigated the incorporation of pretrained text
MT models, specifically mBART50 and dis-
tilled NLLB-200. Further, they explored dif-
ferent ways for system combination and han-
dling of orthographic variation and channel
mismatch.

• ON-TRAC (Laurent et al., 2023) partici-
pated in two language-pairs in the Low-
Resource task as well as this task. For this
task, they focused on using SAMU-XLS-R
as the multilingual, multimodal pretrained
speech encoder and mBART as the text de-
coder.

• USTC (Deng et al., 2023) proposed a
method for synthesis of pseudo Tunisian-
MSA-English paired data. For the cascaded
system, they explored ASR with different
feature extraction (VGG, GateCNN) and neu-
ral architectures (Conformer, Transformer).
For E2E, they proposed using SATE and a
hybrid SATE architecture to take advantage

26https://github.com/kevinduh/
iwslt22-dialect
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Dataset Speech Text (#lines) Use
(#hours) Tunisian MSA English

LDC2022E01 train 160 200k - 200k Constrained condition
LDC2022E01 dev 3 3833 - 3833 Constrained condition
LDC2022E01 test1 3 4204 - 4204 Participant’s internal evaluation
LDC2022E02 test2 3 4288 - 4288 Evaluate progress from 2022
LDC2023E09 test3 3 4248 - 4248 Official evaluation for 2023
MGB2 1100 - 1.1M - Unconstrained condition
OPUS - - 42M 42M Unconstrained condition
Any other data - - - - Unconstrained condition

Table 5: Datasets for Dialect Shared Task.

of the pseudo Tunisian-MSA-English text
data. Additionally, methods for adapting to
ASR errors and system combination were ex-
amined.

7.4 Results

The full set of BLEU results on the English trans-
lations are available in Tables 33 and 34. We also
evaluated the WER results for the ASR component
of cascaded systems, in Table 35.

In general, there is an improvement compared to
2022. On test2, the best system in 2022 (achieved
by the CMU team) obtained 20.8 BLEU; several
systems this year improved upon that result, for
example USTC’s primary system achieved 23.6
BLEU and JHU’s primary system achieved 21.2
BLEU. On the official evaluation on test3, the best
system achieved 21.1 BLEU in the unconstrained
condition and 18.1 BLEU in the constrained con-
dition.

From the system descriptions, it appears the in-
gredients for strong systems include: (a) effective
use of pretrained speech and text models, (b) sys-
tem combination among both cascaded and E2E
systems, and (c) synthetic data generation to in-
crease the size of dialectal data.

We do not plan to continue this shared task next
year. Instead, the plan is to make the data available
from the LDC. We encourage researchers to con-
tinue exploring dialectal and diglossic phenomena
in the future.

8 Low-resource SLT

The Low-resource Speech Translation shared task
focuses on the problem of developing speech tran-
scription and translation tools for low-resourced
languages.

8.1 Challenge

This year, the task introduced speech translation of
recorded utterances from Irish to English, Marathi
to Hindi, Maltese to English, Pashto to French,
Tamasheq to French, and Quechua to Spanish.
The different language pairs vary by the amount
of data available, but in general, they have in
common the dearth of high-quality available re-
sources, at least in comparison to other much
higher-resourced settings.

8.2 Data and Metrics

We describe the data available for each language
pair below. Table 6 provides an overview of the
provided datasets.

Irish–English Irish (also known as Gaeilge) has
around 170,000 L1 speakers and 1.85 million peo-
ple (37% of the population) across the island (of
Ireland) claim to be at least somewhat proficient
with the language. In the Republic of Ireland,
it is the national and first official language. It is
also one of the official languages of the European
Union (EU) and a recognized minority language
in Northern Ireland with the ISO ga code.

The provided Irish audio data were compiled
from Common Voice (Ardila et al., 2020a),27

and Living-Audio-Dataset.28 The compiled data
were automatically translated into English and
corrected by an Irish linguist. The Irish–English
corpus consists of 11.55 hours of Irish speech data
(see Table 6), translated into English texts.

Marathi–Hindi Marathi is an Indo-Aryan lan-
guage which has the ISO code mr, and is domi-

27https://commonvoice.mozilla.org/en/
datasets

28https://github.com/Idlak/
Living-Audio-Dataset
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Language Pairs Train Set Dev Set Test Set Additional Data

Irish–English ga–eng 9.46 1.03 0.44 n/a
Marathi–Hindi mr–hi 15.3 3.7 4.4 monolingual audio with transcriptions

(ASR), monolingual text
Maltese–English mlt–eng 2.5 - 1.35 monolingual audio with transcriptions

(ASR), monolingual text
Pashto–French pus–fra 61 2.5 2 n/a
Tamasheq–French tmh–fra 17 - - untranscribed audio, data in other re-

gional languages
Quechua–Spanish que–spa 1.60 1.03 1.03 60 hours of monolingual audio with

transcriptions (ASR) and MT data (not
transcribed)

Table 6: Training, development and test data details (in hours) for the language pairs of the low-resource shared
task.

nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.29 Marathi is the third most
spoken language in India.

The provided Marathi–Hindi corpus consists of
22.33 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air30 and translated into Hindi texts.31 The dataset
was manually segmented and translated by Panlin-
gua.32 Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020a),33 as well as the corpus provided
by He et al. (2020)34 and the Indian Language Cor-
pora (Abraham et al., 2020).35

Maltese–English Maltese is a Semitic lan-
guage, with about half a million native speakers,
spoken in the official language of Malta and the
EU. It is written in Latin script.

The provided data was divided into three parts.
First, around 2.5 hours of audio with Maltese tran-
scription and an English translation were released,

29https://censusindia.gov.in/nada/
index.php/catalog/42561

30https://newsonair.gov.in
31https://github.com/panlingua/

iwslt2023_mr-hi
32http://panlingua.co.in/
33https://commonvoice.mozilla.org/en/

datasets
34https://www.openslr.org/64/
35https://www.cse.iitb.ac.in/˜pjyothi/

indiccorpora/

along with about 7.5 hours of audio with only Mal-
tese transcriptions. Last, the participants were di-
rected to several monolingual Maltese textual re-
sources. The provided datasets were taken from
the MASRI corpus (Hernandez Mena et al., 2020).

Pashto–French Pashto is spoken by approxi-
mately forty to sixty million people in the world.
It is particularly spoken by the Pashtun people in
the south, east and southwest of Afghanistan (it
is one of the two official languages), as well as
in the north and northwest Pakistan but also in
Iran, Tajikistan and India (Uttar Pradesh and Cash-
mere) and one of the two official languages of
Afghanistan.

The corpus was totally provided by ELDA,
and is available on the ELRA catalog: TRAD
Pashto Broadcast News Speech Corpus (ELRA
catalogue, 2016b) that consists of audio files and
TRAD Pashto-French Parallel corpus of tran-
scribed Broadcast News Speech - Training data
(ELRA catalogue, 2016a) which are their tran-
scriptions.

This dataset is a collection of about 108 hours of
Broadcast News with transcriptions in Pashto and
translations into French text. The dataset is built
from collected recordings from 5 sources: Ashna
TV, Azadi Radio, Deewa Radio, Mashaal Radio
and Shamshad TV. Original training data contains
99 hours of speech in Pashto, which corresponds
to 29,447 utterances translated into French. Train-
ing data corresponds to 61 hours of speech (Ta-
ble 6).

Tamasheq–French Tamasheq is a variety of Tu-
areg, a Berber macro-language spoken by nomadic

23



tribes across North Africa in Algeria, Mali, Niger
and Burkina Faso. It accounts for approximately
500,000 native speakers, being mostly spoken in
Mali and Niger. This task is about translating spo-
ken Tamasheq into written French. Almost 20
hours of spoken Tamasheq with French transla-
tion are freely provided by the organizers. A ma-
jor challenge is that no Tamasheq transcription is
provided, as Tamasheq is a traditionally oral lan-
guage.

The provided corpus is a collection of radio
recordings from Studio Kalangou36 translated to
French. It comprises 17 hours of clean speech
in Tamasheq, translated into the French language.
The organizers also provided a 19-hour version of
this corpus, including 2 additional hours of data
that was labeled by annotators as potentially noisy.
Both versions of this dataset share the same vali-
dation and test sets. Boito et al. (2022a) provides
a thorough description of this dataset.

In addition to the 17 hours of Tamasheq audio
data aligned to French translations, and in light of
recent work in self-supervised models for speech
processing, we also provide participants with un-
labeled raw audio data in the Tamasheq language,
as well as in other 4 languages spoken from Niger:
French (116 hours), Fulfulde (114 hours), Hausa
(105 hours), Tamasheq (234 hours) and Zarma
(100 hours). All this data comes from the ra-
dio broadcastings of Studio Kalangou and Studio
Tamani.37

Note that this language pair is a continuation of
last year’s shared task. An additional separate test
set was provided this year.

Quechua–Spanish Quechua is an indigenous
language spoken by more than 8 million peo-
ple in South America. It is mainly spoken in
Peru, Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages
like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of

36https://www.studiokalangou.org/
37https://www.studiotamani.org/

Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
II and, thus, considered a “southern” languages.
We label the data set with que - the ISO norm for
Quechua II mixtures.

The constrained setting allowed a Quechua-
Spanish speech translation dataset along with the
additional parallel (text-only) data for machine
translation compiled from previous work (Ortega
et al., 2020). The audio files for training, valida-
tion, and test purposes consisted of excerpts of the
Siminchik corpus (Cardenas et al., 2018) that were
translated by native Quechua speakers. For the un-
constrained setting, participants were directed to
another larger data set from the Siminchik corpus
which consisted of 60 hours of fully transcribed
Quechua audio (monolingual).

8.2.1 Metrics
We use standard lowercase BLEU as well as
charF++ to automatically score all submissions.
Additional analyses for some language pairs are
provided below.

Due to the exceptionally hard setting, which
currently leads to generally less competent transla-
tion systems, we did not perform the human eval-
uation of the outputs.

8.3 Submissions

Below we discuss all submissions for all language
pairs, given that there were several overlaps. A
brief summary per language is below:

• Irish–English received four submissions from
one team (GMU);

• Marathi–Hindi received submissions from
four teams (ALEXA AI, BUT, GMU, and
SRI-B);

• Maltese–English received five submissions
from one team (UM-DFKI);

• Pashto–French received submissions from
two teams (GMU, ON-TRAC);

• Tamasheq–French received submissions
from four teams (ALEXA AI, GMU,
NAVER, and ON-TRAC);

• Quechua-Spanish received three submissions
(GMU, NAVER, and QUESPA).
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Below we discuss each team’s submission in de-
tail:

• ALEXA AI (Vishnu et al., 2023) submitted
one primary and three contrastive systems,
all of these are in the unconstrained condition
(Table 44) for Tamasheq-French, and one pri-
mary and five contrastive systems on the un-
constrained condition for Marathi–Hindi. For
Marathi–Hindi, their systems relied on an
end-to-end speech translation approach, us-
ing the wav2vec 2.0 base model finetuned
on 960 hours of English speech (Baevski
et al., 2020b) as encoder baseline and it was
also finetuned on 94 hours of Marathi au-
dio data. The team focused on evaluating
three strategies including data augmentation,
an ensemble model and post-processing tech-
niques. For Tamasheq–French, they reuse
the same end-to-end AST model proposed
by the ON-TRAC Consortium in the last
year’s IWSLT edition (Boito et al., 2022b).
This model consists of a speech encoder that
is initialized by the wav2vec 2.0 (Baevski
et al., 2020a) base model pre-trained on 243
hours of Tamasheq audio data released by
the ON-TRAC Consortium 38. The decoder
of this model is a shallow stack of 2 trans-
former layers with 4 attention heads. A
feed-forward layer is put in between the en-
coder and the decoder for matching the di-
mension of the encoder output and that of
the decoder input. In this work, they fo-
cus on leveraging different data augmenta-
tion techniques including audio stretching,
back translation, paraphrasing, and weighted
loss. Another important endeavor of their
work is experimenting with different post-
processing approaches with LLMs, such as
re-ranking, sentence correction, and token
masking. Besides, they also ensemble AST
models trained with different seeds and data
augmentation methods, which is proven to
improve the performance of their systems.
Their primary system scores 9.30 BLEU on
the 2023 test set.

