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Abstract

This paper describes the NiuTrans end-to-end
speech translation system submitted for the
IWSLT 2023 English-to-Chinese offline task.
Our speech translation models are composed
of pre-trained ASR and MT models under the
stacked acoustic and textual encoding frame-
work. Several pre-trained models with diverse
architectures and input representations (e.g.,
log Mel-filterbank and waveform) were utilized.
We proposed an iterative data augmentation
method to iteratively improve the performance
of the MT models and generate the pseudo ST
data through MT systems. We then trained ST
models with different structures and data set-
tings to enhance ensemble performance. Exper-
imental results demonstrate that our NiuTrans
system achieved a BLEU score of 29.22 on
the MuST-C En-Zh tst-COMMON set, outper-
forming the previous year’s submission by 0.12
BLEU despite using less MT training data.

1 Introduction

End-to-end speech translation (E2E ST) directly
translate speech in the source language into text in
the target language without generating an interme-
diate representation, which has gained significant
attention in recent years due to several advantages
over cascade methods, including low latency and
the ability to avoid error propagation (Berard et al.,
2016; Weiss et al., 2017). In this paper, we describe
our NiuTrans E2E ST system that participated in
the IWSLT23 English-to-Chinese offline track, the
overview of our system is shown in Fig 1.

To improve the performance of our system, we
aim to maximize the diversity of our ensemble of
E2E ST models. Our E2E ST models are based on
the stacked acoustic and textual encoding (SATE)
method (Xu et al., 2021a), which is a framework
to make the best of pre-trained automatic speech
recognition (ASR) and machine translation (MT)
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Figure 1: Overview of our system.

components. Using this framework, we explore
multiple architectures of pre-trained ASR and MT
models with varying numbers of parameters and
input representations such as FBank features or
waveform data.

Pseudo data is a crucial component of E2E ST,
often generated by ensemble MT systems (Gaido
et al., 2020). This year, we focused more on the per-
formance of MT models and developed an Iterative
Data Augmentation method to leverage text data
from all corpora, improving the MT models and
enabling the generation of multiple pseudo data.
We then used these multiple pseudo data to train
diverse E2E ST models for optimal performance.
Our best ST ensemble system includes models with
different input representations, architectures, and
training corpora, achieving a BLEU score of 29.22
on the MuST-C En-Zh tst-COMMON set.

The remainder of the paper is organized as fol-
lows: Section 2 describes the data processing, data
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augmentation and speech segmentation. Section 3
outlines the construction of the vocabulary and
structures of our ASR, MT and ST models. The
experimental settings and final results are presented
in Section 4. Finally, Section 5 concludes the sub-
mission.

2 Data

2.1 Data Processing

Our system was built under the “constrained” train-
ing condition. The training data can be divided
into three categories: ASR, MT, and ST corpora.
We used the NiuTrans toolkit (Xiao et al., 2012) to
segment English and Chinese text in all corpora.

ASR corpora. We followed the previous work
(Xu et al., 2021b) and standardized all audio sam-
ples to a single channel and a sample rate of 16,000
Hz. For the Common Voice corpus, we selected
only the cleaner parts according to the CoVoST
v2 En-Zh corpus. In the MuST-C v1 En-De cor-
pus, we removed repetitive items by comparing
the MuST-C v2 En-Zh transcriptions. We used the
Librispeech corpus to train the ASR model and
scored the Common Voice, TED LIUM, and ST
TED corpus. Data with a WER greater than 0.75
were removed, and frames with lengths less than
5 or greater than 3000 were filtered. In addition,
utterances with more than 400 characters were re-
moved.

MT corpora. Following the methodology of
(Zhang et al., 2020), we cleaned the parallel texts
of the OpenSubtitle corpus and used fast-align to
score all sentences. We averaged the scores by
the sentence length and filtered out sentences with
scores below -6.0. In the News Commentary v16
corpus, we used langid (Lui and Baldwin, 2012) to
filter out sentences with incorrect language identifi-
cation results. In the Tatoeba corpus, we converted
90% of the sentences from traditional Chinese to
simplified Chinese using OpenCC1.

ST corpora. For the MuST-C v2 En-Zh and CoV-
oST v2 En-zh corpus, we only filtered frames by
length, similar to the ASR corpora. For the pseudo
ST data, we removed sentences containing repeated
n-gram words (n is 2 to 4) more than four times.
Additionally, sentences with length ratios outside
the range of 0.25 to 4 and those with incorrect lan-
guage identification results were filtered out.

