
Proceedings of the 20th International Conference on Spoken Language Translation (IWSLT 2023), pages 202–210
July 13-14, 2023 c©2023 Association for Computational Linguistics

I2R’s End-to-End Speech Translation System
for IWSLT 2023 Offline Shared Task

Muhammad Huzaifah, Kye Min Tan, Richeng Duan
Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore

Abstract

This paper describes I2R’s submission to the of-
fline speech translation track for IWSLT 2023.
We focus on an end-to-end approach for trans-
lation from English audio to German text, one
of the three available language directions in
this year’s edition. The I2R system leverages
on pretrained models that have been exposed
to large-scale audio and text data for our base
model. We introduce several stages of addi-
tional pretraining followed by fine-tuning to
adapt the system for the downstream speech
translation task. The strategy is supplemented
by other techniques such as data augmentation,
domain tagging, knowledge distillation, and
model ensemble, among others. We evaluate
the system on several publicly available test
sets for comparison.

1 Introduction

Historically, speech translation (ST) has involved
combining automatic speech recognition (ASR)
and machine translation (MT) systems in a cas-
cade. The ASR system would transcribe speech
signals into text in the source language, and the
MT system would then translate this text into the
target language. However, recent developments
in deep learning have made it possible to use an
end-to-end speech translation model (Bérard et al.,
2016; Weiss et al., 2017), which directly trans-
lates speech in the source language into text in
the target language, without relying on intermedi-
ate symbolic representations. This approach offers
the advantages of lower latency and avoids error
propagation. While cascaded models initially out-
performed end-to-end models, recent results from
IWSLT campaigns (Le et al., 2020; Bentivogli et al.,
2021; Anastasopoulos et al., 2022) have shown that
the performance of end-to-end models is now ap-
proaching that of cascaded solutions.

Large pretrained models (Lewis et al., 2020;
Conneau et al., 2021; Raffel et al., 2020) have be-

come a prevalent basis for speech and language pro-
cessing work (Ma et al., 2021; Chen et al., 2022a).
Through the utilization of pretrained models and
subsequent finetuning using a small amount of la-
beled data, many tasks have exhibited significant
improvements in performance (Baevski et al., 2020;
Hsu et al., 2021; Guillaume et al., 2022; Navarro
et al., 2022), some even reaching state-of-the-art
results.

In this work, we describe our end-to-end system
for the Offline Speech Translation Task at IWSLT
2023 (Agarwal et al., 2023) in the English-German
(En-De) language direction. The current year’s task
not only includes the traditional TED talk evalu-
ation set translated from English to German, but
also introduces two additional test sets consisting
of ACL presentations, press conferences and in-
terviews (EMPAC), which are more complex and
challenging. Furthermore, this year’s constrained
data track allows less data than previous years. Our
team enhances the end-to-end ST system within the
context of the pretrain-finetune paradigm. We in-
troduce several pretraining stages before finetuning
for the downstream ST task. Furthermore, we im-
plemented dynamic audio augmentation methods to
account for differences in audio recording quality.
We boost the system’s robustness by ensembling
multiple individual models and use domain tagging
to direct the model towards specific output styles.
Here, we evaluate our system against various stan-
dard public test sets for both speech translation and
text machine translation.

2 Methodology

In this section, we introduce the model architecture
of our system, and describe some of the methods
we incorporated into the design and training pro-
cess.
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Figure 1: Our end-to-end ST model architecture

2.1 Model

As shown in Fig 1, our end-to-end ST model uses
two separate encoders for speech and text, followed
by a shared encoder and decoder. As the shared
encoder is pretrained on text inputs while the fi-
nal system has to work with speech inputs, we try
to bring speech and text into a shared representa-
tion space by devising a training task using mixed
speech and text inputs, described in Section 2.2.

Due to limited computational resources, we
make use of the allowed pretrained models in
the constrained track. The speech encoder is ini-
tialized from the WavLM (Chen et al., 2022a)
large checkpoint which was pretrained on Libri-
Light, GigaSpeech and VoxPopuli data in a self-
supervised fashion. WavLM was selected as it in-
cludes more data relevant to this year’s test set,
and showed better performance in our preliminary
experiments compared to similar models like Hu-
BERT. DeltaLM base (Ma et al., 2021) was used
to initialize the text encoder, shared encoder and
decoder sections. Prior to the final ST training, the
DeltaLM model was first finetuned on text-to-text
MT (described in Section 3.2). The text encoder in-
cludes the text and positional embedding layers of
DeltaLM and is frozen in the final finetuning stage.
The shared encoder encompasses the transformer
layers of the DeltaLM encoder.

