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Abstract
This paper describes the GMU Systems for the
IWSLT 2023 Dialect and Low-resource Speech
Translation Tasks. We submitted systems for
five low-resource tasks and the dialectal task.
In this work, we explored self-supervised pre-
trained speech models and finetuned them on
speech translation downstream tasks. We use
the Wav2vec 2.0, XLSR-53, and Hubert as self-
supervised models. Unlike Hubert, Wav2vec
2.0 and XLSR-53 achieve the best results when
we remove the top three layers. Our results
show that Wav2vec 2.0 and Hubert perform
similarly with their relative best configuration.
In addition, we found that Wav2vec 2.0 pre-
trained on audio data of the same language
as the source language of a speech translation
model achieves better results. For the low-
resource setting, the best results are achieved
using either the Wav2vec 2.0 or Hubert models,
while XLSR-53 achieves the best results for
the dialectal transfer task. We find that XLSR-
53 does not perform well for low-resource
tasks. Using Wav2vec 2.0, we report close to 2
BLEU point improvements on the test set for
the Tamasheq-French compared to the baseline
system at the IWSLT 2022.

1 Introduction

Recently, speech-to-text translation (S2T) has re-
ceived a lot of focus in the community where neu-
ral, end-to-end approaches outperform traditional
statistical approaches (Weiss et al., 2017). Recent
neural approaches to S2T have shown superior per-
formance on this task (Fang et al., 2022; Tang et al.,
2022). Despite the success of neural approaches
to S2T, data scarcity is one of the significant chal-
lenges, given that neural networks require hundreds
to thousands of hours of labeled data to train a
good speech translation model (Sperber and Paulik,
2020). This makes developing such S2T models
challenging, especially for low-resource languages.

The IWSLT 2023 Low-resource and dialectal
shared tasks (Agarwal et al., 2023) give the possi-

bilities for researchers to find innovative ways to
develop speech translation systems for languages
with limited data. Unlike previous years, this year
noticed an addition of more low-resource languages
language pairs (up to 6) in addition to a dialect lan-
guage pair.

This paper describes the GMU submissions to
the low-resource and dialectal tasks. Our systems
use self-supervised pre-trained speech models to
improve speech translation models’ performance
in general, particularly for low-resource languages.
Self-supervised pre-training is possible because
unlabeled data (i.e., audio or text) can be obtained
easier compared to labeled data. Previous research
has addressed using self-supervised speech models
for speech translation (Wu et al., 2020; Nguyen
et al., 2020; Popuri et al., 2022). However, these
prior work did not consider exploring the impact
of different layers of these self-supervised models
to maximize the performance of S2T models.

In this paper, we consider three self-supervised
speech models: Wav2vec 2.0 (Baevski et al., 2020),
XLSR (Conneau et al., 2020) and Hubert (Hsu et al.,
2021). Following the discussion by Pasad et al.
(2022), we experimented to study the impact of
removing the top n layers of these models for the
speech translation task. By removing the last three
layers of the Wav2vec 2.0 model, we achieve more
than 2 BLEU improvement (8.03) on the blind test
set for the Tamasheq-French pair compared to the
best system submitted to the IWSLT 2022 low-
resource shared task (Anastasopoulos et al., 2022;
Zanon Boito et al., 2022). Similarly, using a pre-
trained XLSR-53, we achieved a BLEU score of
16.3 on the Tunisian Arabic-to-English language
pair without using the transcripts.

2 Task Descriptions

We are concerned with developing speech transla-
tion models in low-resource and dialectal tracks.
Each track poses distinct challenges. The low-
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Language Pairs Language Code Train Set Hours Shared Task

Irish to English (Agarwal et al., 2023) ga-eng 11 Low-resource
Marathi to Hindi (Agarwal et al., 2023) mr-hi 15.3 Low-resource
Pashto to French (ELRA) pus-fra 61 Low-resource
Tamasheq to French (Boito et al., 2022) tmh-fra 17 Low-resource
Quechua to Spanish que-spa 1.6 Low-resource
Tunisian Arabic to English aeb-eng 160 Dialectal

Table 1: Language pair details used in our experiments.

resource setting has limited training data, while
the dialectal one lacks standard orthography and
formal grammar. Both shared tasks allowed the
submission of models trained under constrained
and unconstrained conditions. In the constrained
condition, models are only trained on data provided
by the organizers. In contrast, models in the uncon-
strained condition can be trained on any available
resources, including pre-trained models.

