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Abstract
AppTek participated in the subtitling and for-
mality tracks of the IWSLT 2023 evaluation.
This paper describes the details of our subti-
tling pipeline - speech segmentation, speech
recognition, punctuation prediction and inverse
text normalization, text machine translation and
direct speech-to-text translation, intelligent line
segmentation - and how we make use of the
provided subtitling-specific data in training and
fine-tuning. The evaluation results show that
our final submissions are competitive, in par-
ticular outperforming the submissions by other
participants by 5% absolute as measured by
the SUBER subtitle quality metric. For the for-
mality track, we participated with our En-Ru
and En-Pt production models, which support
formality control via prefix tokens. Except for
informal Portuguese, we achieved near perfect
formality level accuracy while at the same time
offering high general translation quality.

1 Introduction

This paper presents AppTek’s submissions to the
subtitling and formality tracks of the IWSLT 2023
evaluation campaign. In the subtitling track, we
participate in constrained and unconstrained condi-
tions and in both language pairs English-to-German
(En-De) and English-to-Spanish (En-Es). In the
formality track, we participate in the zero-shot un-
constrained condition for English-to-Portuguese
(En-Pt) and English-to-Russian (En-Ru).

This paper is organized as follows: Section 2
briefly describes our data preparation. Section 3
presents AppTek’s pipeline for subtitle translation.
Its different components, namely audio segmen-
tation, speech translation (ST), automatic speech
recognition (ASR), machine translation (MT) mod-
els, and our subtitle segmentation algorithm are
described in Sections 3.1-3.5. Section 3.6 contains
experiments and an analysis of our subtitling sys-
tems. Section 4 presents AppTek’s approach to
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formality-controlled machine translation. Finally,
Section 4.1 shows the results of our formality track
submission.

2 Data Preparation

2.1 Text Data

We use all of the allowed “speech-to-text paral-
lel” and “text-parallel” data, including Europarl,
Europarl-ST, News Commentary, CORDIS News,
Tatoeba, TED2020, IWSLT TED, MuST-C v3,
CoVoST v2, and OpenSubtitles1. We apply com-
mon parallel data filtering steps based on lan-
guage identification, sentence length ratios between
source and target sentences and additional heuris-
tics. After filtering, we obtain 13.5M sentence pairs
with 152M running words (counted on the English
side) for En-De and 16.5M sentence pairs with
183M words for En-Es.

Next, we clone this data and process the En
side of the clone with our text normalization tool
NEWTN. It implements elaborate regular expres-
sions to convert numbers, dates, monetary amounts,
and other entities with digits into their spoken form.
It is also used to remove punctuation and word case
information. After training on such source data, our
MT systems are able to directly translate from raw
ASR output that lacks punctuation and casing into
properly formatted written target language text.

For the parallel corpora which have document
labels, we also create a version in which we con-
catenate two subsequent sentences from the same
document using a separator symbol. Our past ex-
perience shows that adding such data is beneficial
even if we do not add the context of the previous
sentence at inference time.

Finally, for each language pair, we extract about
4M words of bilingual phrases (based on unsuper-
vised word alignment) as additional training “sen-

1The filtered version provided by the track organizers.
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tence” pairs to make sure that the MT system can
cope well with incomplete sentences or too fine-
grained automatic sentence segmentation.

2.2 Speech Data
We use all the allowed datasets marked as “speech”
and “speech-to-text parallel”, including Europarl-
ST, How2, MuST-C, TED-LIUM, LibriSpeech,
Mozilla Common Voice, VoxPopuli, CoVoST, and
IWSLT TED. After removing very short (< 0.1s)
and long (> 120s) segments, we obtain about
3590 hours of speech with transcripts. From each
dataset, we only take the train sets, where appli-
cable. The English text is processed to be lower-
cased, punctuation-free using NEWTN, and split
into 10k byte-pair-encoding (BPE) tokens (Sen-
nrich et al., 2016).