Given that ST data is commonly provided as a
triplet of source speech, source text transcription
and target text translations, we leverage both text
and speech sources in our proposed architecture.
Aside from the audio waveforms processed through
the speech encoder, we take as input upsampled to-
kenized source text by repeating subword tokens ac-
cording to a pre-calculated ratio given by an align-
ment system. For data with paired speech and text
inputs, we mix representations from the two input
encoders through random swapping. Otherwise,
unimodal data is processed by their respective en-
coders and the mixing step is skipped, such as the
case during speech-only ST inference. We also
recognise that the flexible nature of the architecture
allows the use of ASR and MT data as unimodal
inputs to further expand the training data and train
a multilingual model. However, due to time and
computational constraints, this was not explored in
this submission and is left as future work.

2.2 Representation Mixing

Recent work in unified representation learning of
speech and text (Liu et al., 2020; Zhang et al., 2022;
Chen et al., 2022b; Fang et al., 2022; Sainath et al.,
2023) try to leverage abundant text data to supple-
ment speech-based models. We similarly encour-
age our model to learn a joint multimodal repre-
sentation by bringing speech and text inputs into a
shared representation space.

To handle the large difference in sequence
lengths of audio and text, systems from the litera-
ture often upsample text using a trained duration
model or a resampling scheme. Here, we utilize of-
fline forced alignment and upsampling to align the
speech and text data. Specifically, a pretrained ASR
model is used to first force align text transcripts to
audio, returning an upsampling ratio between a
particular subword and its corresponding speech
segment. Each subword token is then repeated up
to this ratio before being fed to the text encoder
such that the final encoded subword is of the same
length as its speech counterpart. The alignment
and resampling procedure is described in detail in
Section 3.1.

As the shared encoder was pretrained only on
text, we hypothesize that the model may better
adapt to the downstream speech task by using a
mixed speech-text representation compared to train-
ing on pure speech inputs. When finetuning the ST
model on data with both source speech and text, we
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feed both the audio and upsampled text tokens into
the respective speech and text encoders, then mix
the resultant embeddings at the individual subword
token level using a fixed probability. In practice, a
swapping mask is created before upsampling, with
text embeddings being replaced with speech em-
beddings according to a swapping ratio α, where
0 < α < 1. The tokens and swap mask are up-
sampled together and passed into the model so that
sequences of identical upsampled tokens can be
replaced with speech embeddings during the repre-
sentation mixing step.

2.3 Knowledge Distillation

To fully utilize the larger amounts of text-only MT
data allowed in the challenge, we train a separate
MT model using DeltaLM large. This larger model
is then frozen and used as a teacher during fine-
tuning of the ST model via negative log-likelihood
minimization between the hypotheses generated by
both the models, similar to the knowledge distilla-
tion method proposed in Tang et al. (2021).

Our overall loss function therefore consists of
cross entropy loss between the ground truth and
hypothesis produced by the ST system (Lst) and
negative log-likelihood loss between the teacher
and student model hypotheses (Lkd), weighted by
γ and β respectively: L = γLst + βLkd

3 Experimental Setup

3.1 Data Preparation

Training data was compiled in accordance to con-
strained conditions. They can be divided into text
and audio-based categories which were used to
train the initial MT model and final ST model re-
spectively.

Text data Parallel En-De lines were gathered
from both MT and ST datasets, seen in Table 1.
These were split into in-domain and out-of-domain
based on whether the text was derived from TED-
like sources. The in-domain sources include a
combination of MuST-C v1, v2 and v3 (Cattoni
et al., 2021), ST TED (Niehues et al., 2018), and
TED 2020 (Reimers and Gurevych, 2020), whereas
the out-of-domain sources mostly comprised of
OpenSubtitles (Lison and Tiedemann, 2016) and
Europarl (Koehn, 2005), but also include CoVoST
v2 (Wang et al., 2021b), ELRC-CORDIS News,
Europarl-ST (Iranzo-Sánchez et al., 2020), News-
Commentary (Tiedemann, 2012) and Tatoeba. A