1https://github.com/BYVoid/OpenCC

Task Corpus Sentence Hour

ASR

LibriSpeech 0.28 960
Europarl-ST 0.03 77
TED LIUM 0.26 448
ST TED 0.16 235
VoxPopuil 0.17 478
MuST-C V1 En-De 0.07 138
MuST-C V2 En-Zh 0.36 572
CoVoST v2 En-Zh 0.28 416
Total 1.61 3324

MT

News Commentary 0.31 -
OpenSubtitle 8.62 -
MuST-C V2 En-Zh 0.36 -
CoVoST V2 En-Zh 0.28 -
Tatoeba 0.05 -
Total 9.62 -

ST
MuST-C En-Zh 0.36 572
CoVoST V2 En-Zh 0.28 416
Total 0.64 988

Table 1: Details about the size of all labeled corpora.
The unit of sentence is million (M).

Task Corpus Sentence Hour
MT ASR corpora+MT 1.38 -

ST
ASR corpora+MT 1.61 3323
Audio+ASR+MT 1.4e-2 3

Table 2: Details about the size of all pseudo corpora.

2.2 Data Augmentation

We only used SpecAugment (Bahar et al., 2019)
and not used speed perturb for ASR data augmenta-
tion, because speed perturb requires more training
resources but has the limited improvement. It is
also worth noting that we did not use back transla-
tion technology in either MT or E2E ST, as there
was no target-side monolingual data available.

The MT model or ensemble MT systems repre-
sent the upper limit for E2E ST. Translating the
transcript in the ASR corpus into the target lan-
guage using MT models is a simpler and more
effective way to augment the ST corpus than gener-
ating source speech features from the source texts
in the MT corpus using TTS models. Based on
this, we propose an Iterative Data Augmentation
(IDA) method, which aims to use text data from all
corpora to improve the performance of MT models
and generate high-quality ST corpus iteratively, as
illustrated in Algorithm 1.

We also discovered incomplete transcriptions in
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a few sentences from the TED LIUM, ST-TED, and
voxpupil corpus. Therefore, we generated pseudo
transcriptions using the ASR model and then trans-
lated them using the best MT ensemble systems.

Algorithm 1: IDA
Input: DASR = {(sasr, xasr)},DMT =

{(xmt, ymt)}
Output: D∗

STaug
= {(sasr, xasr, y′

asr)}
1 D∗

MT ← DMT ;
2 s∗ ← 0;
3 for i← 1 to MAXITER do
4 M1,M2, · · · ,Mn ← train(D∗

MT );
5 Ei ← ensemble(M1,M2, · · · ,Mn);
6 si ← score(Ei);
7 if i ̸= 1 and si <= s∗ then
8 break;
9 else

10 y
′
asr ← decode(Ei, xasr);

11 Di
MTaug

← {(xasr, y′
asr)};

12 Di
STaug

← {(sasr, xasr, y′
asr)};

13 D∗
MT ← DMT ∪Di

MTaug
;

14 s∗ ← si;

15 return D∗
STaug

;

2.3 Speech Segmentation
To avoid the significant performance drop due to
the mismatch between the training and inference
data, we adopted Supervised Hybrid Audio Seg-
mentation (SHAS) (Tsiamas et al., 2022) to split
long audios in the test sets. However, we did not
fine-tune our models on the resegmented data, ac-
cording the findings in Gaido et al. (2022).

3 Model Architecture

We explored the performances of different ASR,
MT, and ST architectures and found that using
larger models is more conducive to performance
improvement in all three tasks.

3.1 Vocabulary
We adopted a unified vocabulary for all tasks,
trained by the SentencePiece (Kudo and Richard-
son, 2018) model (SPM) from the MT corpora. To
incorporate more subwords from the TED domain,
we up-sampled the MuST-C corpus by 10x 2 in the

2Specifically, we created 10 copies of the MuST-C corpus
and combined them with additional MT data.

training corpora for the SPM. The vocabulary size
for English and Chinese is 10k and 44k, respec-
tively.

3.2 ASR Models

Inspired by Zhang et al. (2022a), we used three
ASR encoders with different architectures and in-
put representations to achieve better ensemble per-
formance.

• Transformer-HuBERT (TH): This encoder
consists of 7 layers of 512-channel-CNN with
strides [5,2,2,2,2,2,2] and 12 layers of Trans-
former (Vaswani et al., 2017). The hidden
size, ffn size, and number of heads are 768,
3072, and 8, respectively. This architecture
takes waveform data as input.

• Conformer-PDS-Medium (CPM): This en-
coder consists of 18 layers of Conformer
(Gulati et al., 2020) with progressive down-
sampling (PDS) methods (Xu et al., 2023).
The hidden size, ffn size, and number of heads
are 512, 2048, and 8, respectively. This archi-
tecture takes log Mel-filterbank features as
input.

• Conformer-PDS-Deep (CPD): This encoder
is the same as the Conformer-PDS-Medium,
but with the number of layers adjusted from
18 to 24.