2.3 Direct Speech Translation Data
All data marked as “speech-to-text parallel”, i.e.
Europarl-ST, MuST-C, CoVoST, and IWSLT TED –
except MuST-Cinema – is utilized for direct speech
translation. It results in a total of approximately
1220 hours of speech with transcripts and corre-
sponding translations after only keeping segments
between 0.1 and 120 seconds. As for our data pro-
cessing, on the English text, we carried out the
same scheme as for speech data, while following
almost the same German data processing scheme
as described in Section 2.1. plus tokenization using
the Moses toolkit (Koehn et al., 2007). Then 10k
and 20k BPEs are used on the English and Ger-
man texts, respectively. The dev set for the direct
model is chosen to be the concatenation of IWSLT
dev2010, MuST-C, Europal-ST, and CoVoST dev
sets, resulting in a large dev set of 33 hours.

2.3.1 Synthetic Data
To leverage more training data for our direct model,
we translate the English transcripts of the allowed
“speech” data (Jia et al., 2019) using our constrained
machine translation model described in Section
3.4 with output length control “short” (Wilken and
Matusov, 2022). Combining the real ST data with
the synthetic data, we obtain about 4100 hours of
translated-speech parallel utterances.

3 Subtitle Translation

3.1 Audio Segmentation
We use the SHAS method (Tsiamas et al., 2022)
for audio segmentation. SHAS scores every audio
frame with a binary classifier (speech/no-speech),

followed by a probabilistic divide-and-conquer
(pDAC) algorithm that iteratively splits audio at the
positions with the lowest probability of the speech
class. For the unconstrained condition, we use the
English segmentation model published by the au-
thors of SHAS, which is an XLS-R 300M model
(Babu et al., 2022) fine-tuned for the frame clas-
sification task on the MuST-C train set. For the
constrained condition, we train our own frame clas-
sifier with Wav2Vec2 (Baevski et al., 2020), pre-
trained on LibriSpeech, followed by fine-tuning for
the frame classification task using MuST-C.

A hyper-parameter search was conducted to find
the number of layers (constrained model), as well
as the inference parameters (max. segment length
and pDAC threshold) that optimize the performance
of the downstream speech translation pipeline. We
found that the pDAC threshold, which is the min-
imum probability required to keep a frame, has
significant effects on the translation quality, and
that the optimal value can vary depending on the
task and acoustic conditions.

3.2 Direct Speech Translation

3.2.1 Attention Encoder-Decoder
We train an attention-based model (Bahdanau et al.,
2015) composed of a Conformer encoder (Gulati
et al., 2020) and a Transformer decoder (Vaswani
et al., 2017). The encoder consists of 12 layers
with a size of 512, a feed-forward size of 2048, and
8 heads, whereas the decoder has 6 layers with the
same hidden size and number of heads. For fast yet
stable convergence, we apply a layer-wise network
construction scheme (Zeyer et al., 2018, 2019).
Specifically, we start with 2 layers of halved hid-
den dimensions in both encoder and decoder (18M
parameters) and linearly scale the model depth and
width to full size (125M parameters) in the first 5
sub-epochs where each sub-epoch is one-twentieth
of the whole training data. Also, L2-norm regular-
ization and dropout are scaled up from 0 to 0.0001
and 0.1 respectively. Label smoothing is enabled
only afterwards. We apply Adam (Kingma and Ba,
2015) with an initial learning rate of 0.0005 and
dynamic learning scheduling based on dev set loss.

Audio log mel 80-dimensional features are ex-
tracted every 10ms. The first layer of Conformer
is composed of 2 convolution layers with strides
of 3 and 2 over time giving a reduction factor of
6. We use SpecAugment (Park et al., 2019; Bahar
et al., 2019b) and speed perturbation in a random
interval of [0.9, 1.1] as data augmentation. In order
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to train a single direct speech translation model that
also supports time alignment between source label
sequence and time frames, we add the source CTC
loss (Graves et al., 2006; Kim et al., 2017; Bahar
et al., 2019a) on top of the encoder in training.

We also add a second shallow 1-layer Trans-
former decoder (with 14M parameters) in order to
generate better source transcripts for time align-
ment. Given this network with a shared speech
encoder and two independent decoders, multi-task
learning is employed to train all model parameters
jointly. The final objective function is computed as
a sum of the 3 losses (source CTC, source enc-dec,
and target enc-dec).