common pre-processing pipeline was applied to
the text data, namely removing any tags and con-
trol codes, normalizing bullet points, simplifying
punctuation by removing repeats (with the excep-
tion of ‘...’) and normalizing whitespace characters.
Sentence pairs where source and target differed by
more than three times in length were then removed
given that they were likely to be misaligned. Fi-
nally, the remaining sentences were deduplicated.
The out-of-domain data was further filtered us-
ing Language-agnostic BERT Sentence Embedding
(LaBSE) (Feng et al., 2022). Specifically, we re-
moved sentence pairs with sentence representations
lower than 0.5 cosine similarity. We opted not to
use any backtranslation data for training since the
provided monolingual dataset was found to largely
overlap with OpenSubtitles. The final dataset con-
tained 850,003 in-domain and 13,083,335 out-of-
domain sentence pairs.

Dataset Lines
in-domain
MuST-C v1/v2/v3 391K
ST TED corpus 170K
TED2020 v1 288K
out-of-domain
CoVoST v2 300K
ELRC-CORDIS News v1 111K
Europarl v10 1.7M
Europarl-ST v1.1 69K
NewsCommentary v16 380K
OpenSubtitles v2018 apptek 10.1M
Tatoeba v1 288K
Total 13.9M

Table 1: Breakdown of text training data. For ST
datasets only transcription and translation pairs were
used.

Audio data Audio data sources include both
ASR and ST corpora, listed in Table 2. ASR
data consist of Commonvoice (Ardila et al., 2020),
Librispeech (Panayotov et al., 2015), TED LIUM
(Rousseau et al., 2012), and Vox Populi (Wang
et al., 2021a), whereas the ST data include CoV-
oST (Wang et al., 2021b), Europarl-ST (Iranzo-
Sánchez et al., 2020), MuSTC v3 (Cattoni et al.,
2021) and ST TED (Niehues et al., 2018). Speech
was first converted to mono channel and resampled
to 16kHz if required before being saved in FLAC
format. Only utterances between 800 to 480,000
samples (i.e. 0.05-30s) were kept and utilized for
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Dataset Utterances Hours
ASR data
Commonvoice v11.0 949K 2320
Librispeech v12 281K 960
TED LIUM v3 268K 453
Vox Populi 177K 543
ST data
CoVoST v2 289K 364
Europarl-ST v1.1 68K 89
MuST-C v3 265K 273
ST TED corpus 169K 252
Total 2.47M 5254

Table 2: Breakdown of available audio training data

training. The provided segmentation was used for
all speech training data.

To increase the amount of available ST data, we
generated additional translations from ASR tran-
scription data using our trained MT model. These
synthetic speech-text pairs were used as part of the
ST dataset during the finetuning phase.

Forced alignment and upsampling To prepare
text inputs for mixing with speech inputs, we pre-
processed the text by upsampling and aligning it
to its corresponding speech features using a pre-
trained HuBERT ASR model. First, we normalized
the transcripts from ASR and ST datasets by delet-
ing non-verbal fillers and converting numbers into
their corresponding words. Characters not found
among the HuBERT labels were then removed
after tokenizing the text. Next, we obtained an
alignment between the subword tokens and parallel
speech using a pretrained HuBERT large model
(Hsu et al., 2021) and, following those alignments,
duplicated the input tokens to match the lengths of
the speech representation produced by the speech
encoder. The frequency of the upsampled text to-
kens is 50 Hz (equivalent to 16 kHz input audio
downsampled 320 times by the WavLM feature
extractor).

Audio segmentation As segmentation informa-
tion was not provided in this year’s evaluation data,
we used the pretrained Supervised Hybrid Audio
Segmentation (SHAS) model (Tsiamas et al., 2022)
to perform voice activity detection and segmenta-
tion on the input audio from the IWSLT test sets.
SHAS has been evaluated on MuST-C and mTEDx
and shows results approaching manual segmenta-
tion.

3.2 Training configuration

On-the-fly audio augmentation To make our
model more robust against the bigger variances in
recording quality of the evaluation data introduced
this year, we implemented an on-the-fly augmenta-
tion pipeline for input audio via the Audiomenta-
tions library. In addition to initial utterence cepstral
mean and variance normalization (CMVN), we ap-
ply gain, seven-band parametric equalization, gaus-
sian noise, time stretch, pitch shift and a lowpass
filter, where each augmentation independently has
a 20% chance of being utilized. During inference
only CMVN is used.