2.1 Data
Six low-resource languages were made available,
and one dialectal. However, due to data quality is-
sues (see Section 5) we do not report results on the
Maltese to English task. Table 1 shows the data de-
tails for each language pair. The organizers shared
additional data for specific languages, including
data for automatic speech recognition (ASR) and
machine translation (MT). However, our approach
used the data described in table 1. The exception is
for Tamasheq-French, where we used the provided
234 hours of unlabeled Tamasheq audio to pre-train
a self-supervised speech model.

For the unconstrained condition, we used data
from MUST-C1 (Di Gangi et al., 2019) to train
an ASR model for which we used its encoder to
initialize the speech translation training. We used
publicly available pre-trained self-supersized mod-
els (Wav2vec 2.0 (Baevski et al., 2020), XLSR-
53 (Conneau et al., 2020), and Hubert (Hsu et al.,
2021)). The Wav2vec 2.0 and Hubert check-
points we used were trained on the Librispeech
960hr English-only data (Panayotov et al., 2015),
while XLSR-53 was trained on 53 different lan-
guages (Conneau et al., 2020). No source lan-
guage of all language pairs appears in any self-
supervised models except Tamasheq-French, where
we pre-trained the Wav2vec 2.0 model we used for
Tamasheq-French was pre-trained on Tamasheq

1English to French only

audio-only data. Though Tunisian Arabic is not
part of the XLSR-53, the XLSR-53 contains Ara-
bic data that may be related to Tunisian Arabic.

3 Proposed Methods

Our methods consist of three different architectures.
The first is an end-to-end based transformer-based
architecture (E2E) trained on only provided data.
The second architecture, which we name E2E-ASR,
is the same as the first, except that we initialize the
encoder with an ASR encoder. The third archi-
tecture uses self-supervised speech models as an
encoder and a transformer-based decoder. We used
three different self-supervised models, Wav2vec
2.0, XLSR-53, and Hubert, and refer to these ar-
chitectures as W2V-E2E, XLSR-E2E, and Hubert-
E2E respectively.

We used the Fairseq ST (Wang et al., 2020)
framework for all our experiments and modified
this framework to accommodate our new custom
model architectures.

3.1 End-to-end and End-to-end with ASR
For End-to-end (E2E) architecture, we used a
transformer-based encoder-decoder architecture
(Vaswani et al., 2017) (st_tranformer_s)
as implemented in the Fairseq S2T framework
(Wang et al., 2020). The E2E architecture con-
sists of a 6-block transformer encoder and a 6-
block transformer decoder and is optimized using
the cross-entropy loss with label smoothing. We
used this model architecture to train the model
for the primary constrained category (primary-
constrained).

The End-to-end with ASR (E2E-ASR) architec-
ture, similar to (Stoian et al., 2019) and (Bansal
et al., 2019), uses the same architecture as the
E2E. The difference is that we use a pre-trained
ASR model to initialize its encoder. We used a
transformer-based architecture identical to the one
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for E2E to train the ASR on the English data of
the English-French Must-C dataset (Di Gangi et al.,
2019). We chose this architecture for the ASR
model to facilitate the transfer of the ASR encoder
weights to initialize the E2E-ASR encoder. The
decoder of the E2E-ASR was randomly initialized
and did not use the ASR decoder because it was
trained on a different language with a different vo-
cabulary. We used this model architecture to train
the model for the second contrastive unconstrained
category (contrastive2-unconstrained).

3.2 Self-Supervised Approaches
The self-supervised approach uses self-supervised
speech models as acoustic encoders with a
transformer-based decoder. The use of these self-
supervised models is motivated by the scarcity of
data in the low-resource setting. However, we
found these models useful even for the dialectal
task. The self-supervised architecture is illustrated
in figure 1.

We used three different self-supervised models,
Wav2vec 2.0, XLSR-53, and Hubert, which cor-
respond to the respective architectures W2V-E2E,
XLSR-E2E, and Hubert-E2E. These models con-
sist of a feature encoder and a context network.
The feature encoder has seven temporal convolu-
tion blocks, and the context network consists of
several transformer blocks. The Wav2vec 2.0 and
Hubert models used in our experiments have 12
transformer blocks, whereas the XLSR-53 has 24.2

We use these self-supervised models as encoders
following the traditional encoder-decoder model
architecture. The decoder consists of a transformer
network with six layers preceded by a linear layer.