• BUT (Kesiraju et al., 2023) submitted one
primary and one contrastive system using the

38https://huggingface.
co/LIA-AvignonUniversity/
IWSLT2022-tamasheq-only

ESPnet (Inaguma et al., 2021) toolkit. The
primary system was built with the end-to-
end and bilingual ASR model while the con-
trastive was built with a cascade which uses
various backbone models including ASR, the
bilingual ASR, transformer-based seq2seq
MT, LM for re-scoring and XLM.

• GMU (Mbuya and Anastasopoulos, 2023)
focused on end-to-end speech translation
systems. End-to-end (E2E) transformer-
based encoder-decoder architecture (Vaswani
et al., 2017) was used for primary con-
strained submission. For unconstrained sub-
missions, they explored self-supervised pre-
trained speech models and used wav2vec 2.0
(Baevski et al., 2020a) and HuBERT (Hsu
et al., 2021) for the low resource task. They
used wav2vec 2.0 - with removing the last
three layers - for their primary submission.
HuBERT was used for the contrastive1 sub-
mission - without removing any layer. For
contrastive2, End-to-end with ASR (E2E-
ASR) architecture uses the same architec-
ture as the E2E. The difference is that a pre-
trained ASR model was used to initialize its
encoder.

• ON-TRAC (Laurent et al., 2023) partic-
ipated in the Pashto–French (one primary
and three contrastive systems, both for con-
strained and unconstrained settings) and
Tamasheq–French (one primary and five con-
trastive systems, all of which are uncon-
strained (c.f. Table 44). For Pashto–French,
the primary cascaded system is based on a
convolutional model (Gehring et al., 2017)
upgraded, while contrastive3 is based on
small basic transformers. For Primary and
contrastive1 systems, SAMU-XLS-R (Khu-
rana et al., 2022) was used with pre-trained
encoder with 100 and 53 languages. The two
constrained contrastive E2E systems share
the same encoder-decoder architecture using
transformers (Vaswani et al., 2017). The dif-
ference lies in the use or not of a transformer
language model trained from scratch on the
provided dataset.

All of their systems for Tamasheq–French
are based on the same end-to-end encoder-
decoder architecture. In this architec-
ture, the encoder is initialized by a pre-
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trained semantic speech representation learn-
ing model named SAMU-XLS-R (Khurana
et al., 2022), while the decoder is initialized
with the decoder of the pre-trained mBART
model. Their work heavily relies on different
versions of the SAMU-XLS-R model, which
are pre-trained on different combinations of
multilingual corpora of 53, 60, and 100 lan-
guages. In addition, they leverage training
data from higher resource corpora, such as
CoVoST-2 (Wang et al., 2020a) and Europarl-
ST (Iranzo-Sánchez et al., 2020), for train-
ing their end-to-end models. Their primary
system, which scores 15.88 BLEU on the
Tamasheq–French 2023 test set, was trained
on the combination of (CoVoST-2, Europarl-
ST and the IWSLT 2022’s test set), with the
encoder is initialized by the SAMU-XLS-R
model trained on the data gathered from 100
languages.

• NAVER (Gow-Smith et al., 2023) submit-
ted one primary and two contrastive sys-
tems to the Tamasheq–French track, as well
as one primary and two contrastive sys-
tems for the unconstrained condition in the
Quechua–Spanish track. In their work for
the Tamasheq–French track, they concentrate
on parameter-efficient training methods that
can perform both ST and MT in a multilin-
gual setting. In order to do so, they initial-
ize their models with a pre-trained multilin-
gual MT model (mBART (Liu et al., 2020) or
NLLB (NLLB Team et al., 2022)), which is
then fine-tuned on the ST task by inputting
features extracted with a frozen pre-trained
speech representation model (wav2vec 2.0 or
HuBERT (Hsu et al., 2021)). The encoder
of their translation model is slightly modified
where they stack several modality-specific
layers at the bottom. In addition, adapter
layers are also inserted in between layers of
the pre-trained MT model at both the en-
coder and decoder sides. While these new
components get fine-tuned during the train-
ing process, the pre-trained components of
the MT model are frozen. One of the appeal-
ing characteristics of their approach is that it
allows the same model to do both speech-to-
text and text-to-text translation (or transcrip-
tion). Furthermore, their method maximizes
knowledge transfer to improve low-resource

performance. Their primary system, which is
ensembled from 3 different runs on the com-
bination of both ST and ASR data, scores
23.59 BLEU on the 2023 test set.

For the Quechua–Spanish track, the overall
architecture for their systems consists of first
initializing a PLM which was then fine-tuned
on the speech translation task by inputting
features from a frozen pre-trained speech rep-
resentation. Similar adaptations were done
with an MT model to control domain and
length mismatch issues. One of the interest-
ing takeaways from their approaches is that
their contrastive 2 system (1.3 billion pa-
rameters (NLLB Team et al., 2022)) outper-
formed their contrastive 1 system (3.3 billion
parameters (NLLB Team et al., 2022)) de-
spite it having less parameters. NAVER’s
primary submission was an ensemble ap-
proach that included the use of PLMs for
both the ASR (Baevski et al., 2020a) and
MT systems ((NLLB Team et al., 2022))
and included training on both Tamasheq and
Quechua data. Their submissions to QUE–
SPA did not include the use of mBART or
HuBERT (Hsu et al., 2021) as was done for
other language pairs that NLE submitted.

• QUESPA (Ortega et al., 2023) submitted
to both conditions (constrained and uncon-
strained) a total of six systems including a
primary, contrastive 1, and contrastive 2 for
each condition. They also claim to have tried
several other combinations but did not sub-
mit those systems. For the constrained condi-
tion, their primary system scored second best,
slightly less than team GMU with a BLEU
score of 1.25 and chrF2 of 25.35. They also
scored third best for the constrained condi-
tion with 0.13 BLEU and 10.53 chrF2 us-
ing their contrastive 1 system. It is worth-
while to note that chrF2 was used by the
organizers when BLEU scores were below
five. For their constrained systems, a di-
rect speech translation system was submit-
ted similar to the GMU team’s primary ap-
proach that used Fairseq (Wang et al., 2020b).
QUESPA extracted mel-filter bank (MFB)
features similar to the S2T approach in previ-
ous work Wang et al. (2020b). The main dif-
ference between QUESPA’s submission and
GMU’s submissions was that the GMU team
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increased the number of decoder layers to
6 which resulted in a slightly better system
for GMU. The other systems submitted for
the constrained setting were cascade systems
where ASR and MT were combined in a
pipeline setting. Their contrastive 1 and 2
system submissions for the constrained task
respectively used wav2letter++ (Pratap et al.,
2019) and a conformer architecture similar
to previous work (Gulati et al., 2020) along
with an OpenNMT (Klein et al., 2017) trans-
lation system trained on the constrained ST
and MT data. Both of those systems per-
formed poorly scoring less than 1 BLEU. For
the unconstrained condition, the three sys-
tems that were presented by QUESPA con-
sisted of pipeline approaches of PLMs that
were fine-tuned on the additional 60 hours
of Siminchik audio data along with the con-
strained data. Their primary and contrastive
1 unconstrained ASR systems were trained
using the 102-language FLEURS (Conneau
et al., 2023) model and used the MT sys-
tem that was based on NLLB (NLLB Team
et al., 2022) which just so happens to in-
clude Quechua as one of its languages. Their
contrastive 2 ASR system was based on
wav2letter++ (Pratap et al., 2019) while their
contrastive 2 MT system was identical to the
MT systems used for their Primary and Con-
trastive 1 submissions.

• SRI-B (Radhakrishnan et al., 2023) submit-
ted four systems. For Marathi–English, they
submitted one primary and one contrastive
system in the constrained setting and one
primary and one contrastive system in the
unconstrained setting. They used end-to-
end speech translation networks comprising a
conformer encoder and a transformer decoder
for both constrained and unconstrained.

• UM-DFKI (Williams et al., 2023) submit-
ted five systems. It included one primary and
four contrastive systems in unconstrained set-
tings. They used a pipeline approach for all
of their submissions. For ASR, their system
builds upon (Williams, 2022) on fine-tuning
XLS-R based system. mBART-50 was used
for fine-tuning the MT part of the pipeline.

8.4 Results

Irish–English As discussed earlier, only the
GMU team participated in the GA–ENG trans-
lation track and submitted one primary system to
constrained, one primary system to unconstrained
and the rest of the two systems to contrastive
on unconstrained conditions. The end-to-end and
end-to-end with ASR models submitted primary
constrained and contrastive2 unconstrained sys-
tems. Both the systems achieved 15.1 BLEU
scores. They did not perform well in comparison
to the wav2vec 2.0 and HuBERT models. The de-
tail of the results of this track can be found in Ta-
ble 36 and 37.

Marathi–Hindi The results of this translation
track can be found in Table 38 and 39. Over-
all we see varying performances among the sys-
tems submitted to this track, with some perform-
ing much better on the test set. Out of the 16
submissions, the SRI-B team’s primary system
achieved the best result of 31.2 and 54.8 in BLEU
and in charF++ respectively on the constrained
condition while the BUT team’s primary system
achieved the best results of 39.6 in BLEU and
63.3 in charF++ on the unconstrained condition.
In both constrained and unconstrained conditions,
the GMU systems achieved the lowest results of
3.3 and 5.9 in BLEU and 16.8 and 20.3 in charF++
respectively.

Maltese–English The results of this translation
track can be found in Table 42. UM-DFKI used
contrastive approaches in training their ASR sys-
tem. For their contrastive1 system, their fine-
tuning consisted of using Maltese, Arabic, French
and Italian corpora. Their contrastive2, con-
trastive3, and contrastive4 approaches respectively
use a subset from Arabic, French and Italian ASR
corpus along with Maltese data. The best result
of 0.7 BLEU was achieved with their contrastive1
system.

Pashto–French The detailed results can be
found in Table 41 and Table 40 of the Appendix.
We rank the system performance based on test
BLEU scores. The best score BLEU was achieved
by ON-TRAC primary system (SAMU-XLS-R
model trained on 100 languages). For the con-
strained condition, the cascaded approach based
on convolutional models, gives the best perfor-
mance.
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Tamasheq-French The results of this transla-
tion track can be found in Table 43 and 44. Com-
pared to the last year’s edition, this year has wit-
nessed a growing interest in this low-resource
translation track in terms of both quantity and
quality of submissions. Almost all submissions
achieve relatively better results than the last year’s
best system (5.7 BLEU on test2022 (Boito et al.,
2022b)). Furthermore, it is notable that cascaded
systems are not favorable in this track while none
of the submitted systems is of this kind.

This year, this language pair remains a chal-
lenging low-resource translation track. There is
only one submission to the constrained condi-
tion from GMU with an end-to-end model scor-
ing 0.48 BLEU on this year’s test set. For
this reason, all the participants are in favor of
exploiting pre-trained models, hence being sub-
ject to the unconstrained condition. Among
these pre-trained models, self-supervised learn-
ing (SSL) from speech models remains a popu-
lar choice for speech encoder initializing. Us-
ing a wav2vec2.0 model pre-trained on unlabelled
Tamasheq data for initializing their speech en-
coder, GMU gains +7.55 BLEU score in compari-
son with their Transformer-based encoder-decoder
model training from scratch (their primary con-
strained system). At the decoder side, pre-trained
models such as mBART or NLLB are commonly
leveraged for initializing the decoder of the end-to-
end ST model. Besides, data augmentation and en-
sembling are also beneficial as shown by ALEXA
AI when they consistently achieve ∼ 9 BLEU in
all of their settings.