Machine translation We finetuned several con-
figurations of DeltaLM base and large for En-De
machine translation. DeltaLM base has 12 encoder
and six decoder layers, with an embedding dimen-
sion of 768 and 12 attention heads per transformer
layer. In contrast, DeltaLM large contains 24 en-
coder and 12 decoder layers, an embedding dimen-
sion of 1024 and 16 attention heads per layer.

We used a two phase approach to finetuning. In
the first phase, we directly initialized the MT model
with DeltaLM pretrained weights and trained on
all available MT data. We then continued fine-
tuning only on in-domain data after checkpoint
averaging the best five checkpoints from the first
phase in terms of BLEU on the validation set that
comprised of IWSLT test sets from 2015, 2018,
2019 and 2020, plus MuST-C v3 tst-COMMON
split. We also tried progressive finetuning (Li et al.,
2020) during the second phase for the DeltaLM
base configuration where the depth of the encoder
was increased to 16 with four extra randomly ini-
tialized layers.

All models were implemented with the Fairseq
library. Models were trained with Adam opti-
mization, an inverse square root learning rate (LR)
schedule and a peak LR of 1e-4 for the first phase
and 1e-5 for the second phase. Label smoothing of
0.1 was also used. Training was carried out on four
NVIDIA V100 GPUs. We employ subword tok-
enization for all text inputs using a Sentencepiece
model inherited from the original DeltaLM, with a
vocabulary size of 250,000.

Speech translation finetuning As described in
section 2.1, the end-to-end speech translation
model consists of separate speech encoder and text
embedding input layers, followed by a shared en-
coder and decoder. The speech encoder is initial-

205



ized with a pretrained WavLM large model that
contains a seven layer convolutional feature extrac-
tor followed by 24 transformer layers. We initialize
the text embeddings, shared encoder and decoder
layers with the DeltaLM base model previously
finetuned for MT. The input text embeddings are
frozen throughout the ST finetuning. Meanwhile,
the teacher text model was instead initialized with
the finetuned DeltaLM large configuration.

Domain tagging has been shown in previous MT
(Britz et al., 2017) and ST (Li et al., 2022) work
to be effective for domain discrimination and to
condition the model towards certain output styles.
Given the distinct TED-style outputs of the evalu-
ation data, we introduce ‘<indomain>’ and ‘<out-
domain>’ tags as prefix tokens during decoding to
help the model better distinguish the data distribu-
tion and style of the in-domain data from the other
parts of the dataset.

Similar to the approach employed during MT
training, we initially trained the end-to-end ST
model on all available ST data, including those
synthesized from ASR data. Adam optimization
with inverse square root LR schedule and peak LR
of 1e-5 was used. A swapping ratio of 0.8 was used
during training but 1.0 (i.e. pure speech represen-
tation) was used for inference and testing. In the
second phase we continued finetuning two separate
models with different data splits, while swapping
ratio was kept at 1.0. To target the usual TED
evaluation data, we trained one with only MuST-C
and ST-TED data, while the other also included
CoVoST and Europarl to help deal with the more
diverse speech patterns found in the ACL and EM-
PAC parts of the evaluation data (given that no
direct development data was provided). We weight
the ST loss and knowledge distillation loss with
γ = 1 and β = 0.1 respectively. Training was
carried out on four NVIDIA V100 GPUs for both
phases.

4 Results and Analysis

We present our experimental results and analyses
in this section.

4.1 Effect of audio augmentations and
pretrained speech encoder

As a preliminary experiment, we tested whether
the input audio augmentations have a tangible im-
pact on downstream applications. We finetuned a
pretrained WavLM large model together with a six

layer transformer decoder for ASR using MuST-C
v2 data, with and without input augmentations (Ta-
ble 3). Furthermore, we trained a HuBERT large
model in the same setup to contrast between differ-
ent pretrained speech encoders.

Model WER
HuBERT large without augmentation 7.59
WavLM large without augmentation 5.86
WavLM large with augmentation 5.56

Table 3: ASR results on MuST-C v2 tst-COMMON.

As observed, the audio augmentations were
found to be beneficial, leading to a reduction of
WER by 0.3. We found WavLM large together
with augmentations to perform the best overall and
so was adopted for the rest of the experiments.

4.2 Machine translation results

The results of the MT systems for En-De are shown
in Table 4, separated into the full-domain training
phase and the in-domain training phase. Perfor-
mance was evaluated using cased BLEU with de-
fault SacreBLEU options (13a tokenization).

