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Abstract

This article describes the QUESPA team speech
translation (ST) submissions for the Quechua
to Spanish (QUE–SPA) track featured in the
Evaluation Campaign of IWSLT 2023: low-
resource and dialect speech translation. Two
main submission types were supported in the
campaign: constrained and unconstrained. We
submitted six total systems of which our best
(primary) constrained system consisted of an
ST model based on the Fairseq S2T framework
where the audio representations were created
using log mel-scale filter banks as features and
the translations were performed using a trans-
former. The best (primary) unconstrained sys-
tem used a pipeline approach which combined
automatic speech recognition (ASR) with ma-
chine translation (MT). The ASR transcriptions
for the best unconstrained system were com-
puted using a pre-trained XLS-R–based model
along with a fine-tuned language model. Tran-
scriptions were translated using a MT system
based on a fine-tuned, pre-trained language
model (PLM). The four other submissions are
presented in this article (2 constrained and 2
unconstrained) for comparison because they
consist of various architectures. Our results
show that direct ST (ASR and MT combined
together) can be more effective than a PLM in a
low-resource (constrained) setting for Quechua
to Spanish. On the other hand, we show that
fine-tuning of any type on both the ASR and
MT system is worthwhile, resulting in nearly
16 BLEU for the unconstrained task.

1 Introduction

Low-resource machine translation (LRMT) can be
considered a difficult task due to the low amount
of parallel data on hand. (Haddow et al., 2022)
By adding the task of automatic speech recogni-
tion (ASR), complexity can be even more difficult.
Findings from the previous year’s IWSLT 2022
(Antonios et al., 2022) have shown that for low-
resource language pairs like Tamasheq–French, it

is difficult to achieve more than 5 BLEU (Papineni
et al., 2002) score points for the combined task of
speech translation (ST), even in a unconstrained
setting.

This year, the IWSLT 2023 (Agarwal et al.,
2023) evaluation campaign for low-resource and
dialect speech translation has included Tamasheq–
French along with several other language pairs.
One of the newly introduced language pairs is
Quechua–Spanish deemed QUE–SPA by the orga-
nizers. Quechua is an indigenous language spoken
in the Andes mountainous region in South America.
It is spoken by millions of native speakers mostly
from Peru, Ecuador and Bolivia. In those regions,
the high-resource language is Spanish. Quechua
displays many unique morphological properties of
which high inflection and poly-synthetic are the
two most commonly known. It is worthwhile to
note that previous work (Ortega and Pillaipakkam-
natt, 2018; Ortega et al., 2020) has been somewhat
successful in identifying the inflectional properties
of Quechua such as agglutination where another
high-resource language, namely Finnish, can aid
for translation purposes achieving nearly 20 BLEU
on religious-based (text-only) tasks.

Since this is the first year that QUE–SPA has
been included in the IWSLT 2023 campaign, we
feel that it is important to set a proper baseline. The
aim of our submission was to increase the viabil-
ity of the use of a Quechua–Spanish ST system
and we thus attempted several approaches that in-
cluded the use of pipelines (cascade) approaches
along with joint ASR + MT. We report on the six
system submissions as a final takeaway for this ar-
ticle; however, we also compare other approaches
that performed worse (1 BLEU or less). Our team
is called QUESPA and consists of a consortium
that spans across three universities: Northeastern
University (USA), Universitat de Pompeu Fabra
(Spain), and Carnegie Mellon University (USA).
Our objective is to help to solve the LRMT prob-
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lem for Quechua with the intention of at some point
releasing an ST system to the Quechua community
where we have strategic partners located in areas
of Peru where Quechua is mostly spoken. The
authors of this article have participated in several
other events and written literature that includes
native Quechua annotations for natural language
processing (NLP) systems including MT and more.

This article reports the QUESPA consortium
submissions for the IWSLT 2023 dialect and low-
resource tasks. We focus only on the low-resource
task despite the mention of two dialects Quechua I
and II. Our focus is on creating the optimum mod-
els we can for the constrained task and leveraging
pre-trained models for the unconstrained task fur-
ther described in Section 3.

The rest of this article is organized as follows.
Section 2 presents the related work. The experi-
ments for QUE–SPA low-resource track are pre-
sented in Section 3. Section 4 provides results from
the six submitted systems and concludes this work.

