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Abstract

This paper describes HW-TSC’s submissions
to the IWSLT 2023 Offline Speech Transla-
tion task, including speech translation of talks
from English to German, English to Chinese
and English to Japanese. We participated in all
three tracks (Constrained training, Constrained
with Large Language Models training, Uncon-
strained training), with using cascaded architec-
tures models. We use data enhancement, pre-
training models and other means to improve
the quality of ASR, and use a variety of tech-
niques including R-Drop, deep model, domain
data selection, etc. to improve the quality of
NMT. Compared with last year’s best results,
we have improved by 2.1 BLEU in the MuST-C
English-German test set.

1 Introduction

The goal of the Offline Speech Translation Task
is to examine automatic methods for translating
audio speech in one language into text in the tar-
get language. In recent years, end-to-end system
and cascade system are fundamental pipelines for
speech translation tasks. Traditional cascade sys-
tem is comprised of continuing parts, automatic
speech recognition (ASR) is responsible for gener-
ating transcripts from audios and machine transla-
tion (MT) model aims at translating ASR outputs
from source language into target language. ASR
model like Conformer (Gulati et al., 2020) and S2T-
Transformer (Synnaeve et al., 2019) are commonly
used. MT models like Transformer (Vaswani et al.,
2017) can be considered as a standard configura-
tion. The End-to-end systems use a model to di-
rectly recognize speech into target text in another
language.

The cascade system will cause some "missing
information" due to the two encoding and decoding
processes of ASR and MT. At the same time, the
disadvantage of the end-to-end system is the lack
of sufficient training data. However, with a fully

trained cascade system, the accuracy of ASR and
MT will reach a higher level. So from the results,
the BLEU of the cascaded system will be higher
than that of the end-to-end system. Currently in
the industry, the mainstream speech translation sys-
tem is still based on the cascade system. We use
the cascade system for this task, mainly to further
improve the performance of speech translation.

In this work, we carefully filter and preprocess
the data, and adopt various enhancement tech-
niques, such as pre-training model, data enhance-
ment, domain adaptation, etc., to optimize the
performance of ASR. We build machine transla-
tion systems with techniques like back translation
(Edunov et al., 2018), domain adaptation and R-
drop (Wu et al., 2021), which have been proved to
be effective practices.

The main contribution of this paper can be sum-
marized as follows:

1) According to the characteristics of three dif-
ferent tracks (constrained, constrained with large
language models (LLM), and unconstrained), we
use different strategies to optimize the results of
ASR. After careful fine-tuning, the WER of the
ASR system of the three tracks have achieved good
performance.

2) Explored the multilingual machine translation
model, and tried a variety of model enhancement
strategies, and finally achieved good results on the
MUST-C test set.

Section 2 focuses on our data processing strate-
gies while section 3 describes the training tech-
niques of ASR, including model architecture and
training strategy, etc. Section 4 describes the train-
ing techniques of MT, and section 5 presents our
experiment results.
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Dataset Duration(h)
LibriSpeech 960

MuST-C 590
CoVoST 1802

TEDLIUM3 453
Europarl 161

VoxPopuli 1270

Table 1: Data statistics of our ASR corpora.

2 Datasets and Preprocessing

2.1 ASR Data

There are six different datasets used in the training
of our ASR models, such as MuST-C V2 (Cat-
toni et al., 2021), LibriSpeech (Panayotov et al.,
2015), TED-LIUM 3 (Hernandez et al., 2018),
CoVoST 2(Wang et al., 2020), VoxPopuli (Wang
et al., 2021), Europarl-ST (Iranzo-Sánchez et al.,
2020), as described in Table 1. We use the ex-
actly same data processing strategy to train our
ASR models following the configuration of (Wang
et al., 2022). We extend one data augmentation
method (Zhang et al., 2022): adjacent voices are
concatenated to generate longer training speeches.
Tsiamas et al. (2022) propose Supervised Hybrid
Audio Segmentation (SHAS), a method that can
effectively learn the optimal segmentation from
any manually segmented speech corpus. For test
set, we use SHAS to split long audios into shorter
segments.

2.2 MT Data

We used all provided data, including text-parallel
and speech-to-text-parallel, text-monolingual data,
and use the exactly same data processing strategy
to process our MT data following (Wei et al., 2021).
Data sizes before and after cleaning are listed in
Table 2.