3.2.2 Forced Alignment
CTC relies on Viterbi alignment to obtain the best
path going through the source token at position n
at time frame t. It is therefore possible to obtain
word timings from CTC which can be used for
subtitle generation. To do so, we first generate the
source transcripts using the source decoder of the
network and then use them to run forced-alignment
on the CTC output. The model’s alignments are on
BPE-level, we therefore combine the timings of all
subwords belonging to a word to obtain the final
word-level timestamps.

We experimented with this approach and were
able to generate accurate timestamps appropriate
for creating subtitles in the source language. How-
ever, as we decide against using the source template
approach for the constrained systems (see Section
3.5), only the timings of the first and last word in
a segment are used for the target subtitles of the
constrained submission. We plan to explore how
to make better use of the CTC timings from this
model in future experiments. In particular, we plan
to add silence modeling to obtain information about
pauses within speech segments, which can then be
reflected in the subtitle timings.

3.3 Automatic Speech Recognition

Constrained We train a Conformer-Transformer
model for the constrained task mainly following
Section 3.2.1 using 3590 hours of speech. Layer-
wise network construction, SpecAugment, and
CTC loss are applied. Since the model is not
trained for multiple tasks (no additional decoder
is added), it has better performance in terms of
WER compared to the source decoder part of the
ST model. The final checkpoint achieves a WER

of 9.6% on the concatenated dev set of 33h.

Unconstrained We train an attention-based
encoder-decoder model to run ASR decoding and
also a CTC model which is used to generate word
timings by force-aligning the audio with the de-
coded hypotheses. Here, the CTC model uses an
explicit word boundary <space> symbol between
words. It serves as silence modeling. Both
models are trained on the same training set of 15K
hours of speech mixing publicly available data with
a commercial license and in-house data.

The 185M-parameter attention-based model uses
a 31-layer Conformer encoder of hidden size 384;
8 heads with 64 dimensions per head; Macaron-
style (Lu et al., 2019) feed-forward layers with
size 2048; convolutional layers with 1024 chan-
nels and kernel size 31. The decoder is a single-
headed attention-based model (Tüske et al., 2020),
and consists of 4 stacked projected long short-
term memory (pLSTM) recurrent layers with layer
size 2048 (Hochreiter and Schmidhuber, 1997; Sak
et al., 2014). The first two LSTMs operate on
the embedding of the label sequence only. The
other two decoder LSTM layers also process the
acoustic information extracted by the encoder us-
ing a single-head, additive, location-aware cross-
attention. The decoder predicts 1K BPE units. De-
coding is done using an external neural LM con-
sisting of 4 stacked LSTM layers of size 3072 with
the same output vocabulary as the ASR models.
The 273M-parameter language model is trained on
2.4B running words segmented to BPE units. The
language model data are selected from a wide range
of various domains, e.g. books, movies, news, re-
views, Wikipedia, talks, etc. ASR transcription is
obtained after decoding with beam search limited to
16 hypotheses without any vocabulary constraints.
The CTC model uses the same encoder structure as
the attention-based model.

3.4 Machine Translation

3.4.1 Unconstrained Condition
For the unconstrained subtitling pipeline we use
AppTek’s production MT systems which have been
trained on large amounts of parallel data, mostly
from the OPUS collection (Tiedemann, 2012).
Both En-De and En-Es systems are Transformer
Big systems that support additional API parame-
ters which can in particular control the genre (e.g.
patents, news articles, dialogs) and length (auto-
matic, short, long, etc.). The control is imple-
mented via pseudo-tokens in the beginning of the
source or target sentence (Matusov et al., 2020).
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For the IWSLT experiments, we set the genre to
“dialogs” because it reflects best the spoken sponta-
neous style in the dev 2023 data. When not men-
tioned otherwise, we set the length to “short”. This
yields more condensed translations, similar to how
human subtitlers would translate to comply with a
given reading speed limit.

3.4.2 Constrained Condition
For the constrained condition we use the parallel
training data prepared as described in Section 2.1.
As the dev data for learning rate control, we use
the Europarl-ST and MuST-C dev sets.