Due to limited computational resources, we pre-
trained the Transformer-HuBERT only on the Lib-
rispeech corpus using the method outlined in Hsu
et al. (2021). The Conformer-PDS-Medium/Deep
architectures were trained on all ASR corpora, and
we employed an additional decoder with 6 layers
to utilize the Cross Entropy loss. We also adopted
CTC loss (Graves et al., 2006) and inter-CTC loss
(Lee and Watanabe, 2021) to accelerate the conver-
gence.

3.3 MT Models

While deep models have shown success in trans-
lation tasks, we observed that wider architectures
with more parameters generally yield superior per-
formance (Shan et al., 2022). As such, we selected
the DLCL Transformer (Wang et al., 2019) and the
ODE Transformer (Li et al., 2022) for the deep and
wide models, respectively.
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• DLCL: This model consists of 30 layers of
Transformer encoder and 6 layers of Trans-
former decoder with dynamic linear combina-
tion of layers and relative position encoding
(Shaw et al., 2018) methods. The hidden size,
ffn size, and number of heads are 512, 2048,
and 8, respectively.

• ODE: This model consists of 12 layers of
Transformer encoder and 6 layers of Trans-
former decoder with an ordinary differential
equation-inspired method, which has been
proven to be efficient in parameters. The hid-
den size, ffn size, and number of heads are
1024, 4096, and 16, respectively.

• ODE-Deep: This model is the same as ODE
but with the number of encoder layers ad-
justed from 12 to 18.

Since the transcript in the ASR corpora lacks punc-
tuation and is in lower-case, we lowered-cased and
removed punctuation from the source text of the
MT corpora for consistency before training the MT
models. While this operation may have a negative
impact on MT performance, we have demonstrated
its usefulness for data augmentation and the final
ST performance in Section 4.3.

3.4 ST Models

We utilized the SATE method to enhance the usage
of pre-trained ASR and MT models for the ST task.
Specifically, we decoupled the ST encoder into an
acoustic encoder and a textual encoder, with an
adapter in between. The pre-trained ASR encoder
was used to initialize the acoustic encoder, while
the pre-trained MT model was used to initialize
the textual encoder and decoder. To optimize per-
formance with limited memory, we successively
attempted multiple structures, ranging from small
to large, as presented in Table 3. The models with
TH-DLCL structure were trained using the tech-
niques outlined in Zhang et al. (2022b).

Structure ASR MT Params.
TH-DLCL TH DLCL 251M
CPM-DLCL CPM DLCL 289M
CPM-ODE CPM ODE 444M
CPD-ODE CPD ODE 472M

Table 3: The ST structures initialized with different
ASR and MT models under the SATE framework.

Model dev tst-M test-clean test-other
CPM 5.01 4.17 2.81 6.51
CPD 4.76 4.25 2.86 6.10

Table 4: WER scores on the dev, tst-COMMON (tst-M),
and test sets of Librispeech.

4 Experiments

4.1 Experimental settings
All experiments were implemented using the
Fairseq toolkit (Ott et al., 2019). We trained all
models using pre-norm and utilized dropout with
a ratio ranging from 0.1 to 0.3 and label smooth-
ing with 0.1 to prevent overfitting. Training was
stopped early when the indicators on the dev set
did not improve for 5 consecutive times. During
decoding, we averaged the best 5 or 10 models
in the dev set in all tasks. For single models, we
set the beam size and length penalty to 5 and 1.0,
respectively, while for ensemble systems we used
different values adapted from our test sets. The MT
and ST models were evaluated using SacreBLEU
(Post, 2018), while the ASR models were evalu-
ated using WER. All the models were trained on 8
NVIDIA 3090 or 8 TITAN RTX GPUs.

4.2 ASR
Table 4 presents the ASR results. We observed
that the deeper model performed better in con-
fronting noise test sets (dev set of MuST-C and
test-other), but it also overfitted in some test sets
(tst-COMMON and test-clean). We did not calcu-
late the WER of Transformer-HuBERT because it
was only pre-trained as a feature extractor and was
not fine-tuned for speech recognition tasks.

4.3 MT and IDA
Table 5 shows the MT and IDA results on the test
sets of MuST-C and CoVoST. We found that pre-
training on all the MT corpora and fine-tuning on
the in-domain corpora can improve performance.
Fine-tuning on both MuST-C and CoVoST together
is better than only on MuST-C corpus (ODE1 vs.
ODE2). It is worth noting that fine-tuning not only
improves the performance of in-domain test sets,
but also enhances the performance on out-domain
test sets, such as the test set of WMT21-news (not
included in this paper for simplicity).