3 ASR Model

3.1 Constrained training

In this track, we trained the constrained ASR model
using the Conformer (Gulati et al., 2020) and U2
(Zhang et al., 2020b) model architectures. The
first model is standard auto-regressive ASR mod-
els built upon the Transformer architecture. The
last one is a unified model that can perform both
streaming and non-streaming ASR, supported by
the dynamic chunking training strategy. The model
configurations are as follows:

1) Conformer: The encoder is composed of 2
layers of VGG and 16 layers of Conformer, and the
decoder is composed of 6 layers of Transformer.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

2) U2: Two convolution subsampling layers with
kernel size 3*3 and stride 2 are used in the front of
the encoder. We use 12 Conformer layers for the
encoder and 6 Transformer layers for the decoder.
The embedding size is 1024, and the hidden size of
FFN is 4096, and the attention head is 16.

During the training of ASR models, we set the
batch size to the maximum of 20,000 frames per-
card. Inverse sqrt is used for lr scheduling with
warm-up steps set to 10,000 and peak lr set as 5e-4.
Adam is used as the optimizer. All ASR models
are trained on 8 A100 GPUs for 100 epochs. Pa-
rameters for last 5 epochs are averaged. Audio fea-
tures are normalized with utterance-level CMVN
for Conformer, and with global CMVN for U2.
All audio inputs are augmented with spectral aug-
mentation (Park et al., 2019), and Connectionist
Temporal Classification (CTC) is added to make
models converge better.

3.2 Constrained with Large Language Models
training

Large Language Models (LLM) is currently the
mainstream method in the field of artificial intel-
ligence. In ASR, the pre-training model has been
proved to be an effective means to improve the
quality, especially the models such as wav2vec
(Schneider et al., 2019) and Hubert (Hsu et al.,
2021) have been proposed in recent years. Li et al.
(2020) combine the encoder of wav2vec2 (Baevski
et al., 2020) and the decoder of mBART50 (Tang
et al., 2020) to fine-tune an end2end model. We
also adopt a similar strategy, but combine the en-
coder of wav2vec2 and the decoder of mBART50
to fine-tune an ASR model (w2v2-mBART). Due
to the modality mismatch between pre-training and
fine-tuning, in order to better train cross-attention,
we freeze the self-attention of the encoder and de-
coder. We first use all the constrained data for
fine-tuning, and only use the MUST-C data after
30 epochs of training.

3.3 Unconstrained training
Whisper (Radford et al., 2022) is an automatic
speech recognition (ASR) system trained on
680,000 hours of multilingual and multitask su-
pervised data collected from the web. It show that
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language pairs Raw Data Filter Data LaBSE Filter Data Domain Selection
En2De 19.8M 14.5M 5.8M 0.4M
En2Zh 8.1M 5.5M 2.2M 0.4M
En2Ja 16.4M 14.1M 5.6M 0.4M

Table 2: Bilingual data sizes before and after filtering used in tasks.

the use of such a large and diverse dataset leads to
improved robustness to accents, background noise
and technical language. The Whisper architecture
is a simple end-to-end approach, implemented as an
encoder-decoder Transformer. Even though it en-
ables transcription in multiple languages, we only
use its speech recognition feature, transcribing au-
dio files to English text. In this task, we use it as a
pre-trained model, and use the MUST-C dataset for
fine-tuning to improve its performance in specific
domains. We trained for 2 epochs with a small
learning rate of 10e-6.

4 Neural Machine Translation

4.1 Model architecture

Transformer is the state-of-the-art model in recent
machine translation evaluations. There are two
parts of research to improve this kind: the first part
uses wide networks (eg: Transformer-Big), and the
other part uses deeper language representations (eg:
Deep Transformer (Wang et al., 2017, 2019a)). Un-
der the constrained conditions, we combine these
two improvements, adopt the Deep Transformer-
Big model structure, and train a one-to-many mul-
tilingual NMT model (Johnson et al., 2017; Zhang
et al., 2020a) from scratch using bilingual data
of three language pairs (En2De, En2Zh, En2Ja)
provided by the organizers. The main structure
of Deep Transformer-Big is that it features pre-
layer-normalization and 25-layer encoder, 6-layer
decoder, 16-head self-attention, 1024-dimensional
embedding and 4096-dimensional FFN embedding.