Our MT model is a variant of the Transformer
Big model (Vaswani et al., 2017) with additional
encoder layers and using relative positional encod-
ing (Shaw et al., 2018). We use a batch size of
800 words, but the effective batch size is increased
by accumulating gradients over 8 batches. We add
the same length control feature as for the uncon-
strained system by classifying the training data into
5 bins of target-to-source length ratios and adding
the class label as a target-side prefix token.

We apply SentencePiece (Kudo and Richardson,
2018) segmentation with a vocabulary size of 10K
for En and 20K for De/Es and use a translation fac-
tor to predict the casing of the target words (Wilken
and Matusov, 2019). Our MT models have been
trained for 100 sub-epochs with 1M lines in each;
thus, all of the prepared data has been observed
in training 1-3 times. For each sub-epoch, we se-
lect sentence pairs proportionally to the following
distribution and then randomly mix them:

20% Europarl and Europarl-ST data
20% TED data (MuST-C, IWSLT, TED2020)
20% OpenSubtitles (other)
10% News (Commentary+CORDIS), Tatoeba, CoVoST

15% Concatenated neighboring sentence pairs2

5% OpenSubtitles (documentaries)
5% OpenSubtitles (sports)
5% Bilingual phrases

3.4.3 Length ROVER
For all final submissions, we optimize the length
control of MT by using a length ROVER (Wilken
and Matusov, 2022). For each segment we create 3
translations: without forcing the target-side length
token, forcing length bin 2 ("short"), and forcing
length bin 1 ("extra short"). From those transla-
tions we select the first – given the order above –

2See Section 2.1.

System MuST-C TED EPTV ITV Peloton
English-to-German

unconstrained 33.7 27.1 19.0 30.6 23.9
+ fine-tuning 35.0 27.7 20.3 31.0 24.4
constrained 32.3 34.2 18.4 27.2 20.3
+ fine-tuning 32.9 – 19.0 28.1 21.5

English-to-Spanish
baseline 37.2 46.1 34.1 24.5 23.6
+ fine-tuning 38.2 46.4 34.8 25.5 24.7

Table 1: BLEU scores in % for text-only MT fine-tuning
experiments on the MuST-C tst-COMMON set and on
the AppTek’s aligned subsets of the 2023 subtitling track
dev data.

that provides a translation with a target-to-source
character ratio of less than 1.1. This is motivated
by the fact that translations need to be fitted into
the source subtitle template (Section 3.5.1). We
note that the reading speed compliance of our sub-
mission could have been increased even further
by exploiting timing information to select the MT
length variants.

3.4.4 Fine-tuning Experiments
For our fine-tuning experiments, we first select “in-
domain” training data in terms of similarity to the
seed data – the dev 2023 set – from the real parallel
data, as well as the synthetic data described in Sec-
tion 2.3.1. The selection is done by clustering dis-
tributed sentence representations in the embedding
space, and then keeping sentence pairs from the
clusters which correspond to the seed data clusters.
This is done considering both source and target
seed data sentences, but independently, so that no
sentence-level alignment of seed data is necessary.
For details on this data selection method, please
refer to our 2020 submission to the offline speech
translation track (Bahar et al., 2020). With this
method, we create two versions of the in-domain
data: one using all 4 parts of the dev 2023 set as
seed data (in-domain A: En-De: 1.9M lines, 27M
En words; En-Es: 1.7M lines, 25M words), and
one, for En-De only, using just ITV and Peloton
dev 2023 parts as seed data (in-domain B: 1.5M
lines, 20M words).

We then use the dev 2023 set as a dev set in
fine-tuning of the MT model for learning rate con-
trol. Since the dev 2023 data is not aligned at
sentence-level, but is available as (in part) indepen-
dently created subtitle files, we had to sentence-
align it. To do so, we first extracted full sen-
tences from the English subtitles based on sentence-
final punctuation marks, translated these sentences
with the (constrained) baseline MT, and then re-
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segmented the target side into sentences that match
the source sentences using Levenshtein alignment
as implemented by the SUBER tool (Wilken et al.,
2022). The source-target segments obtained this
way are kept in the final dev set only if the BERT F-
score (Zhang et al., 2019) for a given pair is > 0.5
for TED, EPTV, and Peloton sets and > 0.55 for
the ITV set. With this method, the obtained dev
set contains 7645 sentence-like units with 27.7K
words for TED, 2.3K for EPTV, 20.7K for Peloton,
and 13.9K for ITV.