We found that both DLCL and ODE models out-
performed our baseline, which was a Transformer-
Base model with fewer parameters. Additionally,
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Model
Pre-train Fine-tune

tst-M tst-C tst-M tst-C
Baseline♢† 28.20 50.98 28.96 50.18
- - - 26.25 46.27
Baseline† 26.99 49.12 28.04 49.49
DLCL1 27.68 50.66 28.62 54.12
ODE1† 28.28 51.67 28.56 51.09
ODE2 - - 29.03 55.28
ODE3 28.17 50.98 29.06 54.41
E1: ensemble (above four) 29.61 56.20

DLCL2 29.12 53.95 29.46 55.24
ODE4 29.27 54.31 29.56 55.47
ODE-Deep1 29.39 54.21 29.36 55.47
ODE-Deep2 29.44 54.28 29.47 55.71
E2: ensemble (above four) 30.02 57.18

Table 5: BLEU scores on the tst-COMMON (tst-M) and
the test set of CoVoST (tst-C). All data are in lower case.
Models marked with ♢ indicate that the punctuation of
the source text in corpora for pre-training, fine-tuning
and testing was kept. The † means that only the MuST-C
corpus was used in fine-tuning.

we demonstrated that although models trained on
the corpora with punctuation perform better on test
sets including punctuation (28.96 vs. 28.04), they
do not perform as well on test sets without punctu-
ation (26.25 vs. 28.04), which is more consistent
with the situation of the ASR transcript.

Since each round of iteration in IDA requires
retraining multiple MT models, we set the MAX-
ITER parameter in IDA to 2 to balance computing
resources and model performance. We observed
that models trained during the second iteration out-
performed those trained during the first iteration.
During the second iteration, we found that further
increasing the number of parameters resulted in
limited improvement (ODE4 vs. ODE-Deep1/2).
Additionally, iterative training resulted in a con-
siderable improvement in ensemble systems (from
29.61 to 30.02). Finally, we employed the ensem-
ble systems E1 and E2 to generate the pseudo data
D1

STaug
and D2

STaug
for ST, respectively.

4.4 ST and Ensemble

Table 6 displays the ST results on the test sets
of MuST-C and CoVoST. In contrast to MT, we
did not use in-domain fine-tuning, as we found in
the pre-experiments that it did not improve perfor-
mance and may even have caused some damage.

Experiments 1-9 demonstrated that increasing
the number of parameters, initializing with bet-

ID Model Data tst-M tst-C
1 Baseline M 23.09 -
2 TH-DLCL2 P 2 27.50 41.94
3 CPM-DLCL1 P 1 28.37 44.20
4 CPM-DLCL2 P 1 28.44 45.58
5 CPM-DLCL2 P 2 28.57 45.98
6 CPM-ODE4 P 1 28.72 46.76
7 CPM-ODE4 P 2 29.00 47.15
8 CPD-ODE4 P 1 28.79 47.18
9 CPD-ODE4 P 2 29.01 47.65
10 ensemble (7,9) 29.07 48.67
11 ensemble (2,7,9) 29.11 48.88
12 ensemble (2,7,8,9) 29.16 48.98
13 +adjusted beam/alpha 29.22 49.27

Table 6: BLEU scores on the tst-COMMON (tst-M) and
the test set of CoVoST (tst-C). M refers to the MuST-C
corpus, C refers to the CoVoST corpus, and P i refers to
M&C&Di

STaug
. The models with different parameters

are separated by the dotted line.

ter pre-trained models, and training with higher-
quality pseudo ST corpora were all effective ways
for enhancing the performance of the ST model.
These modifications resulted in a significant im-
provement over the baseline model, which has 32M
parameters and was trained solely on the MuST-C
dataset.

In the ensemble stage, we aimed to maximize the
diversity between models. To achieve this, we se-
lected models with different input representations,
architectures, and training corpora. Finally, by ex-
panding the beam size and adjusting the length
penalty (alpha), we achieved a BLEU score of
29.22 on tst-COMMON sets, which represents a
0.12 BLEU improvement over our optimal result
from the previous year, despite using less MT train-
ing data than last year (Agarwal et al., 2023).

5 Conclusion

This paper presented our submission to the
IWSLT23 English-to-Chinese offline speech trans-
lation task. Our system aimed to find the optimal
ensemble system under the "constrained" training
condition. To achieve this goal, we explored dif-
ferent input representations, model architectures,
and proposed an IDA method to utilize all available
texts to improve the MT systems and generate mul-
tiple pseudo ST data. Our final system achieved
a BLEU score of 29.22 on the MuST-C En-Zh tst-
COMMON set, and the results on the IWSLT 23
test sets are shown in Table 7.
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System TED ACL
Comet BLEU Comet BLEU

Ref 2 1 2 1 both
NiuTrans 0.8376 0.7740 50.0 34.3 57.9 0.7733 47.1

Table 7: Scores on the IWSLT23 test sets.
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