2 Related work

In this section, we first cover work directly related
to the ASR and MT tasks of QUE–SPA done in
the past. Then, we introduce related work on ST
models in general to provide an idea of what work
is current in the field.

Quechua to Spanish MT approaches have be-
come more abundant in the past few years. When
it comes to ASR–>MT, or ST approaches, there are
few attempts officially recorded. In this section, we
list previous work in chronological order to better
explain the MT approaches attempted. First, Rios
(2015) provided an advanced linguistic Quechua
toolkit that used finite state transducers (FSTs) to
translate from Spanish to Quechua. Her work laid
the foundation for future work and helped to pro-
mote the digitization of the Quechua language. Af-
ter that, Ortega and Pillaipakkamnatt (2018) and
Cardenas et al. (2018) introduced several new find-
ings that included the ASR corpus used in the
IWSLT 2023 task for both unconstrained and con-
strained purposes. Not long after, Ortega et al.
(2020) introduced the first known attempt of a neu-
ral MT system that included several annotators
along with the state-of-the-art techniques in sub-
segmentation such as byte-pair encoding (BPE)
(Sennrich et al., 2015). Their work was then ex-
tended by others (Chen and Fazio, 2021) more re-
cently to achieve 23 BLEU on religious-based text,

the highest performing QUE–SPA for its time.
None of the approaches before Chen and Fazio

(2021) work included the use of pre-trained lan-
guage models (PLMs) for low-resource languages.
However, the introduction of zero-shot models
occurred at the low-resource machine translation
workshop in 2020 (Ojha et al., 2020) and not
long after in 2021 at the Americas NLP work-
shop (Mager et al., 2021). The Americas NLP
2021 workshop included the use of QUE–SPA, al-
beit for MT only achieving scores of 5.39 BLEU
through the use of a multi-lingual model trained on
10 other indigenous languages. Their work did not
include zero-shot task approaches as introduced by
Ebrahimi et al. (2022) where fine-tuning was per-
formed on a pre-trained XLM-R (Conneau et al.,
2020) model that achieved impressive results (40–
55 BLEU). More recent work (Weller-Di Marco
and Fraser; Costa-jussà et al., 2022) did not surpass
those results for MT of QUE–SPA.

To our knowledge only one competition/shared
task has attempted to process QUE–SPA for speech
translation purposes – Americas NLP 20221. How-
ever, the findings for the task have not beeen pub-
lished as of the writing of this article. Their compe-
tition used corpora similar to IWSLT 2023 but lacks
MT data as a separate (constrained) resource. They
also do not introduce the concept of constrained or
unconstrained tasks as was done at IWSLT 2023.

Apart from those tasks that directly use the QUE–
SPA language pair, several mainstream techniques
are currently being used as alternatives to super-
vised (from scratch) training. For example, one
of the most common approaches for both ST and
MT approaches tend to use a transformer in some
capacity along with a PLM. One such model that
uses a multi-lingual low-resource corpus called Flo-
res (Guzmán et al., 2019) is Facebook’s NLLB (no
language left behind) approach (NLLB Team et al.,
2022). Their approach uses self-supervised learn-
ing (SSL) from previous innovation (Pino et al.,
2020) for multi-lingual approaches that combines
ASR with MT in a ST task alone and is made
available through Fairseq (Wang et al., 2020). In
our work, our primary systems use Fairseq and
Facebook’s PLMs with sentence embeddings based
on previous work (Artetxe and Schwenk, 2019)
and the M2M (multi-to-multi) model (Fan et al.,
2021) consisting of 1.2 Billion parameters. This

1https://github.com/AmericasNLP/
americasnlp2022
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enables zero-shot cross-lingual transfer for many
low-resource languages, including Quechua.

We provide reference to previous work that in-
cludes either a direct or end-to-end ST models (Be-
rard et al., 2016; Weiss et al., 2017). More tradi-
tional approaches typically use a cascade approach
which first transcribes using an ASR model and
then translates using a MT model. While recent
work (Bentivogli et al., 2021; Anastasopoulos et al.,
2021; Antonios et al., 2022) has shown that the
direct ST approaches are worthy, traditional ap-
proaches work well for low-resource situations too.
In our system submissions, all of our systems with
exception of the primary constrained used the cas-
cade approach.