We perform fine-tuning for up to 20 sub-epochs
ranging in size from 100K to 400K sentence pairs
using a small learning rate between 10−06 and
10−05, and select the best configuration for each of
the four dev 2023 domains.

The fine-tuning results are shown in Table 1.
Despite the fact that no real in-domain data, not
even the dev 2023 set, is used as training data in
fine-tuning we are able to improve MT quality in
terms of BLEU scores (Papineni et al., 2002; Post,
2018), as well as BERT and other scores skipped
due to space constraints. The improvements are
more pronounced for the constrained system, but
the absolute scores are generally better with the
unconstrained setup3. However, since the TED talk
and Europarl domains are covered well in the data
allowed for the constrained condition, the differ-
ence between our unconstrained and constrained
system for the TED and EPTV domains is small. It
is worth noting that for ITV and Peloton domains
we could only improve MT quality by fine-tuning
on the in-domain B set that did not include any
TED-related data, and also not using any TED or
EPTV dev data for learning rate control.

3.5 Subtitle Creation
3.5.1 Source Template Approach
To create subtitle files from translation hypothe-
ses, the text has to be segmented into blocks with
start/end time information. One challenge is to
transfer timings extracted from the source speech
to the target subtitles. An approach to generate tim-
ings that is also used in human subtitling workflows
(Georgakopoulou, 2019), is to first create subtitles
in the source language – a so-called subtitle tem-
plate – and to keep the same subtitle blocks during

3The BLEU score of the constrained system on the En-De
TED part is higher because, as we found out shortly before
submission, some of the dev 2023 TED talks were part of the
allowed TED2020 training corpus. Hence, further fine-tuning
did not help for this system on this set. The unconstrained
system had not been trained on this corpus.

translation. This creates a nice viewing experience,
since subtitles appear on the screen only during
the actual speech. However, the source template
constraints might be sub-optimal in terms of target
language reading speed.

We use the source template approach for the un-
constrained submission. To create subtitles in the
original language of the videos (English), we start
with a timed word list provided by the ASR sys-
tem. We train a 3-layer bidirectional LSTM model
(hidden size 256, embedding dim 128) to jointly
add basic punctuation marks ( .,!? ) and casing
information to the word list. As training data, we
use 14M English sentences from the Gigaword and
OpenSubtitles corpora. The model operates on full
words and has two softmax output layers, one with
the four punctuation tokens and "no punctuation"
as target classes (to be added after the word), the
other one with lower-cased, capitalized, all-upper,
and mixed-cased classes as targets.

In addition, we train an inverse text normaliza-
tion model to convert spoken forms of numbers,
dates, currencies, etc. into the proper written form.
This model is a Transformer Big trained on data
where the source data is processed using our text
normalization tool NEWTN, see Section 2.1. Ap-
plying it to the transcriptions helps MT to produce
proper digits also on the target side. This has a
slight positive effect on automatic scores (0.8%
SUBER for Peloton, only up to 0.4% for the other
domains), but mainly helps subjectively perceived
quality and also reduces the number of characters.

The resulting timed, punctuated, and cased word
list is split into sentences using punctuation ( .!? )
and pauses between words longer than 3 seconds.
Those are fed into a subtitle segmentation algo-
rithm similar to the one described in (Matusov et al.,
2019). Its core component is an LSTM segmenta-
tion model that is trained on English OpenSubtitles
XML data, which includes subtitle block boundary
information4, to estimate the probability of a subti-
tle break after each word of a given input sentence.
Within a beam search framework, this model is
combined with hard subtitling constraints such as
the character limit per line to create valid subtitles.
Here, we adjust it for the creation of subtitles from
timed words by including minimum and maximum
subtitle duration as constraints, and not forcing any
predefined number of subtitles.