Outstanding BLEU scores can be found in the
work of the ON-TRAC team. An interesting pre-
trained model named SAMU-XLS-R is shown to
bring significant improvements. This is a multilin-
gual multimodal semantic speech representation
learning framework (Khurana et al., 2022) which
fine-tunes the pre-trained speech transformer en-
coder XLS-R (Babu et al., 2021) using semantic
supervision from the pre-trained multilingual se-
mantic text encoder LaBSE (Feng et al., 2022).
Exploiting this pre-trained model and training
end-to-end ST models on the combinations of dif-
ferent ST corpora, they achieve more than 15
BLEU in all of their settings.

NAVER tops this translation track by a multilin-
gual parameter-efficient training solution that al-
lows them to leverage strong pre-trained speech

and text models to maximize performance in low-
resource languages. Being able to be trained on
both ST and ASR data due to the multilingual na-
ture, all of their submissions heavily outperform
the second team ON-TRAC by considerable mar-
gins. Their primary system, which is ensembled
from 3 different runs, uses NLLB1.3B as the pre-
trained MT system, and wav2vec2.0 Niger-Mali 39

as the speech presentation extractor. After be-
ing trained on a combination of both ST corpora
(Tamasheq-French, mTEDx fr-en, mTEDx es-fr,
mTEDx es-en, mTEDx fr-es (Salesky et al., 2021))
and AST corpora (TED-LIUM v2 (Rousseau et al.,
2014), mTEDx fr, mTEDx es), this system estab-
lishes an impressive state-of-the-art performance
of the Tamasheq-French language pair, scoring
23.59 BLEU on the 2023 test set.

Quechua–Spanish The QUE–SPA results for
all systems submitted to this low-resource trans-
lation track can be found in Table 45 and 46 of
the appendix. To our knowledge, this first edi-
tion of the QUE–SPA language pair in the low-
resource track of IWSLT has witnessed the best
BLEU scores achieved by any known system in
research for Quechua. The two best performing
systems: 1.46 BLEU (constrained) and 15.70 (un-
constrained) show that there is plenty of room to
augment approaches presented here. Nonetheless,
submissions from the three teams: GMU, NAVER,
and QUESPA have shown that it is possible to use
PLMs to create speech-translation systems with as
little as 1.6 hours of parallel speech data. This is
a notable characteristic of this task and surpasses
previous work in the field.

We have found that the NLLB (NLLB Team
et al., 2022) system’s inclusion of Quechua in re-
cent years has had a greater impact than expected
for ease-of-use. Similarly, the use of Fairseq
(Wang et al., 2020b) seems to be the preferred
toolkit for creating direct S2T systems, cascaded
or not. The QUE–SPA submissions for the un-
constrained conditions preferred the use of a cas-
cading system in a pipeline approach where pre-
trained models were fine-tuned first for ASR and
then for MT.

The constrained setting leaves much room for
improvement. Nonetheless, GMU and QUESPA’s
near identical submissions have shown that the in-

39https://huggingface.
co/LIA-AvignonUniversity/
IWSLT2022-Niger-Mali
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crease of 3 layers during decoding can be powerful
and should be explored further. It would be worth-
while for the organizers of the QUE–SPA track to
obtain more parallel data including translations for
future iterations of this task.

The unconstrained setting clearly can benefit
from an ensembling technique and training with
multiple languages – in these submissions, the
training of a model with an additional language
like Tamasheq alongside Quechua does not seem
to have a negative impact on performance. Al-
though, it is hard to ascertain whether the slight
performance gain of less than 1 BLEU point of the
NLE team’s submission compared to QUESPA’s
submission was due to the ensembling, freezing of
the models, or the language addition.

As a final takeaway, the NLE team’s submis-
sions scored quite well under the unconstrained
condition. It should be noted that for other lan-
guage pairs NLE’s high system performance was
also due to the ensembling of systems that were
executed using different initialization parameters
on at least three unique runs. As an aside, small
gains were achieved under the constrained condi-
tion when comparing the GMU submission to the
QUESPA system due to the increase in decoding
layers. QUESPA’s inclusion of a language model
on top of a state-of-the-art dataset (Fleurs) allowed
them to achieve scores similar to NAVER’s with-
out additional tuning or ensembling. State-of-the-
art performance was achieved by all three teams
that submitted systems.

General Observations As in previous years, the
low-resource shared task proved particularly chal-
lenging for the participants, but there are several
encouraging signs that further reinforce the need
for more research in the area.

First, more teams than ever participated in the
shared task, showing a continued interest in the
field. Second, we note that for the language
pair that was repeated from last year (Tamasheq–
French), almost all submissions outperformed last
year’s best submission, with an accuracy increase
of more than 17 BLEU points in the unconstrained
setting. Last, we highlight the breadth of different
approaches employed by the participants, ranging
from the use of finetuned pre-trained models to
pre-training from scratch, to parameter efficient
dine-tuning as well as cascaded pipeline systems,
all of which seem to have benefits to offer, to a
certain extent, to different language pairs.

Limitations As noted by some participants,
the Irish–English and Maltese–English transla-
tion track data has limitations. For Irish–English,
the speech translation systems can achieve very
high BLEU scores on the test set if the built
systems have used wav2vec 2.0 and/or the Irish
ASR model which is trained on the Common
Voice (Ardila et al., 2020b) dataset. Similarly,
the GMU team has achieved high BLEU scores
especially when they used wav2vec 2.0 and Hu-
BERT models. We plan to continue this translation
track next year by updating the test and training
data to thoroughly investigate the data quality as
well as the reason to obtain the high BLEU scores.
For Maltese–English, some participants reported
issues with the data quality, which we hope to re-
solve in future iterations of the shared task.

9 Formality Control for SLT

Different languages encode formality distinctions
in different ways, including the use of honorifics,
grammatical registers, verb agreement, pronouns,
and lexical choices. While machine translation
(MT) systems typically produce a single generic
translation for each input segment, SLT requires
adapting the translation output to be appropriate to
the context of communication and target audience.
This shared task thus challenges machine transla-
tion systems to generate translations of different
formality levels.

9.1 Challenge

Task Given a source text, X in English, and a
target formality level, l ∈ {F, IF}, the goal in
formality-sensitive machine translation (Niu et al.,
2017) is to generate a translation, Y , in the target
language that accurately preserves the meaning of
the source text and conforms to the desired formal-
ity level, l. The two formality levels typically con-
sidered are “F” for formal and “IF” for informal,
resulting in two translations: YF and YIF respec-
tively. For example, the formal and informal trans-
lations for the source text “Yeah Did your mom
know you were throwing the party?” (originally
informal) in Korean are shown in the table below:

This shared task builds on last year’s offering,
which evaluated systems’ ability to control for-
mality on the following translation tasks: trans-
lation from English (EN) into Korean (KO) and
Vietnamese (VI) in the supervised setting, and
from English (EN) into Portugal Portuguese (PT)
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Source: Yeah Did your mom know you were
throwing the party?

Korean Informal: 그, 어머님은 [F]네가[/F]
그파티연거 [F]아셔[/F]?

Korean Formal: 그,어머님은 [F]님이[/F]그
파티연거 [F]아세요[/F]?

Table 7: Contrastive formal and informal translations
into Korean. Grammatical formality markers are anno-
tated with [F]text[/F].

and Russian (RU) in the zero-shot setting. Re-
sults showed that formality-control is challeng-
ing in zero-shot settings and for languages with
many grammatical and lexical formality distinc-
tions. This year’s edition invited participants to
advance research in effective methods for bridg-
ing the gap in formality control for zero-shot cases
and for languages with rich grammatical and lexi-
cal formality distinctions.

9.2 Data and Metrics

Participants were provided with test data, as well
as MT quality and formality control metrics. In
addition, we provided training data, consisting of
formal and informal translation of texts for the su-
pervised language pairs (EN-KO, EN-VI).

9.2.1 Formality Annotated Dataset

We provide targeted datasets comprising source
segments paired with two contrastive reference
translations, one for each formality level (informal
and formal) for two EN-VI, EN-KO in the super-
vised setting and EN-RU, EN-PT in the zero-shot
setting (see Example 7)40. The sizes and proper-
ties of the released datasets for all the language
pairs are listed in Table 8. Formal translations tend
to be longer than informal texts for Vietnamese
compared to other language pairs. The number
of phrasal formality annotations ranges from 2 to
3.5 per segment, with Korean exhibiting a higher
diversity between the formal and informal transla-
tions as indicated by the TER score.

9.2.2 Training Conditions

We allowed submissions under the constrained
and unconstrained data settings described below:

40https://github.com/amazon-science/
contrastive-controlled-mt/tree/main/
IWSLT2023

Constrained (C) Participants were allowed to
use the following resources: Textual MuST-C v1.2
(Di Gangi et al., 2019b), CCMatrix (Schwenk
et al., 2021), OpenSubtitles (Lison and Tiede-
mann, 2016) and dataset in the constrained set-
ting from the Formality Control track at IWSLT22
(Anastasopoulos et al., 2022).

Unconstrained (U) Participants could use any
publicly available datasets and resources: the use
of pre-trained language models was also allowed.
Additionally, using additionally automatically an-
notated bitext with formality labels was also al-
lowed.

9.3 Formality Classifier
We release a multilingual classifier (MC) trained
to predict the formality of a text for all the lan-
guage pairs: EN-KO, EN-VI, EN-RU, and EN-
PT. We finetune an xlm-roberta-base (Con-
neau et al., 2020) model on human-written formal
and informal translations following the setup from
Briakou et al. (2021). Our classifier achieves an
accuracy of > 98% in detecting the formality of
human-written translations for the four target lan-
guages (Table 10). Participants were allowed to
use the classifier both for model development and
for evaluation purposes as discussed below.

9.4 Automatic Metrics
We evaluate the submitted system outputs along
the following two dimensions:

1. Overall translation quality, evaluated using
SacreBLEU v2.0.0 (Papineni et al., 2002b;
Post, 2018), and COMET (Rei et al., 2020b)
on both the shared task-provided test sets
based on topical chat (Gopalakrishnan et al.,
2019) and on the FLORES devtest (NLLB
Team et al., 2022; Goyal et al., 2022).

2. Formality control, evaluated using:

• Matched-Accuracy (mACC), a reference-
based corpus-level automatic metric that
leverages phrase-level formality markers
from the references to classify a system-
generated hypothesis as formal, informal,
or neutral (Nadejde et al., 2022).

• Classifier-Accuracy (cACC), a reference-
free metric that uses the multilingual for-
mality classifier discussed above to label a
system-generated hypothesis as formal or
informal.
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LANGUAGE TYPE SIZE LENGTH # PHRASAL ANNOTATIONS TER(F, IF)
SOURCE FORMAL INFORMAL FORMAL INFORMAL

EN-VI
Train 400 20.35 28.52 25.48 2.71 1.49 23.70
Test 600 21.82 29.59 26.77 2.79 1.55 23.00

EN-KO
Train 400 20.00 13.41 13.40 3.35 3.35 24.52
Test 600 21.22 13.56 13.55 3.51 3.51 25.32

EN-RU Test 600 21.02 18.03 18.00 2.06 2.05 13.59

EN-PT Test 600 21.36 20.22 20.27 1.93 1.93 10.46

Table 8: Formality Track Shared Task Data Statistics.

PARTICIPANT SETTINGS CLASSIFIER USE LANGUAGES MODEL TYPE FORMALITY

UMD-baseline U ✓ All Multilingual Exemplars

COCOA-baseline C ✗ EN-{VI, KO} Bilingual Side-constraint

APPTEK U ✗ EN-{PT, RU} Bilingual Side-constraint

HW-TSC U+C ✓ All Bilingual Side-constraint

KUXUPSTAGE U ✓ All Bilingual N/A

UCSC U ✗ EN-{VI, KO} Multilingual Style-Embedding

Table 9: Formality Track Submissions Summary. Most participants train bilingual systems but leverage a diverse
set of formality encoding mechanisms for control.