It was evident that the continuous finetuning
with in-domain data improves performance on sim-
ilar datasets such as past year IWSLT evaluation
data or MuST-C. While the DeltaLM large models
achieved the best results, the base variants were not
far behind and generally performed within 1 BLEU
score of the former. However, we found no added
benefit to the progressively finetuned models. It
may be the case that the extra representative power
of the expanded encoder layers were not beneficial
at the relatively small scale of the in-domain data,
which was less than 1 million sentence pairs. Some
training runs produced better scores by checkpoint
averaging the best five checkpoints. Nevertheless,
the improvement was not consistent throughout all
test sets.

An ensemble of model variants 6 and 9 further
improved the BLEU scores on the test sets. We
utilize the ensemble model to generate translations
from ASR transcriptions to supplement the avail-
able ST data. The best checkpoint for DeltaLM
base (model 5) and DeltaLM large (model 9) were
subsequently used to initialize the end-to-end ST
model and teacher text model respectively for the
final finetuning.
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Model BLEU
tst2020 tst2019 MuST-C v3 MuST-C v2

full-domain
1 base (best) 31.76 28.81 33.11 33.77
2 base (avg 5) 32.86 29.43 34.05 34.67
3 large (best) 31.82 29.01 33.20 34.21
4 large (avg 5) 32.52 29.54 33.65 34.68

in-domain
5 base (best) 33.64 30.67 35.29 35.99
6 base (avg 5) 33.73 30.64 35.26 36.11
7 base-progressive (best) 33.40 30.51 34.25 34.83
8 base-progressive (avg 5) 33.26 30.48 34.37 35.09
9 large (best) 34.44 31.47 35.60 36.26
10 large (avg 5) 34.32 31.42 35.89 36.48

Ensemble (6 + 9) 34.91 31.77 36.14 36.93

Table 4: MT results on various test sets.

Model BLEU
tst2020 tst2019 MuST-C v3 MuST-C v2 CoVoST v2

in-domain
1 base (best) 25.70 22.68 30.29 30.56 27.92
2 base (avg 5) 24.81 22.25 29.98 30.29 28.11

extended-domain
3 base (best) 22.80 21.17 29.33 29.50 28.63
4 base (avg 3) 23.21 21.20 29.61 29.95 29.30

Ensemble (1 + 2 + 4) 24.99 22.64 29.99 30.35 29.13

Table 5: ST results on various test sets.

4.3 Speech translation results

Results from our end-to-end ST systems for En-
glish speech to German text are provided in Table 5.
As mentioned in section 3.2, we trained two mod-
els during the second ST finetuning phase, which
are labelled here as ‘in-domain’, targeting more
TED-like inputs, and ‘extended-domain’ for other
input domains. As reference segmentation infor-
mation was not provided for IWSLT-tst2019 and
IWSLT-tst2020 test sets, we used SHAS to segment
the audio. The translation hypotheses were then
compared to the references provided by using the
SLT.KIT evaluation script listed on the challenge
website, that uses the mwerSegmenter resegmen-
tation tool and the BLEU calculation script from
the Moses toolkit. The provided segmentation and
SacreBLEU were utilized for the other test sets.

Comparing CoVoST against the rest of the
test sets reveals that the in-domain and extended-
domain models show better results in their respec-
tive domain specializations, as was intended. We

unexpectedly get poor results on IWSLT-tst2019
and IWSLT-tst2020 relative to last year’s best per-
forming entries, which may point to a weakness
in the current training procedure, a domain mis-
match since training was more aligned to MuST-C,
or compounded errors due to resegmentation. We
plan to investigate the reasons more precisely in
future papers. The ensemble model of variants 1,
2 and 4 shows balanced performance across both
domains, and we submit this as our primary sub-
mission, with variants 1 and 4 as our contrastive
systems.

5 Conclusion

In this paper we outline our proposed end-to-end
system that incorporates pretrained models trained
on large-scale audio and text data to enhance the
ST performance. The system underwent several
stages of additional pretraining followed by finetun-
ing for the downstream speech translation task. We
explored several techniques including audio aug-
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mentation, domain tagging, knowledge distillation
and model ensemble to improve the system’s per-
formance. We utilize both speech and text inputs,
and propose a mixing procedure to unify represen-
tations from both modalities to not only increase
the amount of available training data but also better
adapt the model to downstream speech tasks. We
plan to carry out more experiments to further ex-
plore the effect of modality mixing and improve
the performance of such models for speech-to-text
tasks.
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