After segmentation, we use the start time of the

4https://opus.nlpl.eu/download.php?f=
OpenSubtitles/v2018/xml/en.zip
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first word and the end time of the last word in
each subtitle block as the subtitle start and end
time. The subtitle template defined this way is
then translated using the fine-tuned MT system
described in Section 3.4.4, employing the length
ROVER (Section 3.4.3) to avoid long translations
that do not fit the template. Sentences as defined
above are used as translation units, note that they
may span several subtitle blocks. To insert the
translations back into the template, we again apply
the subtitle segmentation algorithm, this time with
the exact settings as in (Matusov et al., 2019).

3.5.2 Template-Free Approach
By definition, the source template approach is not
desirable for direct speech translation without inter-
mediate source text representation. Also, the con-
strained condition does not include English Open-
Subtitles data with subtitle breaks. We hence fall
back to a simpler subtitle creation approach for
our constrained direct and cascade systems. We
use the segments provided by the audio segmenter
as translation units. For the cascade system, we
translate the transcription of each segment with the
fine-tuned constrained MT, also using the length
ROVER (Section 3.4.3). End-of-line and end-of-
block tokens are inserted into the translated text
of each segment using the subtitle segmentation
algorithm configured similarly to the case of tem-
plate creation in the previous section but without
duration-based constraints. Timestamps for the ad-
ditional subtitle block boundaries are then created
by linearly interpolating the audio segment tim-
ings according to character count ratios. Assuming
the translation of an audio segment with start time
Tstart and end time Tend is split into N blocks with
c1, ..., cN characters, respectively, the start time of

block n is set to Tstart + (Tend − Tstart) ·
∑n−1

n′=1
cn′∑N

n′=1 cn′
.

This method leads to reasonable timings in most
cases but can create temporary time shifts between
speech and subtitles inside long audio segments.

3.5.3 Subtitle Post-Processing
To all subtitles, we apply a final post-processing
that splits rare cases of subtitles with more than 2
lines (same segmentation method as for template-
free approach) and shifts subtitle end times to later
in time if needed to comply with the maximum
reading speed of 21 characters per second. The
latter is only possible if there is a large enough
gap after a given subtitle and will therefore not
guarantee low enough reading speed in all cases.

system TED EPTV Peloton ITV
SHAS 0.31 21.1 14.9 12.1 15.6
SHAS 0.50 22.4 14.9 11.6 13.9
SHAS 0.71 20.8 14.6 10.8 10.7
ASR Segm. 19.8 14.8 11.3 13.5

Table 2: Impact of different segmentation schemes on
the translation quality (BLEU in %).

3.6 Results

We first decide which audio segmentation to use
based on dev set results using our final ASR and
MT unconstrained systems. We set different pDAC
thresholds for the unconstrained SHAS (0.31, 0.50,
and 0.71) and compare them with an in-house seg-
menter optimized for ASR. The results in Table 2
show that a low threshold of 0.31 leads to better
translations overall. There is however variation de-
pending on the domain: it is 1.3 BLEU points worse
than SHAS 0.50 on TED, but as good or up to 1.7
BLEU points better in all other domains. Results
for ITV are highly sensitive to the threshold. We
attribute this to the fact that in TV series speech
is often mixed with music and other sounds and a
lower threshold is required not to miss speech seg-
ments. Given these results, we use SHAS 0.31 as
our segmenter for unconstrained experiments. For
the constrained experiments, we use SHAS 0.31
everywhere except on TED with SHAS 0.50.

Table 3 compares the performance of the final
constrained cascade (separate ASR + MT) and di-
rect En-De subtitling systems as well as the un-
constrained cascade system. All metrics are com-
puted using the SUBER tool5 (Wilken et al., 2022)
directly on subtitle files. To calculate the BLEU

and CHRF (Popović, 2015) metrics, it performs
an alignment of hypothesis to reference sentences
similar to (Matusov et al., 2005). On all metrics,
the constrained cascade system outperforms our
direct model. We observe imperfections in the di-
rect model’s output such as repetitions. This can
be partially attributed to the fact that it has been
trained jointly for 3 tasks leading to sub-optimal
optimization for the final translation process. The
lack of length control of our direct ST model is
another reason for the gap between the two con-
strained systems. For the cascade systems, we find
length control via the length ROVER to be crucial,
giving consistent improvements of 4 to 5% points
in SUBER compared to no length control at all.
As seen in Table 3, the unconstrained system out-