3 Quechua-Spanish

In this section we present our experiments for the
QUE–SPA dataset provided in the low-resource ST
track at IWSLT 2023. This is the first time that
this dataset has been officially introduced in its cur-
rent state which contains 1 hour and 40 minutes
of constrained speech audio along with its corre-
sponding translations and nearly 60 hours of ASR
data (with transcriptions) from the Siminichik (Car-
denas et al., 2018) corpus. AmericasNLP 2022’s
task used a smaller part of the dataset but the data
was not presented or compiled with the same of-
fering and, as of this writing, have not published
their results. This dataset aggregates the QUE–SPA
MT corpus from previous neural MT work (Ortega
et al., 2020). The audio and corresponding tran-
scriptions along with their translations are mostly
made of of radio broadcasting, similar to the work
from Boito et al. (2022) which contains 17 hours
of speech in the Tamasheq language.

We present the six submissions for both the con-
strained and unconstrained as follows:

1. a primary constrained system that uses a direct
ST approach;

2. a contrastive 1 constrained system consisting
of a wav2letter (Pratap et al., 2019) ASR sys-
tem and a neural MT system created from
scratch;

3. a contrastive 2 constrained system consist-
ing of a conformer-based (Gulati et al., 2020)
ASR system and a neural MT system created
from scratch;

4. a primary unconstrained system consisting of
a multi-lingual PLM ASR model, a Quechua
recurrent neural-network language model, and
a fine-tuned neural MT system based on a
PLM;

5. a contrastive 1 unconstrained system consist-
ing of a multi-lingual PLM ASR model and a
fine-tuned neural MT system based on a PLM;

6. a contrastive 2 unconstrained system consist-
ing of a wav2letter ASR system and a fine-
tuned neural MT system based on a PLM.

We present the experimental settings and results
for all systems starting off with constrained sys-
tems in Section 3.1 and continuing with the uncon-
strained systems in Section 3.2. We then describe
the other less successful approaches in Section 3.3.
Finally, we offer results and discussion in Section
4.

3.1 Constrained Setting
The IWSLT 2023 constrained setting for QUE–SPA
consists of two main datasets. First, the speech
translation dataset consists of 1 hour and 40 min-
utes divided into 573 training files, 125 validation
files, and 125 test files where each file is a .wav
file with a corresponding transcription and human-
validated translation from Simanchik (Cardenas
et al., 2018). Secondly, there is a MT data set com-
bined by previous work (Ortega et al., 2020) which
consists of 100 daily magazine article sentences
and 51140 sentences which are of religious context
in nature.

3.1.1 Primary System
The Primary System consists of a direct ST ap-
proach. Since the constrained setting does not al-
low for external data, we used only the data pro-
vided. We use the Fairseq (Ott et al., 2019) toolkit
to perform direct ST using the 573 training files, a
total of 1.6 hours of audio. The system extracts log
mel-filter bank (MFB) features and is based on the
S2T approach by (Wang et al., 2020). We gener-
ate a 1k unigram vocabulary for the Spanish text
using SentencePiece (Kudo and Richardson, 2018),
with no pre-tokenization. Our model consists of
a convolutional feature extractor and transformer
encoder-decoder (Vaswani et al., 2017) with 6 en-
coder layers and 3 decoder layers. Error is mea-
sured using cross entropy and optimization is done
using Adam. Our model was run for 500 epochs
with a learning rate of .0002.
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3.1.2 Contrastive 1 System

The Contrastive 1 System is a cascade system
where first ASR is performed to produce transcrip-
tions that are translated using a separate MT system.
For the ASR system, we used the wav2letter++
(Pratap et al., 2019) model. The wav2letter++
model consists of a RNN with 30M parameters
(2 spatial convolution layers, 5 bidirectional LSTM
layers, and 2 linear layers) and a CNN with 100M
parameters (18 temporal convolution layers and 1
linear layer). We use the convolutional gated lin-
ear unit (GLU) (Dauphin et al., 2017) architecture
proposed in the recipe wav2letter (WSJ) (Collobert
et al., 2016). Our experiments using wav2letter++
took 134 epochs to train, using Stochastic Gra-
dient Descent (SGD) with Nesterov momentum
and a minibatch of 8 utterances. The initial learn-
ing rate was set to 0.006 for faster convergence,
and it was annealed with a constant factor of 3.6
after each epoch, with momentum set to 0. The
model was optimized using the Auto Segmentation
Criterion (ASG) (Collobert et al., 2016). During
development, the ASR system WER was 72.15
on the validation set. The MT system was cre-
ated from scratch using the OpenNMT framework
(Klein et al., 2020) with the MT data provided for
the constrained task along with the ASR training
data. More specifically, the MT system’s encoder
and decoder are based on a transformer (Vaswani
et al., 2017) (encode/decode) architecture of 6 lay-
ers. Hidden layer and vectors sizes were 512.
Dropout was set to 0.1. Optimization was done
using the Adam optimizer. Tokenization was done
using SentencePiece (Kudo and Richardson, 2018).
Both source and target vocabularies were 50k. Ini-
tial BLEU score on the validation set was 21.13.