3.2.1 Using Wav2vec 2.0 and XLSR-53
Instead of using all the layers of the context net-
work for the Wav2vec 2.0 and XLSR-53 models,
we explored the impact of removing the top n most
layers. The exploration of removing the top layers
was inspired by Pasad et al. (2022), who analyzed
self-supervised speech models and measures the
acoustic, phonetic, and word-level properties en-
coded in individual layers of the context network.
For Wav2vec 2.0 and XLSR, the analyses show
that the initial and the final layers are more simi-
lar to the inputs than the intermediate layers. In-
stead of re-initializing the top n layers and then

2We refer the reader to the following papers (Baevski et al.,
2020), (Conneau et al., 2020) and (Hsu et al., 2021) for more
details on these models.

fine-tuning these models on a downstream task as
done in Pasad et al. (2022), we explored the idea
of removing these layers and then fine-tuning the
modified model on a downstream task. Through a
series of experiments, we found that removing the
last three layers for the Wav2vec 2.0 and XLSR-53
models yields the highest BLEU score.

We found the Wav2vec 2.0 helpful for the low-
resource languages, while the XLSR-53 was more
beneficial for the dialectal language. Therefore,
we used the Wav2vec 2.0 for the primary uncon-
strained category (primary unconstrained) for the
low-resource task. The XLSR-53 was used as the
primary unconstrained category (primary uncon-
strained) for the dialectal transfer task.

The Wav2vec 2.0 we used for all the low-
resource languages (except Tamasheq-French) was
trained on the English raw audio of the Librispeech
960hr data (Panayotov et al., 2015). However, due
to the availability of Tamasheq raw audio, we also
trained a Wav2vec 2.0 model on Tamasheq raw au-
dio that used this model on the Tamasheq to French
language pair. The XLSR-53 model we used was
trained on 53 raw audio data from 53 different lan-
guages.

3.2.2 Using Hubert
Unlike Wav2vec 2.0 and XSLR-53, we did not re-
move any layers for the Hubert model. We rather
fine-tuned the out-of-the-box pre-trained Hubert
model on the English raw audio data of Librispeech
960hr. As discussed by (Pasad et al., 2022), Hubert
does not follow the autoencoder pattern, given that
the higher layers appear to encode more phonetic
and word information. The choice of not removing
top layers for the Hubert model was also corrobo-
rated through our empirical experiments, where we
achieved the highest BLEU score for the Hubert
model when we did not remove any top layers.

We used the Hubert model for the first con-
trastive constrained category (contrastive1 uncon-
strained) for the low-resource and dialectal tasks.

3.3 Data
The input to architectures E2E and E2E-ASR con-
sist of 80-channel log-mel filterbank features com-
puted on a 25 ms window with a 10 ms shift. We
used raw audio as input for all the architectures
using self-supervised models. For the translation
text, we use the byte pair encoding (BPE) (Sen-
nrich et al., 2016) algorithm with the sentencepiece
toolkit from the Fairseq ST framework (Wang et al.,
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Figure 1: Self-supervised model architecture. This is an end-to-end architecture that uses self-supervised speech
models as the encoder. The encoder is one of the Wav2vec 2.0, XLSR, or Hubert models. We removed the top 3
layers of the Wav2vec 2.0 and XLSR models.

Language Pairs Vocab. Size

Irish-English 1000
Marathi-Hindi 1000
Pashto-French 3000
Tamasheq-French 1000
Quechua Spanish 400
Tunisian Arabic-English 8000

Table 2: BPE vocabulary for each language.

2020) to create vocabularies for all the target lan-
guages. We chose the vocabulary size based on
the amount of text data we had for each language.
Table 2 shows the BPE vocabulary size we used
for each language pair. Though we used the train-
ing data size as a heuristic for choosing these BPE
vocabulary sizes, we empirically tested a few con-
figurations. We kept the sizes that gave the best
BLEU score.

4 Results and Analyses

Table 3 shows results for all the systems we sub-
mitted. Our primary system reports the best results
for the unconstrained setting where we used the
W2V-E2E and XLSR-E2E architectures for the low-
resource and dialectal tasks, respectively.