5https://github.com/apptek/SubER
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system constr. SUBER (↓) BLEU CHRF
TED

cascade yes 63.0 26.0 53.9
direct yes 75.9 17.1 47.6
cascade no 64.3 22.1 51.0

EPTV
cascade yes 78.7 13.5 45.2
direct yes 85.1 10.9 42.6
cascade no 75.8 14.8 44.1

Peloton
cascade yes 87.6 9.9 32.0
direct yes 86.1 6.8 26.9
cascade no 71.9 11.6 34.3

ITV
cascade yes 83.6 8.5 26.1
direct yes 90.9 5.7 21.0
cascade no 71.4 14.8 35.2

Table 3: En-De subtitle translation results in % (con-
strained and unconstrained setting) on the dev2023 sets.

Domain SUBER (↓) BLEU (↑) CHRF (↑)
TED 48.8 37.8 61.8
EPTV 70.2 20.4 50.6
Peloton 79.0 12.2 36.2
ITV 82.1 9.2 26.8

Table 4: Subtitle translation results in % on the dev2023
sets for En-Es via the constrained cascade system.

performs both constrained systems except on the
TED set. This is due to a data overlap, some TED
talks present in the dev set have also been part of
the constrained training data. To analyze the im-
pact of the source template approach we re-create
the subtitles of the unconstrained system using the
template-free approach. We find that this deterio-
rates the SUBER scores for TED, Peloton and ITV
by 0.7, 3.6 and 3.8% points, respectively, while
actually giving better results for EPTV by 0.7%. In
general, the results in Table 3 show a higher auto-
matic subtitling quality for the TED domain, which
represents the case of well recorded and prepared
speech, but also show the need to focus research
on harder conditions such as interviews and TV
series. Table 4 contains the scores we are able
to achieve for En-Es under constrained conditions.
Also here, acceptable subtitle quality can only be
reached for TED and EPTV content, but not for the
more challenging Peloton and ITV content.

4 Formality Control

AppTek’s production systems support formality or,
as we call it, style control for selected language

pairs (Matusov et al., 2020). This year, we decided
to test these systems in the unconstrained condition
of the IWSLT formality track for En-Pt and En-
to-Ru. Each of these two systems is trained in a
Transformer Big setup (Vaswani et al., 2017). The
formality level is encoded with a pseudo-token in
the beginning of each training source sentence with
one of 3 values: formal, informal, no style. The
system is trained on large public data from the
OPUS collection (Tiedemann, 2012) that has been
partitioned into the 3 style classes as follows.

First, we write a sequence of regular expressions
for the target language (in this case, European Pt
and Ru) which try to match sentences containing
formal or informal features. Thus, for Russian, we
try to match either the formal or informal second-
person pronoun that corresponds to English “you”,
including their possessive forms. For Portuguese,
we additionally match the forms of most common
verbs which agree with the corresponding pronoun.
The regex list for Russian is given in Table 56.

Each list of regular expressions uses standard
regex syntax and makes either case-sensitive or
insensitive matches. For each sentence pair from
the parallel data, the regex list is processed from
top to bottom. As soon as a match in the target
sentence is found, the FORMAL or INFORMAL label
is assigned to the sentence pair. The sentence pair
is labeled with NO_STYLE if there is no match.

If document information is available and at least
5% of the document sentence pairs are labeled as
formal/informal according to the regex rules (with
no sentences labeled with the opposite class), then
all of the sentence pairs in the document are as-
signed the corresponding label. Such data is useful
to model stylistic traits which are not limited to
the choice of second-person pronouns. Note that
document annotations are available for some of
the IWSLT data, including TED talks, OpenSubti-
tles (each subtitle file corresponds to a document),
individual sessions of European Parliament, etc.

We further smooth the three style classes to en-
sure that e.g., sentences containing second-person
pronouns can be translated well even when no style
is specified at inference time. To this end, 5 to 8%
of sentence pairs which had been assigned to one of
the 3 style classes as described above are randomly
re-assigned to one of the other two classes.