Target Language Accuracy
Korean 99.9%

Vietnamese 99.3%
Russian 99.9%

Portuguese 98.6%

Table 10: The multilingual classifier can identify the
target formality for human written text across all lan-
guages with > 98% accuracy.

The final corpus-level score for each of the
two metrics described above is the percent-
age of system outputs that matches the de-
sired formality level. For example, the cACC

for the target formality, Formal (F), is given
by, cACC(F ) = 1

M ∑M
i=1 1[MC(Y ) == F ],

where M is the number of system outputs.

9.5 Submissions

We provide methodology descriptions and a sum-
mary of the two baseline systems and four sub-
missions received for the shared task below and in
Table 9. Three out of six submissions made use
of the formality classifier released for system de-
velopment. We received two multilingual and four
bilingual systems. We refer the reader to the sys-
tem description papers for more details.

• COCOA (baseline) uses a supervised method
where a generic neural MT model is fine-
tuned on labeled contrastive translation pairs
(Nadejde et al., 2022). For the constrained,
supervised setting, the generic neural MT
model was trained on parallel data allowed
for the constrained task and fine-tuned on for-
mal and informal data released for the shared
task. Following Nadejde et al. (2022), con-
trastive pairs were upsampled with a fixed up-
sampling factor of five for all language pairs.

• UMD (baseline) uses 16 few-shot tar-
get formality-specific exemplars to prompt
XGLM-7.5B (Lin et al., 2021) to generate
style-controlled translations. For the su-
pervised setting, these examples are drawn
from the official training data, whereas for
the zero-shot setup, the examples from the
Tatoeba corpus (Artetxe and Schwenk, 2019)
are filtered and marked with target formality
using the provided formality classifier.

• APPTEK (Bahar et al., 2023) submitted out-
puts using their production quality translation
systems that support formality-controlled
translation generation for EN-PT and EN-

31



RU. These are Transformer-Big models
trained on a large public dataset from the
OPUS collection (Tiedemann, 2012), auto-
matically marked with formality using a se-
quence of regular expressions. The formality
level is encoded with a pseudo-token at the
beginning of each training source sentence
with one of 3 values: formal, informal, or no
style.

• HW-TSC (Wang et al., 2023a) describes a
system that uses a multi-stage pre-training
strategy on task-provided data to train strong
bilingual models. Using these bilingual mod-
els, they employ beam re-ranking on the out-
puts generated using the test source. The gen-
erated hypothesis are ranked using the for-
mality classifier and phrasal annotations, it-
eratively fine-tuning the model on this data
until test performance convergences. Initial
formality control is enabled by a special to-
ken and re-affirmed through classifier output
and annotations from training.

• KUXUPSTAGE (Lee et al., 2023) uses large-
scale bilingual transformer-based MT sys-
tems trained on high-quality datasets and
MBART for the supervised and zero-shot set-
tings respectively. They generate a formality-
controlled translation dataset for supervision
in the zero-shot setting using GPT-4 and fil-
ter the generated source-translation pairs us-
ing the formality classifier. All bilingual
models are then finetuned independently for
the two target formality directions to gen-
erate formality-controlled outputs, resulting
in #(Language-pairs) × 2 (Formal/Informal)
models.

• UCSC (Vakharia et al., 2023) focused on us-
ing a single multilingual translation model
for all the language pairs under the uncon-
strained setting. They finetune the pre-trained
model, mBART-large-50 (Tang et al.,
2020), using the provided contrastive transla-
tions (§ 9.2.1) with an added style embedding
intervention layer.

9.6 Results

Tables 47 and 48 in the Appendix show the main
automatic evaluation results for the shared task.

Overall Results For the supervised language
pairs in both constrained and unconstrained set-
tings, most submitted systems were successfully
able to control formality. The average mAcc
scores ranged from 78-100. Controlling formality
in Korean was found to be more challenging than
translating with formality control in Vietnamese
as reflected by the relatively lower mAcc scores
which we believe to be due to the variation in for-
mality expression of Korean honorific speech re-
flected in pretraining data.

HW-TSC consistently achieves the best scores
across the board for all language pairs and both
settings due to the use of transductive learning.
Interestingly, the constrained submission by HW-
TSC achieves better or competitive results com-
pared to their unconstrained system suggesting
that the use of a pre-trained language model or
additional resources is not necessary to gener-
ate high-quality formality-controlled translations.
Generally, the systems generate higher quality out-
puts in the formal setting relative to the informal
setting for both supervised language pairs accord-
ing to BLEU and COMET, which might be due
to the bias of the dataset used during pre-training
which is typically news and hence more formal.

In the zero-shot unconstrained setting, this for-
mality bias is even more prominent. We observe
a much wider distribution in the formality scores
for English-Portuguese (mAcc: F 90-100, IF: 58-
100), possibly due to the high ambiguity in the
informal language and the confounding dialectal
influence of Brazilian Portuguese dominant in the
pre-training corpora, which is known to use for-
mal register even in typically informal contexts
(Costa-jussà et al., 2018). HW-TSC and APPTEK

achieve the best translation quality for English-
Portuguese and English-Russian respectively. The
lowest scoring submission in both quality and for-
mality control (UCSC) did not include any fine-
tuning or adaptation of the base MBART model to
the two zero-shot language pairs: English-Russian
and English-Portuguese. This suggests that for-
mality information is not transferred from the un-
related language pairs, EN-KO and EN-VI, and
that some language-specific supervision is needed
to mark grammatical formality appropriately in
Russian and Portuguese.

How well do systems match the desired tar-
get formality? We show the distribution of the
scores generated using the formality classifier for
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Figure 3: Formality Classifier Scores’ Distribution on the submitted system outputs in the Unconstrained setting:
HW-TSC can precisely match the target formality as depicted by the peaky distribution.

all the systems submitted to all language pairs un-
der the unconstrained setting in Figure 3. For su-
pervised language pairs, formal (blue) and infor-
mal (orange) output scores peak at 1.0 and 0.0 re-
spectively. In the zero-shot setting, for both Por-
tuguese (APPTEK, UCSC) and Russian (UCSC)
translations, the informal outputs have a bimodal
distribution, highlighting that these models gener-
ate many formal translations under informal con-
trol.

How contrastive are the generated transla-
tions? We show the Translation Edit Rate (TER)
between the formal and informal outputs for all
submitted systems across all language pairs in Fig-
ure 4. While the references are designed to be min-
imally contrastive, the formal and informal system
outputs exhibit a much larger edit distance. HW-
TSC has the lowest TER rate for all language pairs
except English-Korean.

Discussion Overall, the shared task results
show that finetuning a strong supervised general-
purpose MT system with as low as 400 in-
domain contrastive samples seems to be sufficient
in generating high-quality contrastive formality-
controlled translations. However, several avenues
for improvement remain open. The languages that

Figure 4: TER between the Formal (F) and Informal
(IF) Outputs for all submitted systems across all lan-
guage pairs.

exhibit an ambiguous or richer formality distinc-
tion either due to close dialectal variations (like
Portuguese) or due to multiple levels of honorifics
(like Korean and Japanese) still remain challeng-
ing. Unsupervised transfer of formality knowl-
edge between related languages remains relatively
unexplored (Sarti et al., 2023). Furthermore, this
year’s task only considered two levels of formal-
ity distinctions with minimal edits. It remains un-
clear whether the models are also capable of mod-
eling multiple levels of formality potentially with
minimal edits in the generated translations. Fi-
nally, no submissions have explored monolingual
editing of translations as a potential solution for

33



formality-controlled MT, despite the edit-focused
nature of the contrastive translations. We recom-
mend that future work on formality-controlled ma-
chine translation targets these challenges.

10 Automatic Dubbing

10.1 Challenge
This task focuses on automatic dubbing: translat-
ing the speech in a video into a new language such
that the new speech is natural when overlayed on
the original video (see Figure 5).

Participants were given German videos, along
with their text transcripts, and were asked to pro-
duced dubbed videos where the German speech
has been translated in to English speech.

Automatic dubbing is a very difficult/complex
task (Brannon et al., 2023), and for this shared
task we focus on the characteristic which is per-
haps most characteristic of dubbing: isochrony.
Isochrony refers to the property that the speech
translation is time aligned with the original
speaker’s video. When the speaker’s mouth is
moving, a listener should hear speech; likewise,
when their mouth isn’t moving, a listener should
not hear speech.

To make this task accessible for small academic
teams with limited training resources, we make
some simplifications: First, we assume the input
speech has already been converted to text using an
ASR system and the desired speech/pause times
have been extracted from the input speech. Sec-
ond, to alleviate the challenges of training a TTS
model, the output is defined to be phonemes and
their durations. These phonemes and durations are
played through an open-source FastSpeech2 (Ren
et al., 2022) text-to-speech model to produce the
final speech.41

10.2 Data and Metrics
Official training and test data sets were provided42

by the organizers. The training data was derived
from CoVoST2 (Wang et al., 2021) and consists
of:

1. Source (German) text

2. Desired target speech durations (e.g. 2.1s of
speech, followed by a pause, followed by 1.3s
of speech)

41https://github.com/mtresearcher/
FastSpeech2

42https://github.com/amazon-science/
iwslt-autodub-task/tree/main/data

3. Target (English) phonemes and durations cor-
responding to a translation which adheres to
the desired timing

The test data was produced by volunteers and
consists of videos of native German speakers
reading individual sentences from the German
CoVoST-2 test set.43 This test set was divided in to
two subsets; Subset 1 where there are no pauses in
the speech and Subset 2 where there is one or more
pause in the speech. More details on this data are
presented in (Chronopoulou et al., 2023).

10.3 Submissions

Despite high initial interest, we received only
one submission, which was from the Huawei
Translation Services Center (HW-TSC) (Rao
et al., 2023). However, we had two systems
(Chronopoulou et al., 2023; Pal et al., 2023) built
for the task for which we had not yet performed
human evaluation, so we still had enough systems
for a interesting comparison.

• Interleaved (Baseline): Our first baseline
and the basis for this shared task is from
Chronopoulou et al. (2023). They propose to
jointly model translations and speech timing,
giving the model the freedom to change the
translation to fit the timing, or and make scar-
ifies in translation quality to meet timing con-
straints or relax timing constraints to improve
translation quality. This is achieved by sim-
ply binning target phoneme durations and in-
terleaving them with target phonemes during
training and inference. To avoid teaching the
model that speech durations should be prior-
itized over translation quality44, noise with
standard deviation 0.1 is added to the target
phrase durations to simulate the source dura-
tions used at inference.

• Factored (Baseline): Pal et al. (2023) build
on the first baseline by using target factors
(Garcı́a-Martı́nez et al., 2016), where along-
side predicting phoneme sequences as the
target, we also predict durations for each
phoneme as a target factor. Additionally, they
propose auxiliary counters, which are simi-
lar to target factors except the model is not

43Each volunteer provided their consent to use this data
for automatic dubbing task.

44Median speech overlap is just 0.731 in a large corpus of
human dubs (Brannon et al., 2023)
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Figure 5: To illustrate, here’s an example in which “hallo! wei gehts?” is translated to “hi! how are you?” such
that the output will fit in the desired target speech durations of 0.4s and 1.3s, with a pause in between

trained to predict them. Instead, they pro-
viding additional information to the decoder
consisting of (1) the total number of frames
remaining, (2), the number of pauses remain-
ing, and (3) the number of frames remaining
in the current phrase. As in the first base-
line, noise of standard deviation 0.1 is added
to the target phrase durations during training
to simulate source durations.