3.1.3 Contrastive 2 System

Similar to the Contrastive 1 System, the Contrastive
2 system is a cascade approach. The ASR sys-
tem, however, is distinct. It is derived using MFB
features similar to previous work Berrebbi et al.
(2022). It uses a conformer instead of the trans-
former encoder like Gulati et al. (2020). Training
was performed using a hybrid CTC/attention loss
(Watanabe et al., 2017). The model was optimized
using Adam (Kingma and Ba, 2015) and a Noam
learning rate scheduler (Vaswani et al., 2017) with
4000 warmup steps. The MT system is identical
to the OpenNMT MT system mentioned for the
Contrastive 1 submisison covered in Section 3.1.2.

3.2 Unconstrained Setting
For the unconstrained setting in IWSLT 2023, an
additional 60 hours of speech data with their corre-
sponding transcriptions was made available by the
organizers. This allowed for greater mono-lingual
fine-tuning of the ASR data. Additionally, for both
the ASR and MT components of all three of our
submitted unconstrained systems, PLMs were used
along with fine-tuning. The three submissions were
cascade systems.

3.2.1 Primary System
The Primary System for the unconstrained setting
consists of two systems, the ASR and the MT
system. Both systems are fine-tuned. First, the
ASR system is multi-lingual model pre-trained on
the 102-language FLEURS (Conneau et al., 2023)
dataset. The model consists of a conformer (Gulati
et al., 2020) encoder and transformer decoder and is
trained using hybrid CTC/attention loss (Watanabe
et al., 2017) and hierarchical language identifica-
tion conditioning (Chen et al., 2023). The model
inputs are encoded representations extracted from
a pre-trained XLS-R 128 model (Babu et al., 2021)
with its weights frozen, augmented with SpecAug
(Park et al., 2019) and speech perturbation (Ko
et al., 2015). In order to jointly decode, we also
trained an RNN language model. The RNN con-
sists of 2 layers with a hidden size of 650, trained
using SGD with a flat learning rate of 0.1. The
word-error rate on the validation set was 15. For
the MT system, we use the Fairseq (Ott et al., 2019)
tool kit for translation. The Flores 101 model was
used (Guzmán et al., 2019) as the PLM and is based
on a transformer (Vaswani et al., 2017) architecture
used at WMT 20212 by Facebook. Fine-tuning was
performed using the training ASR+MT data from
the constrained task as was used for training in the
Constrained Contrastive 1 task in Section 3.1.2.

3.2.2 Contrastive 1 System
The Constrastive 1 system is nearly identical to
the Primary System for the unconstrained setting.
The MT system is identical to that of the Primary
System submission for the unconstrained setting.
For the ASR system, a FLEURS approach is used
identical to the unconstrained Primary System in
Section 3.2.1. The only difference is that this Un-
constrained Contrastive 1 system does not use a
language model.

2https://www.statmt.org/wmt21/large-scale-
multilingual-translation-task.html

264

https://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html
https://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html


3.2.3 Contrastive 2 System

The Contrastive 2 System is also a cascade
(ASR+MT) system. The MT system is identical
to that of the Primary System submission for the
unconstrained setting. The ASR system architec-
ture is identical to the Constrained Contrastive 1
System in Section 3.1.2, but with other hyperparam-
eters. In this experiment took 243 epochs to train,
using Stochastic Gradient Descent (SGD) with Nes-
terov momentum and a minibatch of 16 utterances.
The initial learning rate was set to 0.002 for faster
convergence, and it was annealed with a constant
factor of 1.2 after each epoch, with momentum
set to 0. In this system, we add the additional 60
hours of monolingual transcribed speech data from
the unconstrained setting mentioned in the IWSLT
2023 low-resource task in addition to the 1.6 hours
provided for the constrained setting.