We explored the impact of removing the top

Figure 2: BLEU score on the test set for Tamasheq-
French (tmh-fra) and Quechua-Spanish 3(que-spa) after
removing top n number of layers of the Wav2vec 2.0.
These results are run using the W2V-E2E architecture.
For both Tamasheq-French and Quechua-Spanish, the
best BLEU is achieved after removing the top 3 layers.

n layers for the Wav2vec 2.0 model used in the
W2V-E2E architecture. As illustrated in figure 2,
the highest BLEU was achieved by removing the
top three layers of the Wav2vec 2.0 model. We,
therefore, used the same heuristic for the XLSR-53
model, given that it has the same architecture as
the Wav2vec 2.0 model.

3The results for Quechua to Spanish are different from
those in Table 3 because they were run after the evaluation
period.
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Language System Task Architecture dev/valid test1 test2 test3

ga-eng

primary constr.

LR

E2E - - 15.1 -
primary unconstr. W2V-E2E - - 66.5 -
contrastive1 unconstr. Hubert-E2E - - 77.4 -
contrastive2 unconstr. E2E-ASR - - 15.1 -

mr-hi

primary constr.

LR

E2E 0.77 - 3.3 -
primary unconstr. W2V-E2E 4.76 - 7.7 -
contrastive1 unconstr. Hubert-E2E 5.78 - 8.6 -
contrastive2 unconstr. E2E-ASR 4.07 - 5.9 -

pus-fra

primary constr.

LR

E2E 2.66 - 5.92 -
primary unconstr. W2V-E2E 11.99 - 16.87 -
contrastive1 unconstr. Hubert-E2E 11.27 - 15.24 -
contrastive2 unconstr. E2E-ASR 9.72 - 13.32 -

tmh-fra

primary constr.

LR

E2E 1.24 1.0 0.48 -
primary unconstr. W2V-E2E 12.07 7.63 8.03 -
contrastive1 unconstr. Hubert-E2E 4.79 2.77 1.3 -
contrastive2 unconstr. E2E-ASR 5.24 3.77 2.1 -

que-spa

primary constr.

LR

E2E 1.46 - 1.46 -
primary unconstr. W2V-E2E 1.2 - 1.78 -
contrastive1 unconstr. Hubert-E2E 1.84 - 1.86 -
contrastive2 unconstr. E2E-ASR 1.63 - 1.63 -

aeb-eng

primary constr.

DT

E2E 11.49 8.94 5.0 4.5
primary unconstr. XLSR-E2E 19.35 16.31 16.6 14.6
contrastive1 unconstr. Hubert-E2E 17.69 14.52 15.0 13.4
contrastive2 unconstr. W2V-E2E 16.7 14.4 14.1 12.9

Table 3: BLEU score for all the submitted systems. LR and DT indicate low-resource and dialectal transfer,
respectively. dev/valid refers to the validation or development sets we used during training. test1 refers to the test set
we used during training (some language pairs did not have this set). test2 refers to the blind test set. Some language
pairs (i.e., aeb-eng) had an additional blind test set called test3. The "-" character indicates that we do not have
BLEU results for that category. We did not report the dev/valid results for the Irish to English (ga-eng) task due to
the data quality issue discussed in section 5.

4.1 Low-Resource Task
For the low-resource shared task, the highest BLEU
is obtained on average by the architecture that uses
the Wav2vec 2.0 model (W2V-E2E). However, the
Hubert (Hubert-E2E) architecture yields competi-
tive BLEU compared to the W2V-E2E architecture.
In fact, for Marathi-Hindi and Quechua-Spanish
language pairs, the highest BLEU is achieved by
using the Hubert model. Based on our experiments,
we think both the Hubert and the Wav2vec 2.0
models may have similar performance though each
model may require different configurations. In the
future, we hope to have a detailed analysis of the
conditions under which one model performs better
than the other. Table 3 shows the BLEU results for
the low-resource task.

The W2V-E2E architecture achieves a relatively
high BLEU score compared to Hubert-E2E for
Tamasheq-French. This behavior is explained by
the fact that the Wav2vec 2.0 models used for
Tamasheq-French were pre-trained on 234 hours of
Tamasheq audio, while the Hubert was pre-trained
on 960 hours of English data from the Librispeech
dataset. Therefore, pre-training a self-supervised
model on audio data from the same source lan-
guage helps improve the model’s performance on a
downstream task.