For En-Ru, the training data that had been parti-
tioned into style classes in this way included about

6We released the En-Pt and En-Ru lists of regular expres-
sions as part of our evaluation submission.
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INFORMAL IGNORECASE \b(ты|теб[яе]|тобой|тво[йеёяю]|твоей|твоего|твоему|твоим|тво[ёе]м)\b
FORMAL IGNORECASE \b(вы|вами?|ваш[ае]?|вашей|вашего|вашему?|вашу|вас|вашим)\b

Table 5: The regular expressions used to partition En-Ru training data into formal, informal, and (in case of no
match) “no style” classes.

language pair / BLEU COMET M-Acc
requested style [%] [%]

En-Pt formal 34.6 0.6089 99
informal 42.4 0.6776 64

En-Ru formal 35.4 0.6165 99
informal 33.3 0.6026 98

Table 6: Automatic evaluation results for AppTek’s
submission to the formality track of IWSLT 2023.

40M sentence pairs. At the time this model was
trained in early 2022, the larger CCMatrix cor-
pus (Schwenk et al., 2021) was not included. For
En-Pt, we did use a filtered version of CCMatrix
in training, so that the total number of parallel sen-
tence pairs was 140M. The filtering of CCMatrix
and other large crawled data included removing sen-
tence pairs with low cross-lingual sentence embed-
ding similarity as given by the LABSE scores (Feng
et al., 2022). All of our parallel training data is also
filtered based on sentence-level language identifi-
cation scores and other heuristics.

When training the Transformer Big model, we
balanced the contribution of formal, informal, and
“no style” data by adding them in equal proportions
(number of lines) to each sub-epoch.

4.1 Results

We did not perform any experiments, but just
set the API parameter style=formal or
style=informal and translated the evaluation
data with the AppTek’s production systems, trained
as described above. The results in terms of auto-
matic error metrics, as reported by the track orga-
nizers, are summarized in Table 6.

Among the 5 participants of the unconstrained
condition, we obtain the best results for En-Ru in
terms of BLEU and COMET (Rei et al., 2020), while
producing the correct formality level for more than
98% of the sentences. The second-best competitor
system obtains formality accuracy of 100%, but
scores 1.7% absolute lower in BLEU for the formal
and 0.9% BLEU absolute for the informal class.

For En-Pt, our system scores second in terms of
automatic MT quality metrics and correctly pro-
duced the formal style for 99% of the sentences in
the evaluation data. However, when the informal
style was requested, our system could generate it in
only 64% of the cases. We attribute this low score

to the imperfect regular expressions we defined for
informal Portuguese pronouns and corresponding
verb forms, since some of them are ambiguous.
However, we find it difficult to explain that e.g. the
BLEU score of AppTek’s “informal” MT output
with respect to the informal reference is almost 8%
absolute higher than for our “formal” output with
respect to the formal reference. This may indicate
that the human reference translation also has not
always followed the requested style, the informal
one in particular.

5 Conclusion

We described AppTek’s submissions to the subti-
tling and formality tracks of the IWSLT 2023.

For the subtitling track, we obtained good re-
sults, outperforming the other two evaluation partic-
ipants either with our constrained or unconstrained
cascaded approach on all 4 domains. Part of this
success is due to our subtitle creation process, in
which we employ AppTek’s intelligent line seg-
mentation models. However, the results varied by
domain, with the domain of movie subtitles posing
the most challenges for ASR, and the domain of
fitness-related videos (Peloton) being hardest for
MT. Yet our biggest overall challenge, especially
for the direct (end-to-end) submission was speech
segmentation and creating sentence-like units, on
real ITV movies in particular, in which there is mu-
sic, background noise, and multiple speakers. In
the future, we plan to improve this component of
our speech translation technology. We also plan to
include length control in our direct models which
showed to be an important factor for those applica-
tions with time constraints.

Our formality track participation was a one-shot
attempt at a zero-shot task that showed the compet-
itiveness of the formality control that we have im-
plemented in AppTek’s production systems. How-
ever, our approach currently requires the creation
of manual regular expression rules for partition-
ing the parallel training data into formality classes,
and the participation in the IWSLT evaluation re-
vealed some weaknesses of this approach for one
of the involved target languages. In the future, we
plan to further improve our approach, reducing or
eliminating the need for writing rules.
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