We trained the constrained model using all the
provided data, and trained the unconstrained model
with the WMT data. But after domain adaptation,
the performance of the two is similar. Therefore, in
this task, we only use the constrained MT model.

4.2 Multi-stage Pre-training

In order to get a better model effect, we optimize
the model in several stages. First, we use the data of
all three language pairs to train a one-to-many mul-
tilingual model, and add tags (<ja>, <zh>, <de>) at
the beginning of the source sentence respectively.

Second, use LaBSE (Feng et al., 2020) to filter the
bilingual data, and use the filtered data for incre-
mental training. In Table 2, there are the number
of filtered data for each languages. Then, for the
three languages, the backward models are trained
separately, and the monolingual datas are used for
backward translation (BT). Finally, we combine
backward translation and forward translation (FT)
for iterative joint training (Zhang et al., 2018). Af-
ter the above several stages, a base model with
better performance is obtained, which can be used
for further optimization.

4.3 R-Drop
Dropout-like method (Srivastava et al., 2014; Gao
et al., 2022) is a powerful and widely used
technique for regularizing deep neural networks.
Though it can help improve training effectiveness,
the randomness introduced by dropouts may lead
to inconsistencies between training and inference.
R-Drop (Wu et al., 2021) forces the output distribu-
tions of different sub models generated by dropout
be consistent with each other. Therefore, we use R-
Drop training strategy to augment the base model
for each track and reduce inconsistencies between
training and inference.

4.4 Domain Adaptation
Since the quality of the translation model is easily
affected by the domain, we try to select domain-
related data to incrementally train the model. We
adopted the domain adaptation strategy by (Wang
et al., 2019b). The strategy uses a small amount
of in-domain data to tune the base model, and then
leverages the differences between the tuned model
and the base to score bilingual data. The score is
calculated based on formula 1.

score =
logP (y|x; θin)− logP (y|x; θbase)

|y| (1)

Where θbase denotes the base model; θin denotes
the model after fine-tuning on a small amount of
in-domain data, and |y| denotes the length of the
sentence. Higher score means higher quality.
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System En2De En2Ja En2Zh
Constrained 37.28 20.26 28.91
Constrained with LLM 37.96 20.29 28.91
Unconstrained 38.71 20.34 28.93

Table 3: The BLEU of speech translation on tst-COM.

System tst-COM tst2018 tst2019 tst2020 avg
Conformer 5.3 9.3 6.7 8.9 7.6
U2 6.1 9.8 6.6 8.7 7.8
w2v2-mBART 4.9 9.3 6.9 8.9 7.5
Whisper 4.5 11.0 5.4 6.6 6.8
Whisper fine-tuning 4.3 8.5 6.3 7.9 6.8

Table 4: The experimental results of ASR. We present WER performance of tst-COM, tst2018, tst2019 and tst2020.

System En2De En2Ja En2Zh
One2Many 36.22 15.43 29.05
+ LaBSE bitext 37.58 15.48 29.48
+ Domain adaptation 41.55 17.08 29.27
+ Iter FTBT 43.03 17.86 29.82
+ Dev fine-tuning 43.66 20.88 30.48

Table 5: The BLEU of MT using tst-COM golden tran-
scription.

System En2De En2Ja En2Zh
One2Many 31.54 14.08 26.69
+ LaBSE bitext 32.65 13.88 27.14
+ Domain adaptation 35.96 15.4 27.15
+ Iter FTBT 36.38 15.81 27.98
+ Dev fine-tuning 37.83 18.6 28.86
+ Robustness 38.71 20.34 28.93

Table 6: The BLEU of MT using tst-COM transcription
by the Whisper fine-tuning model.

In this task, we use TED and MUST-C data as
in-domain data. We score all the training bilingual
data through Equation 1, and filter out 80% - 90%
of the data according to the score distribution. We
use the remaining 0.4M in-domain data to continue
training on the previous model.

4.5 Robustness to ASR Noise

We use two methods to improve the robustness of
the system to ASR output noise.

Synthetic Noise Generation. We refer to the
method proposed in Guo et al. (2022) to synthesize
part of the noise data to enhance the robustness of
the model.