• Text2Phone (Baseline): As a sanity check,
we added a third, non-isochronic baseline
trained to take in German text and produce
English phonemes, without any duration in-
formation. We train on the same data as the
first two baselines, but exclude duration in-
formation from training and instead predict
phoneme durations using the duration model
from the FastSpeech2 model.

• HW-TSC: In contrast to our three baselines,
(Rao et al., 2023) took a more traditional
approach to dubbing and followed the prior
works on verbosity control (Lakew et al.,
2021, 2019) to first generate a set of transla-
tion candidates and later re-rank them. Their
system consists of four parts: 1) voice ac-
tivity detection followed by pause alignment,
2) generating a list of translation candidates,
3) phoneme duration prediction, followed by
4) re-ranking/scaling the candidates based on
the durations (see Figure 6). With the last
step in the pipeline, the top scored candidate
is ensured to have the best speech overlap
with the source speech amongst all candidate
translations.

10.4 Evaluation & Metric
The dubbed English videos were judged by a mix-
ture of native and non-native speakers, all of which

Figure 6: System diagram for HW-TSC dubbing sys-
tem. Image from Rao et al. (2023).

were researchers in automatic dubbing. For each
video in the the test set, one judge was shown the
four system outputs in random order and asked to
rate them from 1-6. The judges were not given
a defined rubric or guidelines to follow but were
asked to be consistent.

As a metric we opted for mean opinion score
(MOS) methodology where the scores for a system
as judged by humans are averaged in one score.45

Feedback from the judges indicate that the base-
line and submitted systems often produce poor
translations (perhaps due to the small amount of
training data used by each system), and the voice
quality from the FastSpeech 2 model was far from
perfect. However, they felt that having all systems
share the same voice made it much easier to com-
pare across dubbing systems.

When we looked at the distribution of scores per

45https://en.wikipedia.org/wiki/Mean_
opinion_score

35



annotator (judge) level, the numbers showed that
each annotator had a bias towards dubbing, some
liked dubbing more than others which is intuitive
but has not been studied before in the context of
automatic dubbing. As shown in Table 11, it is
clear that annotator A2 had a significantly higher
preference for dubbing as compared to annotator
A4 in terms of MOS.

Annotator MOS↑ CI
A1 3.34 ±0.16
A2 3.74 ±0.19
A3 3.53 ±0.13
A4 3.07 ±0.15

Table 11: MOS (on a scale of 1-6) with confidence in-
terval (CI) at 95% per annotator showing the biases to-
wards general purpose dubbed content.

We also looked at MOS for the two different
subsets to understand whether it was difficult for
the submitted systems to dub the videos. As it
turns out, Subset 1 has an significantly higher
MOS of 3.54 (± 0.11) compared to Subset 2 with
a MOS of 3.31 (± 0.11). This shows it is signifi-
cantly more difficult for all systems to dub Subset
2 than Subset 1.

10.5 Results

Results are shown in Table 12. All three
dubbing systems outperform the non-isochronic
Text2Phone baseline (Chronopoulou et al., 2023),
as expected. The factored baseline improves over
the interleaved baseline, consistent with the auto-
matic metric results reported by Pal et al. (2023).

The HW-TSC system (Rao et al., 2023) outper-
forms all the baselines in terms of mean opinion
score, making it the clear winner of the IWSLT
2023 dubbing shared task. Unfortunately, since
HW-TSC system was unconstrained (it trains on
additional bitext compared to the baselines) and
uses fundamentally different approaches than the
baselines, it is not possible to attribute it’s perfor-
mance to any single factor.

Lip-sync is an important feature of dubbing,
it is important that the final generated audio is
in sync with the lip movements of the on-screen
speaker in the original video. As an analy-
sis, we looked at Lip-Sync Error Distance (LSE-
D) (Chung and Zisserman, 2016) following the
evaluation methodology in Hu et al. (2021). LSE-
D is not a perfect metric but it is an indication to

MOS↑
System Constrained? Mean CI
Text2Phone Yes 3.16 ±0.19
Interleaved Yes 3.33 ±0.18
Factored Yes 3.43 ±0.19
HW-TSC No 3.77 ±0.19

Table 12: Mean opinion score for baselines 1)
Text2Phone 2) Interleaved (Chronopoulou et al., 2023)
3) Factored (Pal et al., 2023) and 4) submitted system
of HW-TSC (Rao et al., 2023).

LSE-D↓
System Subset1 Subset2
Original 7.39 7.67

Text2Phone 11.64 13.31
Interleaved 11.71 12.35
Factored 11.73 12.48

HW-TSC 12.11 12.77

Table 13: Results of Lip-Sync Error Distance (LSE-D)
via Syncnet pre-trained model (Chung and Zisserman,
2016). Lower the better.

the amount of Lip-Sync errors in the video. From
Table 13, Subset 1 consistently has a lower lip-
sync error than Subset 2 in all cases pointing that
its difficult to generate lip-synced dubs for Sub-
set 2. This result is also in line with the MOS
scores we obtained for two subsets where the an-
notators preferred dubs for Subset 1. Secondly,
original videos show significantly lower lip-sync
error distance (12.x v/s 7.x) than dubbed videos
showing that automatic dubbing research still has
a long way to go to reach lip-sync quality in origi-
nal videos.
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Marta R. Costa-jussà, Marcos Zampieri, and Santanu
Pal. 2018. A neural approach to language variety
translation. In Proceedings of the Fifth Workshop
on NLP for Similar Languages, Varieties and Di-
alects (VarDial 2018), pages 275–282, Santa Fe,
New Mexico, USA. Association for Computational
Linguistics.

Pan Deng, Shihao Chen, Weitai Zhang, Jie Zhang,
and Lirong Dai. 2023. The USTC’s Dialect Speech
Translation System for IWSLT 2023. In Proceed-
ings of the 20th International Conference on Spoken
Language Translation (IWSLT).

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019a. MuST-C:
a Multilingual Speech Translation Corpus. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2012–2017,
Minneapolis, Minnesota.

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019b. MuST-C:
a Multilingual Speech Translation Corpus. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2012–2017,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Yichao Du, Guo Zhengsheng, Jinchuan Tian, Zhirui
Zhang, Xing Wang, Jianwei Yu, Zhaopeng Tu, Tong
Xu, and Enhong Chen. 2023. The MineTrans Sys-
tems for IWSLT 2023 Offline Speech Translation
and Speech-to-Speech Translation Tasks. In Pro-
ceedings of the 20th International Conference on
Spoken Language Translation (IWSLT).

Matthias Eck and Chiori Hori. 2005. Overview of the
IWSLT 2005 evaluation campaign. In Proceedings
of the International Workshop on Spoken Language
Translation, pages 1–22, Pittsburgh, PA.

ELRA catalogue. 2016a. Trad pashto broadcast
news speech corpus. https://catalogue.
elra.info/en-us/repository/browse/
ELRA-S0381/. ISLRN: 918-508-885-913-7,
ELRA ID: ELRA-S0381.

ELRA catalogue. 2016b. Trad pashto-french parallel
corpus of transcribed broadcast news speech - train-
ing data. http://catalog.elda.org/en-us/
repository/browse/ELRA-W0093/. ISLRN:
802-643-297-429-4, ELRA ID: ELRA-W0093.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Beyond
english-centric multilingual machine translation.

Marcello Federico, Luisa Bentivogli, Michael Paul,
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A Human Evaluation

Human evaluation was carried out for the Simultaneous and Offline SLT shared tasks. At the time of
writing, only the former evaluation has been completed which is reported here. The human evaluation of
the Offline Task will be recounted during the conference and possibly in an update version of this report.

A.1 Simultaneous Speech Translation Task

Simultaneous Speech Translation Task ran two different types of manual evaluation: “continuous rating”
for English-to-German and MQM for English-to-Japanese.

A.1.1 Human Evaluation for the English-to-German Simultaneous Task
We used a variant of “continuous rating” as presented by Javorský et al. (2022). The evaluation process
and the guidelines presented to annotators were the same as during the last year evaluation (consult
Section A.1.1 in Anastasopoulos et al. (2022) for more details).

Time Shift for Better Simultaneity Last year, we reduced the delay by shifting the subtitles ahead in
time to ease the memory overload of the evaluators. Since this year only a low latency regime was used,
we left the subtitles intact for the system outputs. For interpreting, we used the same shift as last year.

Two Test Sets: Common and Non-Native The main part of the test set for the English-to-German
task was the Common test set. The Common test set is a new instance (different from previous years)
consisting of selected TED talks and it serves both in the Offline Speech Translation task as well as in
the Simultaneous Translation task. Following the last year, we also added the Non-Native part that was
created and is in use since IWSLT 2020 Non-Native Translation Task. The Non-Native part is described
in Ansari et al. (2020) Appendix A.6.

We show the size of the corpus, as well as the amount of annotation collected in Table 21.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any ratings that have timestamps more than 20
seconds greater than the length of the audio. Because of the natural delay (even with the time-shift) and
because the collection process is subject to network and computational constraints, there can be ratings
that are timestamped greater than the audio length. If the difference is however too high, we judge it to
be an annotation error. We also remove any annotated audio where there is fewer than one rating per 20
seconds, since the annotators were instructed to annotate every 5-10 seconds.

Obtaining Final Scores To calculate a score for each system, we average the ratings across each
annotated audio,47 then average across the multiple annotations for each audio to obtain a system score
for that audio. Finally we average across all audios to obtain a score for each system. This type of
averaging renders all input speeches equally important and it is not affected by the speech length.

We show the results in Table 22. We observe that all systems perform better on the Common part
of the test set than on the Non-Native one. The difference in scores between the best and the worst
system is not so significant: It makes only ∼0.3. When examining the evaluation of Non-Native audios,
we can see that best systems on the Common part are worst on Non-Native. Given that the quality of
the recordings in the non-native part is low on average and the speakers are not native, we hypothesize
that systems with worse performance on Common part are more robust. Such systems then achieve an
increased performance given noisy inputs.

A.1.2 Human Evaluation for the English-to-Japanese Simultaneous Task
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,

47Note that the ratings could be also weighted with respect to the duration of time segments between the ratings but
Macháček et al. (2023) documented on 2022 data that the difference is negligible.
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2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator, while the evaluator was a trans-
lator in the last year (Anastasopoulos et al., 2022). The evaluator checked translation hypotheses along
with their source speech transcripts and chose the corresponding error category and severity for each
translation hypothesis using a spreadsheet. Here, we asked the evaluator to focus only on Accuracy and
Fluency errors, because other types of errors in Terminology, Style, and Locale convention would not
be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumulative error
score for each system based on the error weighting presented by Freitag et al. (2021a), where Critical
and Major errors are not distinguished.
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B.1 Offline SLT

⋅ Systems are ordered according to the BLEU score computed on the concatenation of the three test sets
(Joint BLEU, third column).⋅ The “D” column indicates the data condition in which each submitted run was trained, namely: Con-
strained (C), constrained+LLM (C+), Unconstrained (U).⋅ For the BLEU scores computed on the TED test set, “Orig” and “New” respectively indicate the results
computed on the original (subtitle-like) TED translations and the unconstrained (exact, more literal)
translations as references.⋅ Direct systems are indicated by gray background.⋅ “*” indicates a late submission.⋅ “+” indicates an unofficial submission.

System D Joint TED ACL EPTV
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
HW-TSC C 32.4 0.8213 34.8 30.2 42.1 0.8327 0.8208 38.1 0.8090 16.7 0.3829
HW-TSC U 32.3 0.8209 34.9 30.9 42.4 0.8331 0.8223 36.9 0.8073 16.9 0.3819
HW-TSC C+ 31.9 0.8210 34.4 30.6 41.9 0.8332 0.8230 37.2 0.8063 16.8 0.3823
NeuroDub+ U 30.4 0.8089 31.8 25.8 38.5 0.8205 0.8082 41.1 0.7956 15.4 0.3784
NEMO C 28.5 0.7759 30.5 26.4 37.7 0.7977 0.7871 31.9 0.7171 15.6 0.3680
UPC C+ 27.9 0.7892 29.8 25.5 36.6 0.8098 0.7985 32.1 0.7473 15.6 0.3746
I2R C+ 22.4 0.7070 24.0 20.3 29.5 0.7248 0.7172 23.9 0.6841 13.3 0.3506
BIGAI∗ C+ 20.3 0.6945 22.3 19.3 27.4 0.7128 0.7055 19.6 0.6295 11.5 0.3555

Table 14: Official results of the automatic evaluation for the Offline Speech Translation Task, English to German.