Interestingly, pre-training on audio data from
a different language than the source language for
the speech translation task still yields improvement
compared to starting with random weights. While
Bansal et al. (2019) reported this behavior for ASR
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pre-training, we still see the same pattern for self-
supervised pre-training.

Particularly for Tamasheq-French, which had a
baseline BLEU score of 5.7 for the best IWSLT
2022 system (Anastasopoulos et al., 2022), we nev-
ertheless improved upon the baseline by more than
2 BLEU on the blind test set.

4.2 Dialectal Task
Unlike the low-resource task, the highest BLEU
for the dialectal task was achieved by using the
XLSR-53 model (XLSR-E2E). Therefore, we used
this architecture for our primary unconstrained set-
ting. Table 3 shows the results for Tunisian Arabic-
English.

For this task, Wav2vec 2.0 and Hubert had com-
parable BLEU scores. However, surprisingly, they
did not perform as well as XLSR-53. This find-
ing was counterintuitive given that the XLSR-53
model did not perform as well as the Wav2vec 2.0
or Hubert on all the low-resource languages. The
XLSR-53 model was also reported to have poor
performance by Zanon Boito et al. (2022) on a low-
resource language. Based on our experiments, we
think that the poor performance of the XLSR-53
model for the low-resource task was related to its
size. We speculate that the XLSR-53 model size
may fail to adapt while fine-tuning it on little data.
However, fine-tuning it on a lot of data, like the
case of Tunisian-Arabic-English, may yield overall
improvement.

It is also possible that the best performance of the
XLSR-53 model on the Tunisian Arabic-English
data is because it was trained on more languages. It
will be interesting to investigate the impact of the
model size and multilinguality for self-supervised
pre-trained speech models to improve the perfor-
mance of speech translation downstream tasks. In
addition, we think there may be room to study
further the speech representation of the XLSR-
53 model across layers so that they can be better
adapted in low-resource settings.

5 Data Quality Issues

The low-resource shared tasks of the IWSLT 2023
consists of six tasks, each task corresponding to
one language pair. As we worked on these shared
tasks, we noticed issues with the data of two tasks:
Maltese to English and Irish to English.

The Maltese to English data had a number of
issues that made it hard to work with. For instance,

the metadata of about 1001 out of 1698 samples
mentioned zero or less than zero duration for audio
samples (start_time >= end_time) while
the aligned utterances had several words in most
cases. Therefore, we were not able to align most
audio data with their utterances.

The Irish to English data had an issue with the
development set. Initially, the samples in the devel-
opment were also present in the training set. How-
ever, the organizer later fixed this issue by updating
the development set data. However, no matter how
we trained our models, we never achieved more
than 1 BLEU score on the updated development
set. After troubleshooting our model on the train-
ing data, we were confident that we should have
gotten a BLEU score that was well above 1. We
proceeded with submitting our system for this task.
However, we are very suspicious of the high BLEU
score reported on the blind test, as shown in Ta-
ble 3, as it suggests that there’s an overlap between
training and test sets.

6 Conclusion

In this paper, we presented the GMU Systems for
the IWSLT 2023 Dialect and Low-resource Speech
Translation Tasks. Our approach mainly focused on
using self-supervised pre-trained speech models to
improve the performance of speech translation on
downstream tasks. The self-supervised pre-trained
speech models used in this paper are the Wav2vec
2.0, XLSR-53, and Hubert. We showed that the
Wav2vec 2.0 and the Hubert model have compa-
rable results in low resource and dialectal transfer
tasks. However, the Wav2vec 2.0 performs well
when we remove the top three layers, while the
Hubert model has no such requirements.

Our experiments showed that the XLSR-53
model performs poorly in the low-resource setting
compared to the Wav2vec 2.0 and Hubert models.
However, in the dialectal task, the XLSR-53 model
outperforms the Wav2vec 2.0 and Hubert models.

In the future, we plan to conduct an in-depth anal-
ysis to understand the advantages and limitations
of these self-supervised pre-trained speech mod-
els while fine-tuning them on downstream speech
translation tasks.
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