3.3 Other Approaches

As noted in Section 2, there have been other suc-
cessful approaches worth visiting. While we could
not exhaustively attempt to use all of those ap-
proaches, we did focus on several that are worth
noting.

For ASR approaches, we focused on experiment-
ing with different model architectures. This in-
cluded using different encoders (transformer, con-
former) and decoders (auto-regressive Transformer,
CTC-only). Regardless, all of the ASR systems
achieved at best 100 WER in the constrained set-
ting, limiting the effectiveness of any cascaded
approach. In the unconstrained setting, we also
looked at different ways to incorporate pre-training.
For example, we tried directly fine-tuning a pre-
trained XLS-R model (Babu et al., 2021; Baevski
et al., 2020) instead of using extracted layer-wise
features from a frozen model. These approaches
were somewhat more successful by achieving up to
20.4 WER on the validation set; however, the top
three systems reported performed better with ASR.

For MT approaches, several attempts were made
to experiment with other systems. For example, the
OpenNMT (Klein et al., 2020) toolkit now offers
PLMs that include the Flores 101 (Guzmán et al.,
2019) dataset. However, since Quechua was not
included in the language list, the performance was
extremely low on the validation set (0.06 BLEU).
The Hugging Face version of the Flores 200 dataset
was also tested and resulted in 23.5 on its own data.
However, when testing on the validation set, the

score was of 6.27 BLEU. The Flores 200 model
is made available as the NLLB task on Fairseq,
however, we experienced several conflicts with the
machine infrastructure causing complexity with the
Stopes tokenization that prevented us from moving
forward.

For direct ST approaches, we also were unsuc-
cessful using w2v feature encoding without ma-
jor modification. Overall, the cascade approaches
seemed to work better for this task and, thus, we
made a decision to use those instead. The results
for the constrained task, nonetheless, show that
the direct s2t approach worked well using MFB
features.

4 Results and Discussion

Team QUESPA BLEU and CHRF Scores

Constrained

System Description BLEU CHRF
primary mfb+s2t 1.25 25.35
contrastive 1 w2vl+onmt 0.13 10.53
contrastive 2 conformer+onmt 0.11 10.63

Unconstrained

System Description BLEU CHRF
primary fleurs+lm+floresmt 15.36 47.89
contrastive 1 fleurs+floresmt 15.27 47.74
contrastive 2 w2vl+floresmt 10.75 42.89

Table 1: Team QUESPA results for the Quechua to
Spanish low-resource task at IWSLT 2023.

Results are presented in Table 1. For the con-
strained task, we were unable to create a system
that would be viable for deployment. Notwithstand-
ing, we believe that the primary submission which
used MFB features along with the default Fairseq
S2T recipe could be used to further research in the
field. Other systems, based on w2vletter (Pratap
et al., 2019) and a conformer (Gulati et al., 2020)
resulted in a near zero BLEU score and are proba-
bly only valid as proof of the non-functional status
of the two systems when performing ASR on the
QUE–SPA language pair. It is clear that with 1.6
hours of data for training, few constrained systems
will perform better than 5 BLEU, as seen in previ-
ous IWSLT tasks.

For the unconstrained setting, our findings have
shown that for both the ASR and MT models, the
use of a PLM with fine-tuning is necessary. We
were unable to create a system from scratch that
would perform as well as those presented in previ-
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Figure 1: The best-performing unconstrained speech translation pipeline.

ous tasks. The combination of a language model
and the FLEURS PLM for ASR along with the
FLORES 101 PLM for MT constitutes our best
performing system overall as shown in Figure 1.
The language model slightly helped for the Primary
system by a gain of nearly 0.10 points in BLEU.
The other unconstrained system based on w2vletter
(Pratap et al., 2019) performed much better than
the constrained version making it worthwhile to
explore for future iterations since it doesn’t require
other languages.

5 Conclusion

Concluding, we have experimented with several
options for both the constrained and unconstrained
settings. This constitutes the first time that ex-
periments have been put together along with the
other team submissions for the Quechua to Spanish
task. We believe that the performance achieved
here can serve as baselines for more sophisticated
approaches. Additionally, it came to our attention
that data splits provided by the organizers can be
adjusted to better fit the data. There are multiple
speakers in several of the audio files, we did not
take advantage of this and hope to address it in the
future. Also for the future, we believe that more
work could be done using direct ST systems with
fine-tuning. We did not follow that path in this
work but feel it would be advantageous.
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