System D Joint TED ACL
BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
HW-TSC U 21.0 0.8177 18.8 22.6 29.1 0.8111 0.8029 30.7 0.8473
HW-TSC C 20.9 0.8181 18.7 22.7 29.0 0.8123 0.8042 30.1 0.8443
HW-TSC C+ 20.9 0.8177 18.7 22.6 28.9 0.8114 0.8034 30.7 0.8463
NeMo C 18.1 0.7741 16.5 20.4 25.6 0.7734 0.7666 24.9 0.7769
BIGAI∗ C+ 10.7 0.7122 10.7 13.2 16.8 0.7201 0.7228 10.4 0.6769

Table 15: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Japanese.

System D Joint TED ACL
BLEU COMET BLEU COMET BLEU COMET

Ref New Orig Both New Orig
USTC U 54.7 0.8627 53.9 36.8 62.1 0.8648 0.7992 58.0 0.8535
USTC U 52.8 0.8357 52.9 35.5 60.6 0.8439 0.7798 52.5 0.7999
HW-TSC C 51.1 0.8499 50.6 34.5 57.8 0.8521 0.7876 53.0 0.8404
HW-TSC C+ 51.1 0.8494 50.6 34.5 57.9 0.8514 0.7870 53.0 0.8406
HW-TSC U 51.0 0.8497 50.6 34.5 57.8 0.8519 0.7874 52.8 0.8401
NIUTRANS C 49.4 0.8255 50.0 34.3 57.9 0.8376 0.7740 47.1 0.7733
XIAOMI C+ 47.1 0.8279 47.2 32.4 54.1 0.8375 0.7773 46.5 0.7866
NeMo C 45.6 0.8032 46.5 31.8 53.8 0.8177 0.7575 41.8 0.7404
MINETRANS U 45.0 0.7920 46.3 32.0 53.2 0.8134 0.7546 39.9 0.6997
BIGAI∗ C+ 31.9 0.7260 33.0 23.3 38.6 0.7428 0.7014 27.4 0.6534
MINETRANS C 28.7 0.6371 27.7 18.6 32.2 0.6375 0.5976 31.8 0.6354

Table 16: Official results of the automatic evaluation for the Offline Speech Translation Task, English to Chinese.
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B.2 Simultaneous SLT

Team BLEU LAAL AL AP DAL ATD

Common

HW-TSC 29.63 2.26 (3.93) 2.11 (3.86) 0.83 (1.59) 3.17 (8.99) 2.28 (6.77)
CUNI-KIT 28.51 2.35 (3.63) 2.24 (3.56) 0.79 (1.11) 2.88 (4.50) 2.26 (2.96)
FBK 28.38 2.25 (2.99) 2.09 (2.88) 0.84 (1.03) 2.70 (3.65) 2.15 (2.48)
NAIST 26.05 2.36 (3.30) 2.22 (3.21) 0.82 (1.07) 3.05 (4.45) 2.25 (3.06)
CMU 25.78 1.99 (3.39) 1.92 (3.33) 0.82 (1.31) 3.78 (6.56) 2.46 (4.63)

Non-Native

NAIST 22.96 2.43 (3.52) 1.95 (3.22) 0.845 (1.02) 3.37 (4.71) 3.13 (3.92)
CMU 22.84 2.47 (3.74) 2.36 (3.63) 0.798 (1.16) 4.54 (6.77) 3.77 (5.47)
CUNI-KIT 19.94 3.42 (5.00) 3.24 (4.87) 0.744 (1.04) 4.14 (5.87) 3.82 (4.84)
HW-TSC 17.91 3.57 (6.67) 3.44 (6.61) 0.705 (1.65) 4.39 (12.91) 4.04 (11.13)
FBK 15.19 4.10 (5.34) 3.94 (5.22) 0.89 (1.12) 4.53 (5.85) 3.76 (4.65)

Table 17: Simultaneous Speech-to-Text Translation, English to German. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 44.95 2.13 (3.80) 2.06 (3.76) 0.78 (1.48) 3.21 (8.66) 0.99 (5.31)
CUNI-KIT 44.16 2.13 (3.30) 2.06 (3.25) 0.77 (1.08) 2.78 (4.38) 0.89 (1.54)
XIAOMI 43.69 2.30 (3.03) 2.23 (2.98) 0.80 (1.08) 2.93 (4.08) 0.90 (1.47)
NAIST 36.80 2.00 (2.80) 1.88 (2.74) 0.76 (1.03) 2.66 (4.22) 0.77 (1.49)

Table 18: Simultaneous Speech-to-Text Translation, English to Chinese. Except for AP, the latency is measured in
seconds. Numbers in brackets are computation aware latency.

Team BLEU LAAL AL AP DAL ATD

HW-TSC 16.63 2.60 (4.38) 2.56 (4.36) 0.71 (1.31) 3.62 (9.07) 0.83 (5.12)
CUNI-KIT 14.92 2.20 (3.55) 2.16 (3.53) 0.68 (1.06) 2.74 (5.17) 0.53 (1.50)
NAIST 14.66 2.52 (3.43) 2.45 (3.39) 0.75 (1.03) 3.24 (5.16) 0.60 (1.57)

Table 19: Simultaneous Speech-to-Text Translation, English to Japanese. Except for AP, the latency is measured
in seconds. Numbers in brackets are computation aware latency.
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Target Language Team ASR BLEU BLASER Start Offset End Offset ATD

German
CMU 22.62 0.122 2.37 5.21 4.22

HW-TSC 19.74 -0.442 2.04 5.09 3.75

Japanese
HW-TSC 15.53 -1.70 2.37 3.48 3.56
NAIST 10.19 -1.68 2.58 4.32 3.49

Chinese HW-TSC 31.68 -0.696 1.92 3.12 3.23

Table 20: Simultaneous Speech-to-Speech from English Speech. The latency is measured in seconds. The BLEU
scores are computed based on transcript from the default Whisper (Radford et al., 2022) ASR model for each
language direction.

Common Non-native

Number of audios 42 43
Mean audio length (seconds) 400.3 208.8
Mean ratings per audio 65.6 36.5

Table 21: Human evaluation for the English-to-German task on two test sets: the Common one (used also in
automatic scoring) and the Non-native one. We show the size of the test sets, and the number of ratings collected.
On average, our annotators provide a quality judgement ever 6 seconds.

Common Non-native

CUNI-KIT 3.103.04→3.16 1.631.54→1.72

FBK 3.083.02→3.14 1.261.20→1.30

HWTSC 2.912.85→2.98 2.041.92→2.15

NAIST 2.842.78→2.91 2.272.18→2.34

CMU 2.792.72→2.87 2.382.30→2.46

Interpreter – 2.792.71→2.87

Table 22: Human evaluation results for English-to-German Simultaneous task on the 1–5 (worst-to-best) scale,
with 95% confidence intervals. We calculate a mean score for each annotated audio file, then a mean across
annotators (for each audio), then a mean across all audio files for each system. To compute confidence intervals,
we take the scores for annotated audios, perform 10,000x bootstrap resampling, compute the mean score for each
resample, then compute [2.5,97.5] percentiles across the resampled means.

Team
BLEU (on two talks)

Error score
Number of errors

TED ref. Additional ref. Critical Major Minor
HW-TSC 26.59 18.71 383 1 56 98
CUNI-KIT 24.21 17.95 384 0 56 104
NAIST 25.10 16.75 398 0 61 93
Baseline 7.69 6.27 1,074 3 205 34

Table 23: Human evaluation results on two talks (107 lines) in the English-to-Japanese Simultaneous speech-to-
text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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B.3 Automatic Subtitling

team con- system domain Subtitle quality Translation quality Subtitle compliance
dition SubER Sigma Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ALL 70.64 73.35 15.38 38.36 .4376 87.74 100.00 100.00
ted 59.72 74.33 23.74 49.14 .5683 92.58 100.00 100.00

eptv 73.98 67.09 15.81 45.21 .5229 86.65 100.00 100.00
pltn 77.63 72.79 10.47 33.18 .4069 88.98 100.00 100.00
itv 69.83 74.48 14.43 35.27 .4028 86.01 100.00 100.00

MATESUB U prmry ALL 75.41 65.22 14.81 39.50 .4591 84.97 99.25 100.00
ted 67.70 62.01 20.37 50.05 .5500 90.55 98.61 100.00

eptv 87.04 57.73 12.08 43.59 .4705 88.59 99.20 100.00
pltn 79.72 68.27 10.06 34.46 .4264 89.17 99.29 100.00
itv 73.11 67.04 14.92 37.13 .4501 80.21 99.47 100.00

APPTEK C prmry ALL 77.05 72.50 12.74 34.31 .3420 93.35 100.00 100.00
ted 59.61 74.29 26.78 50.93 .5539 97.33 100.00 100.00

eptv 76.25 68.49 14.43 42.37 .4604 95.76 100.00 100.00
pltn 80.72 69.56 9.40 31.20 .3419 93.45 100.00 100.00
itv 80.87 72.62 9.08 27.74 .2612 91.14 100.00 100.00

FBK C prmry ALL 79.70 75.73 11.22 33.32 .3172 69.98 83.50 99.98
ted 63.85 76.79 21.48 50.31 .5511 71.39 79.83 100.00

eptv 79.76 69.04 13.20 42.69 .4722 74.95 82.08 99.91
pltn 83.71 74.02 7.73 30.17 .3137 70.02 84.20 99.96
itv 82.67 77.17 8.05 26.10 .2255 67.75 85.12 100.00

APPTEK C cntrstv ALL 83.53 70.39 9.73 30.51 .2914 89.60 100.00 100.00
ted 68.47 72.97 19.07 46.17 .4921 90.53 100.00 100.00

eptv 81.69 66.36 11.46 39.25 .4150 94.57 100.00 100.00
pltn 86.37 69.79 7.08 27.89 .2780 91.50 100.00 100.00
itv 87.25 68.29 6.70 23.85 .2204 86.85 100.00 100.00

Table 24: Automatic evaluation results for the Subtitling Task: en→de. C and U stand for constrained and uncon-
strained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

team con- system domain Subtitle quality Translation quality Subtitle compliance
dition SubER Sigma Bleu ChrF Bleurt CPS CPL LPB

MATESUB U prmry ALL 68.11 68.37 22.34 47.38 .5059 86.07 99.52 100.00
ted 45.94 66.85 40.36 65.72 .7047 92.62 99.48 100.00

eptv 74.47 59.59 21.06 54.11 .5728 90.15 99.44 100.00
pltn 74.87 70.99 15.96 41.86 .4666 88.27 99.60 100.00
itv 71.25 71.06 18.50 41.07 .4592 81.93 99.51 100.00

APPTEK C prmry ALL 71.68 74.99 18.67 40.21 .3637 95.42 100.00 100.00
ted 45.81 74.50 39.37 62.11 .6562 97.20 100.00 100.00

eptv 66.60 73.31 23.57 51.94 .5379 96.27 100.00 100.00
pltn 76.00 74.63 14.03 36.95 .3664 95.18 100.00 100.00
itv 80.20 75.90 11.37 29.75 .2487 94.67 100.00 100.00

FBK C prmry ALL 73.31 74.44 17.79 39.54 .3419 77.00 91.34 99.99
ted 45.68 74.31 40.21 65.09 .6737 78.95 88.14 100.00

eptv 68.47 69.63 23.92 52.19 .5490 79.81 88.05 100.00
pltn 78.45 75.78 12.84 35.89 .3513 77.79 92.67 99.96
itv 82.00 76.16 9.33 27.14 .2063 74.67 92.94 100.00

Table 25: Automatic evaluation results for the Subtitling Task: en→es. Legenda in Table 24.
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B.4 Multilingual Speech Translation
Below we show the Multilingual task (§5) results and overall rankings, ordered according to the

average chrF across all 10 target languages after resegmentation to the reference translations.