ASR Transcript Data. Because some triplet

data are provided in this task, including audio,
source and target. We use the trained ASR to tran-
scribe the audio file to get source′, and finally get
the MT training data like (source′, target). The
source′ transcribed by ASR may have some errors,
but when used in MT, it will increase the robustness
of the MT encoder.

When using the data generated above, we refer
to the tagged BT method (Caswell et al., 2019), and
add a special token at the beginning of the source
sentence.

5 Experiments and Results

We use the open-source fairseq (Ott et al., 2019)
for training, word error rate (WER) to evaluate the
ASR models and report case-sensitive SacreBLEU
(Post, 2018) scores for machine translation. We
evaluated our system on the test sets of MuST-C
tst-COMMON (tst-COM).

Table 3 is our results on three languages for
three tracks (Constrained, Constrained with LLM,
Unconstrained). After a series of optimizations,
although the ASR results of the three systems
are somewhat different, the BLEU of all sys-
tems are very close. Since there is no testset for
iwslt2022, we only compared with last year’s teams
on tst-COM. Compared with last year’s best re-
sults (Zhang et al., 2022), we have improved by 2.1
BLEU in the MuST-C En2De test set; in En2Zh
and En2Ja, we have achieved close to last year’s
best results.

We analyze the main reasons for the similar re-
sults of the three systems: 1. The three systems use
the same MT, and our MT system has the ability
to correct wrong input after the robustness is en-

190



hanced. 2. Using the same data to finetuning the
three ASR systems, the WER are relatively close.

5.1 Automatic Speech Recognition
We compare the results of different model archi-
tectures, the overall experimental results about
ASR is described in Table 4. We evaluated
our system on the test sets of tst-COM, IWSLT
tst2018/tst2019/tst2020 respectively. For long au-
dio in the test set, we use SHAS for segmenta-
tion. We calculate the WER after the reference and
hypothesis are lowercased and the punctuation is
removed.

In Table 4, all ASR systems achieve good per-
formance, and the results are relatively close. Con-
former and U2 are trained using constrained data.
w2v2-mBART is obtained through fine-tuning us-
ing pre-trained models, which are constrained.
Whisper is the result of transcribing long audio
without segmentation using the native whisper
medium model. Whisper fine-tuning is obtained
after fine-tuning on MuST-C dataset, with using the
Whisper medium model. The WER of Conformer
and U2 is relatively close. In submitting the results
of constrained track, we use Conformer as the fi-
nal ASR system. The experimental results show
that pre-trained models exhibit their advantages,
w2v2-mBART can achieve better results than just
training with constrained data. Whisper itself has
a very good performance in the general domain,
and after fine-tuning, it has even better results in
the specific domain. However, it is very difficult
to perform finetuning on whisper and improve the
performance of all domains. WER performance on
tst2019 and tst2020 has deteriorated.

5.2 Neural Machine Translation
We evaluate the performance of the MT model in
detail on the MUST-C test set. Table 5 shows the
performance results of each optimization strategy
using golden as the source; Table 6 uses the tran-
scription generated by Whisper fine-tuning model
as the source. The results show that there is a gap
in BLEU between golden and transcription of ASR,
which is mainly due to errors (punctuation, capital-
ization, vocabulary, etc.) in transcription of ASR.
On the En2De test set, this gap is particularly wide.

One2Many is a multilingual model trained us-
ing the R-drop strategy, and has achieved relatively
good performance on the test set. LaBSE can bring
a little improvement to the model, and domain adap-
tation can bring a huge improvement to the model,

which proves the effectiveness of our strategy. It-
erative joint training with FT and BT (Iter FTBT)
is also an effective mean to improve quality. After
dev fine-tuning, the results are already very compet-
itive. With improving the robustness of the system
to ASR output, our BLEU in En2De, En2Zh, and
En2Ja are 38.71, 20.34, and 28.93, respectively.

6 Conclusion

This paper presents our offline speech translation
systems in the IWSLT 2023 evaluation. We ex-
plored different strategies in the pipeline of build-
ing the cascade system. In the data preprocess-
ing, we adopt efficient cleansing approaches to
build the training set collected from different data
sources. We tried various ASR training strategies
and achieved good performance. For the MT sys-
tem, we have used various methods such as multi-
lingual machine translation, R-drop, domain adap-
tation, and enhanced robustness. Finally, compared
with last year’s best results, we have improved by
2.1 BLEU in the MuST-C English-German test set.
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