We also compare to the Offline submissions on the ACL 60-60 evaluation set
on the 3 language pairs used for the Offline task.

Finally, we show the scores for each metric (chrF, COMET, BLEU) per language pair for all systems.

System Constrained? chrF COMET BLEU English WER

1 JHUunconstrained 61.1 82.3 39.3 16.9
2 KITprimary ✓ + LLM 57.5 77.0 34.9 23.7
3 KITcontrastive1 ✓ + LLM 57.5 76.8 34.8 —
4 KITcontrastive2 ✓ + LLM 56.4 76.5 34.0 —
5 KITcontrastive4 ✓ + LLM 56.2 76.4 33.7 —
6 KITcontrastive3 ✓ + LLM 55.9 76.3 33.5 —
7 KITcontrastive5 ✓ + LLM 54.5 76.7 31.7 —
8 KITcontrastive7 ✓ + LLM 53.9 76.6 31.1 —
9 KITcontrastive6 ✓ + LLM 53.7 75.9 30.9 —

10 JHUconstrained ✓ + LLM 48.1 65.3 24.5 34.1
11 BITprimary ✓ 31.0 51.7 11.7 —

Table 26: Overall task ranking with metrics averaged across all ten language pairs on the evaluation set.
We show the official task metric (chrF) as well as the unofficial metrics (COMET, BLEU, and English WER).
All metrics are calculated after resegmentation to reference transcripts and translations. Direct / end-to-end systems
are highlighted in gray.

de ja zh

System Task Constrained? COMET BLEU COMET BLEU COMET BLEU

USTC Off. 85.4 (1) 58.0 (1)
HW-TSC Off. ✓ 80.9 (2) 38.1 (3) 84.4 (3) 30.1 (7) 84.0 (2) 53.0 (2)
JHU Mult. 81.3 (1) 41.2 (1) 84.7 (1) 33.9 (4) 82.0 (3) 46.5 (11)
HW-TSC Off. 80.7 (3) 36.9 (6) 84.7 (1) 30.7 (6) 84.0 (2) 52.8 (3)
HW-TSC Off. ✓ + LLM 80.6 (4) 37.2 (5) 84.6 (2) 30.7 (6) 84.0 (2) 53.0 (2)
NeuroDub Off. 79.6 (5) 41.1 (2)
USTC Off. 80.0 (4) 52.5 (4)
KITpr Mult. ✓ + LLM 74.9 (6) 37.5 (4) 82.0 (4) 35.7 (1) 79.3 (5) 49.4 (6)
KITc1 Mult. ✓ + LLM 74.6 (8) 36.5 (7) 82.0 (4) 35.2 (2) 79.3 (5) 49.7 (5)
KITc2 Mult. ✓ + LLM 74.3 (9) 36.5 (7) 81.6 (6) 34.0 (3) 78.6 (10) 49.4 (6)
KITc3 Mult. ✓ + LLM 74.7 (7) 36.1 (9) 81.4 (7) 33.3 (5) 78.4 (11) 48.6 (7)
KITc4 Mult. ✓ + LLM 74.2 (10) 36.4 (8) 81.7 (5) 33.9 (4) 78.4 (11) 48.2 (8)
KITc5 Mult. ✓ + LLM 74.9 (6) 33.8 (10) 80.3 (8) 27.3 (8) 79.1 (6) 46.7 (10)
UPC Off. ✓ + LLM 74.7 (7) 32.1 (12)
KITc6 Mult. ✓ + LLM 73.9 (11) 32.9 (11) 80.0 (9) 26.6 (9) 78.9 (7) 45.7 (13)
KITc7 Mult. ✓ + LLM 73.9 (11) 32.9 (11) 80.3 (8) 25.6 (10) 78.8 (8) 46.0 (12)
Xiaomi Off. ✓ + LLM 78.7 (9) 46.5 (11)
NiuTrans Off. ✓ 77.3 (12) 47.1 (9)
NeMo Off. ✓ 71.7 (12) 31.9 (13) 77.7 (10) 24.9 (11) 74.0 (13) 41.8 (14)
I2R Off. ✓ + LLM 68.4 (13) 23.9 (14)
JHU Mult. ✓ + LLM 59.0 (15) 23.7 (15) 69.3 (11) 18.9 (12) 67.9 (15) 37.4 (16)
MINE-Trans Off. 70.0 (14) 39.9 (15)
BIGAI* Off. ✓ + LLM 63.0 (14) 19.6 (16) 67.7 (12) 10.4 (13) 65.3 (16) 27.4 (18)
MINE-Trans Off. ✓ 63.5 (17) 31.8 (17)
BIT Mult. ✓ 47.2 (16) 11.1 (17) 56.2 (13) 8.0 (14) 55.7 (18) 19.8 (19)

Table 27: Submissions from all tracks on the ACL 60-60 evaluation sets on the three language pairs shared across
tracks (En → De, Ja, Zh), ordered by average metric ranking. Direct / end-to-end systems are highlighted in gray.
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Submission ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 62.4 67.6 57.8 73.4 42.0 71.6 75.0 56.8 62.5 42.2 61.1
KITprimary 56.9 64.8 55.4 67.8 42.3 67.6 69.6 51.2 57.3 42.5 57.5
KITcontrastive1 56.9 64.6 55.6 67.8 42.0 67.6 69.6 51.2 56.7 42.7 57.5
KITcontrastive2 56.1 63.6 52.9 67.3 40.8 66.5 69.2 50.6 55.6 41.3 56.4
KITcontrastive4 56.2 63.3 53.0 67.2 40.7 66.5 68.8 50.4 55.1 40.3 56.2
KITcontrastive3 55.5 63.7 52.1 66.9 40.3 66.0 68.9 50.0 55.2 40.6 55.9
KITcontrastive5 55.3 61.3 53.8 65.2 35.9 63.7 67.3 48.6 54.9 39.2 54.5
KITcontrastive7 54.7 60.3 54.0 64.4 34.5 63.4 67.2 47.8 54.2 38.2 53.9
KITcontrastive6 54.6 60.3 52.7 64.3 35.5 62.7 66.4 48.2 53.8 38.4 53.7
JHUconstrained 45.2 53.4 44.5 62.4 26.8 62.1 62.2 46.8 46.3 30.8 48.1
BIT 28.9 36.8 28.8 45.2 14.5 41.7 43.0 28.4 25.9 17.2 31.0

Table 28: chrF with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

Submission ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 82.7 81.3 80.6 81.4 84.7 84.1 84.9 78.9 82.5 82.0 82.3
KITprimary 78.0 74.9 75.8 74.4 82.0 77.7 78.4 72.5 76.6 79.3 77.0
KITconstrastive1 77.7 74.6 75.7 74.5 82.0 77.6 78.4 72.2 76.4 79.3 76.8
KITconstrastive5 78.5 74.9 75.9 74.6 80.3 76.8 78.5 71.6 76.9 79.1 76.7
KITconstrastive7 78.2 73.9 76.3 74.2 80.3 76.7 80.3 71.3 76.2 78.8 76.6
KITconstrastive2 77.3 74.3 74.9 74.3 81.6 77.3 78.4 72.1 75.8 78.6 76.5
KITconstrastive4 77.2 74.2 75.0 74.3 81.7 77.3 78.2 72.0 75.5 78.4 76.4
KITconstrastive3 76.9 74.7 74.6 74.2 81.4 76.9 78.2 71.8 75.7 78.4 76.3
KITconstrastive6 77.8 73.9 75.2 73.3 80.0 75.4 77.7 70.8 75.7 78.9 75.9
JHUconstrained 67.9 59.0 66.1 63.2 69.3 66.2 67.8 62.0 64.0 67.9 65.3
BIT 52.8 47.2 48.7 52.2 56.2 53.8 54.8 47.7 48.0 55.7 51.7

Table 29: COMET with resegmentation for each target language on the evaluation set, sorted by the system average.
Direct / end-to-end systems are highlighted in gray.

ar de fa fr ja nl pt ru tr zh Avg.

JHUunconstrained 33.4 41.2 35.0 50.0 33.9 44.8 51.7 27.9 28.1 46.5 39.3
KITprimary 25.9 37.5 29.8 41.3 35.7 40.4 44.3 22.4 21.8 49.4 34.9
KITconstrastive1 25.6 37.5 30.1 41.1 35.2 40.6 44.5 22.6 21.3 49.7 34.8
KITconstrastive2 24.7 36.5 28.0 42.4 34.0 38.8 43.8 21.9 20.6 49.4 34.0
KITconstrastive4 24.4 36.4 28.4 42.1 33.9 38.9 43.0 21.6 20.3 48.2 33.7
KITconstrastive3 24.0 36.1 27.6 41.9 33.3 38.2 43.6 21.5 20.1 48.6 33.5
KITconstrastive5 23.7 33.8 28.7 39.6 27.3 35.9 40.7 19.6 20.6 46.7 31.7
KITconstrastive7 23.4 32.9 28.6 38.8 25.6 36.0 40.9 19.1 20.1 46.0 31.1
KITconstrastive6 23.0 32.9 28.3 38.9 26.6 35.0 39.7 19.7 19.1 45.7 30.9
JHUconstrained 15.0 23.7 21.9 33.1 18.9 31.3 33.2 17.2 12.8 37.4 24.5
BIT 5.7 11.1 7.4 19.7 8.0 16.3 18.6 6.3 4.1 19.8 11.7

Table 30: BLEU with resegmentation for each target language on the evaluation set, sorted by the system average.
BLEU scores in grey are calculated using language-specific tokenization (ja) or at the character-level (zh); see §5.2
for specific tokenization details. Direct / end-to-end systems are highlighted in gray.
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B.5 Speech-to-Speech Translation

System Test-primary Test-expanded Overall
Ref BLEU chrF COMET SEScore2 BLEU chrF COMET SEScore2 BLEU chrF COMET SEScore2

Cascade Systems
XIAOMI 47.9 41.0 79.91 -12.27 34.5 29.2 79.07 -20.15 38.4 32.3 79.35 -17.48
NPU-MSXF 47.4 40.7 79.90 -12.21 34.0 28.5 78.68 -20.23 37.7 31.8 79.09 -17.52
HW-TSC 43.2 36.9 76.96 -14.23 32.4 27.7 76.43 -21.61 35.3 30.1 76.61 -19.12
KU 36.7 31.3 69.09 -17.07 25.0 21.7 67.94 -25.68 28.2 24.3 68.33 -22.77
MINETRANS Cascade 33.9 28.6 67.49 -17.68 24.7 21.5 64.71 -26.34 27.2 23.4 65.65 -23.41
E2E Systems
MINETRANS E2E (contrastive2) 45.0 38.3 74.83 -13.62 31.1 26.4 73.28 -22.03 34.9 29.6 73.81 -19.18
MINETRANS E2E (contrastive1) 44.5 38.0 74.14 -13.92 31.0 26.4 72.90 -22.20 34.8 29.5 73.32 -19.40
MINETRANS E2E (primary) 44.4 38.0 74.40 -13.86 31.1 26.4 73.00 -22.12 34.7 29.5 73.47 -19.32

Table 31: Official results of the automatic evaluation for the English to Chinese Speech-to-Speech Translation
Task.

System Translation Quality Score Speech Quality Score Overall
Cascade Systems
NPU-MSXF 3.70 3.98 3.84
XIAOMI 3.72 3.67 3.70
HW-TSC 3.58 3.75 3.67
MINETRANS Cascade 3.16 3.26 3.21
KU 2.92 3.01 2.97
E2E Systems
MINETRANS E2E (contrastive2) 3.58 3.50 3.54

Table 32: Official results of the human evaluation for the English to Chinese Speech-to-Speech Translation Task.
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B.6 Dialectal SLT

Tunisian Arabic→English (Unconstrained Condition)
test2 test3

Team System BLEU bp pr1 chrF TER BLEU bp pr1 chrF TER
USTC primary 23.6 1.0 52.7 46.7 64.6 21.1 1.0 49.0 43.8 69.0
USTC contrastive1 22.8 1.0 51.7 45.7 65.7 20.2 1.0 47.7 42.9 70.7
JHU contrastive5 21.6 .99 50.7 45.0 66.9 19.1 1.0 46.6 41.9 72.3
JHU primary 21.2 1.0 50.0 44.8 67.7 18.7 1.0 46.0 41.9 73.1
JHU contrastive4 20.7 1.0 49.3 44.2 68.4 18.3 1.0 45.5 41.3 73.7
JHU contrastive3 19.9 .98 49.0 43.0 68.7 18.2 1.0 45.5 40.5 73.1
JHU contrastive1 19.4 .99 48.2 42.4 69.8 17.1 1.0 44.3 39.7 74.9
JHU contrastive2 18.7 .97 48.4 41.8 69.4 17.1 1.0 44.7 39.2 74.1
ON-TRAC post-eval 18.2 1.0 45.9 42.7 73.8 16.3 1.0 41.6 40.3 79.6
GMU contrastive1 15.0 1.0 41.4 38.4 78.2 13.4 1.0 37.2 36.1 83.9
GMU contrastive2 14.1 1.0 40.1 37.5 79.8 12.9 1.0 36.6 35.4 84.7
GMU primary 16.6 1.0 44.5 39.7 74.1 14.6 1.0 40.4 37.6 79.6
ON-TRAC primary 7.0 1.0 27.3 36.4 86.9 6.2 1.0 24.2 34.3 92.0
2022 best:CMU 20.8 .93 53.1 44.3 64.5 - - - - -

Table 33: Automatic evaluation results for the Dialect Speech Translation task, Unconstrained Condition. Systems
are ordered in terms of the official metric BLEU on test3. We also report brevity penalty (bp) and unigram precision
(pr1) of BLEU, chrF, and TER.

Tunisian Arabic→English (Constrained Condition)
test2 test3

Team System BLEU bp pr1 chrF TER BLEU bp pr1 chrF TER
USTC primary 20.5 .99 49.9 43.6 67.6 18.1 1.0 45.7 40.8 73.1
JHU primary 19.1 .94 50.5 42.4 67.2 17.6 .96 46.6 39.9 71.9
GMU primary 5.0 1.0 20.3 21.9 102.2 4.5 1.0 18.4 20.7 105.5
2022 best:CMU 20.4 .94 52.2 43.8 65.4 - - - - -
baseline 11.1 .88 40.0 31.9 77.8 10.4 .90 36.6 29.9 81.4

Table 34: Automatic evaluation results for the Dialect Speech Translation task, Constrained Condition.

Tunisian Arabic ASR Automatic Evaluation Results

ASR System test2 WER↓ test2 CER↓ test3 WER↓ test3 CER↓
Orig Norm Orig Norm Orig Norm Orig Norm

JHU / constrained / primary 70.3 43.7 30.7 22.7 74.0 44.9 33.1 24.8
JHU / unconstrained / primary 69.3 40.6 29.0 20.7 72.9 41.6 31.5 22.9
USTC / constrained / primary 49.5 40.8 24.2 20.9 52.3 43.2 27.1 23.8
USTC / unconstrained / primary 47.4 39.3 23.1 20.0 49.2 40.5 25.2 22.1
2022best:ON-TRAC/unconstrained 65.7 41.5 28.1 21.1 - - - -

Table 35: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cascaded
systems on test2 and test3. The original version (Orig) matches the minimal text pre-processing provided by the
organizer’s data preparation scripts, and results in relatively high WER. As diagnosis, we ran additional Arabic-
specific normalization (Norm) for e.g. Alif, Ya, Ta-Marbuta on the hypotheses and transcripts before computing
WER/CER. We are grateful to Ahmed Ali for assistance on this.
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B.7 Low-Resource SLT

Irish→English (Constrained Condition)
Team System BLEU chrF2
GMU primary 15.1 26.5

Table 36: Automatic evaluation results for the Irish to English task, Constrained Condition.

Irish→English (Unconstrained Condition)
Team System BLEU chrF2
GMU primary 68.5 74.5
GMU contrastive1 77.4 81.6
GMU contrastive2 15.1 26.5

Table 37: Automatic evaluation results for the Irish to English task, Unconstrained Condition.

Marathi→Hindi (Constrained Condition)
Team System BLEU chrF2
GMU primary 3.3 16.8
SRI-B primary 31.2 54.8
SRI-B contrastive 25.7 49.4

Table 38: Automatic evaluation results for the Marathi to Hindi task, Constrained Condition.

Marathi→Hindi (Unconstrained Condition)
Team System BLEU chrF2

Alexa AI primary 28.6 49.4
Alexa AI contrastive1 25.6 46.3
Alexa AI contrastive2 23 41.9
Alexa AI contrastive3 28.4 49.1
Alexa AI contrastive4 25.3 46.3
Alexa AI contrastive5 19.6 39.9

BUT primary 39.6 63.3
BUT contrastive 28.6 54.4
GMU primary 7.7 23.8
GMU contrastive1 8.6 24.7
GMU contrastive2 5.9 20.3
SRI-B primary 32.4 55.5
SRI-B contrastive 29.8 53.2

Table 39: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.
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Pashto→French (Unconstrained Condition)
BLEU

Team System valid test
ON-TRAC primary 24.82 24.87
ON-TRAC contrastive1 23.38 23.87
GMU primary 11.99 16.87
GMU contrastive1 11.27 15.24
ON-TRAC contrastive2 12.26 15.18
ON-TRAC contrastive3 12.16 15.07
GMU contrastive2 9.72 13.32

Table 40: Automatic evaluation results for the Pashto to French task, Unconstrained Condition.

Pashto→French (Constrained Condition)
BLEU

Team System valid test
ON-TRAC primary 14.52 15.56
ON-TRAC contrastive1 11.06 15.29
ON-TRAC contrastive2 11.11 15.06
ON-TRAC contrastive3 10.5 9.2
GMU primary 2.66 5.92

Table 41: Automatic evaluation results for the Pashto to French task, Constrained Condition.

Maltese→English (Unconstrained Condition)
Team System BLEU
UM-DFKI primary 0.6
UM-DFKI contrastive1 0.7
UM-DFKI contrastive2 0.4
UM-DFKI contrastive3 0.3
UM-DFKI contrastive4 0.4

Table 42: Automatic evaluation results for the Maltese to English task, Unconstrained Condition.

Tamasheq→French (Constrained Condition)
Team System BLEU chrF2 TER
GMU primary 0.48 19.57 106.23

Table 43: Automatic evaluation results for the Tamasheq to French task, Constrained Condition.
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Tamasheq→French (Unconstrained Condition)
Team System BLEU chrF2 TER

NAVER primary 23.59 49.84 64.00
NAVER contrastive1 21.31 48.15 66.41
NAVER contrastive2 18.73 46.11 70.32

ON-TRAC primary 15.88 43.88 73.85
ON-TRAC contrastive1 16.35 44.22 74.26
ON-TRAC contrastive2 15.46 43.59 75.30
ON-TRAC contrastive3 15.49 43.74 75.07
ON-TRAC contrastive4 16.25 44.11 74.26
ON-TRAC contrastive5 15.54 43.91 75.08
Alexa AI primary 9.30 32.29 81.25
Alexa AI contrastive1 8.87 32.04 81.03
Alexa AI contrastive2 9.50 33.67 80.85
Alexa AI contrastive3 9.28 32.86 82.33

GMU primary 8.03 33.03 87.81
GMU contrastive1 1.30 23.63 96.72
GMU contrastive2 2.10 24.33 94.58

Table 44: Automatic evaluation results for the Tamasheq to French task, Unconstrained Condition.

Quechua→Spanish (Constrained Condition)
Team System BLEU chrF2
GMU primary 1.46 21.46

QUESPA primary 1.25 25.35
QUESPA contrastive1 0.13 10.53
QUESPA contrastive2 0.11 10.63

Table 45: Automatic evaluation results for the Quechua to Spanish task, Constrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.

Quechua→Spanish (Unconstrained Condition)
Team System BLEU
GMU primary 1.78
GMU contrastive1 1.86
GMU contrastive2 1.63

NAVER primary 15.70
NAVER contrastive1 13.17
NAVER contrastive2 15.55

QUESPA primary 15.36
QUESPA contrastive1 15.27
QUESPA contrastive2 10.75

Table 46: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition. ChrF2 scores
were only taken into account for those systems that scored less than 5 points BLEU.
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B.8 Formality Control for SLT

Model
EN-KO EN-VI

BLEU COMET mACC cACC BLEU COMET mACC cACC

C
O

N
ST

R
A

IN
E

D

COCOA (baseline)
F 11.1 0.5044 28.5 55 43.2 0.6189 99 99
IF 11.1 0.5125 80.4 58 41.5 0.6021 98 99

HW-TSC
F 25.6 0.7512 89 100 51.3 0.7522 100 100
IF 26.1 0.7367 100 100 49.8 0.7209 100 100

U
N

C
O

N
ST

R
A

IN
E

D

UMD (baseline)
F 4.9 0.2110 78 99 26.7 0.3629 96 95
IF 4.9 0.1697 98 99 25.3 0.3452 97 98

HW-TSC
F 25.4 0.7347 87 100 48.2 0.7214 100 100
IF 26.2 0.7218 100 100 48.3 0.7102 100 100

KUXUPSTAGE
F 26.6 0.7269 87 100 47.0 0.6685 99 100
IF 27.1 0.7145 98 95 45.6 0.6373 99 100

UCSC
F 23.3 0.5210 86 98 44.6 0.6771 99 98
IF 22.8 0.4724 98 96 43.5 0.6281 99 100

Table 47: Results for the Formality Track (Supervised Setting). Most systems perform well in this setting, though
MT quality on formal (F) tends to be higher than informal (IF)

Model
EN-PT EN-RU

BLEU COMET mACC cACC BLEU COMET mACC cACC

C
O

N
ST

R
A

IN
E

D

HW-TSC
F 47.4 0.7337 100 100 36.5 0.6472 100 100
IF 47.9 0.7442 100 100 35.6 0.6442 100 100

U
N

C
O

N
ST

R
A

IN
E

D

UMD (baseline)
F 27.3 0.4477 96 98 21.3 0.3492 96 92
IF 30.9 0.4161 93 91 21.0 0.3475 84 85

APPTEK
F 34.6 0.6089 99 99 35.4 0.6165 99 98
IF 42.4 0.6776 64 65 33.3 0.6026 98 97

HW-TSC
F 45.4 0.7737 100 100 33.7 0.5804 100 100
IF 49.1 0.7845 100 100 32.4 0.5558 100 100

KUXUPSTAGE
F 31.0 0.5251 100 100 25.8 0.4446 100 100
IF 19.9 0.2486 68 90 26.3 0.4181 100 100

UCSC
F 26.6 0.4048 90 91 18.4 -0.1713 99 79
IF 28.4 0.4252 58 42 14.9 -0.2766 52 67

Table 48: Results for the Formality Track (Zero-shot Setting). Appreciable differences in formality control exist
between formal (F) and informal (IF), suggesting that formality bias exists in participant systems.
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