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Abstract

We describe the Johns Hopkins ACL 60-60
Speech Translation systems submitted to the
IWSLT 2023 Multilingual track, where we
were tasked to translate ACL presentations
from English into 10 languages. We developed
cascaded speech translation systems for both
the constrained and unconstrained subtracks.
Our systems make use of pre-trained models as
well as domain-specific corpora for this highly
technical evaluation-only task. We find that the
specific technical domain which ACL presenta-
tions fall into presents a unique challenge for
both ASR and MT, and we present an error anal-
ysis and an ACL-specific corpus we produced
to enable further work in this area.

1 Introduction

In this work, we describe the 2023 JHU 60-60 Mul-
tilingual speech translation track submissions and
their development (Agarwal et al., 2023; Salesky
et al., 2023). This multilingual task involved the
translation of ACL conference oral presentations,
given in English, into 10 different target languages.
High quality translation systems that can assist in
translating highly technical and scientific informa-
tion helps in the dissemination of knowledge to
more people, which in turn can help make our field
more inclusive and accessible.

We briefly describe the task in Section 2. In Sec-
tion 3 we describe the collection and preparation
of in-domain ACL data to improve ASR and MT
performance by addressing the domain-specificity
of the task. We then describe our systems in Sec-
tion 4, including their motivation and design in
context of this shared task. Technical details of our
experiments are in 5. We present our results and a
discussion of our contributions in Section 6.

* Authors contributed equally

2 The Speech Translation of Talks Task

In 2022, the ACL began the 60-60 initiative, a di-
versity and inclusion initiative to translate the ACL
Anthology into 60 languages for its 60th anniver-
sary. The initiative provided evaluation data for the
IWSLT 2023 multilingual track on speech transla-
tion of talks from English into 10 major languages.

It was further split into constrained and uncon-
strained subtracks. The constrained subtrack al-
lowed the use of only certain datasets and pre-
trained models, whereas the unconstrained subtrack
had no such restrictions. We submitted systems to
both subtracks and describe them in Section 4.

2.1 Evaluation Data
The ACL 60-60 development data provided to par-
ticipants is composed of the audio of 5 talks, their
transcripts, and multi-parallel translations into 10
languages. Each talk is about 12 minutes in length
– a total of about an hour of English speech for the
entire set. Additionally, participants are provided
with the text abstract of each talk taken from the
corresponding paper.

The nature of these data presents a few major
challenges for speech translation. The ACL is a
global community of researchers from many dif-
ferent countries who speak in a variety of accents,
which can pose a challenge to even modern day
speech recognition systems. Additionally, the con-
tent of these talks is highly technical and contains
terms and acronyms that are specific to the field.
Sentence-level translations of the talks are provided
along with unsegmented audio of the full ∼12
minute talk. An audio segmentation produced with
the SHAS baseline segmentation method (Tsiamas
et al., 2022) is also provided.

3 In-domain Data

Utilizing additional in-domain data has been shown
to be helpful in improving the performance and
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robustness of translation systems. In light of this,
we scraped talks and papers from the proceedings
and workshops of ACL 2021.

3.1 Data Collection
About 65% of the papers accepted in ACL 2021
have video presentations recorded and uploaded
on the ACL website. We scraped 1847 papers and
1193 talks from the proceedings and workshops.
The format of the papers and talks are pdf and
mp4 respectively. We extract the text from the
papers using pypdf.1 The talks are split into 30-
second chunks, converted into FLAC format, and
resampled to 16KHz. This amounts to about 155
hours of speech and about 200K lines of text. We
plan to release the data under a CC BY 4.0 license2

(same as the license for the ACL talks).

3.2 Data Filtering
To make the corpora (including ACL papers before
2022) useful, we first denoised the data and made
it similar to ASR text outputs. A comprehensive
list of the filters we applied to the data includes:

• Removing any information past the Refer-
ences section.

• Removing links ("https..").

• Reforming broken words since the text was in
a two column format.

• Removing any information before the Ab-
stract section.

• Removing any non alpha-numeric or punctua-
tion characters.

• Removing any lines that start with or that have
too many numbers (to account for tables with
data).

• Removing any lines with less that 10 charac-
ters (number obtained from averaging mini-
mum character length of each sentence in dev
data).

• Removing any lines larger than 297 characters
(number obtained through a similar process as
above).

• Reformatting the data such that it has one sen-
tence per line.

1https://github.com/py-pdf/pypdf
2https://github.com/IWSLT-23/60_60_data/tree/

main/acl_data

These constraints were applied in order to mimic
the text-normalization of the dev data so that these
scraped ACL data could be incorporated into our
model’s source language side.

4 Systems

In this section, we separately describe our uncon-
strained and constrained submissions. Since we
built cascaded models, we describe the automatic
speech recognition (ASR) and machine translation
(MT) components of each system.

4.1 Unconstrained Subtrack
4.1.1 Automatic Speech Recognition
An important characteristic of ACL presentations
is the wide array of accents represented, which re-
flects the diverse background of NLP researchers.
Accent-robust speech recognition continues to
present a challenge to the community (Tadimeti
et al., 2022; Riviere et al., 2021; Radford et al.,
2022).

One model that demonstrated a degree of robust-
ness to accented speech, is Whisper (Radford et al.,
2022), an ASR model trained on 680,000 hours of
web-crawled data. Its performance on the accented
splits of the VoxPopuli (Wang et al., 2021), while
significantly worse than non-accented English, was
comparable (without an external language model)
to methods designed for accent robustness (with a
strong language model) (Riviere et al., 2021). This
robustness to accented speech, as well as its overall
strong performance on English ASR makes it well-
suited for the accent-diverse ACL presentations.

The domain specificity and technical terms of
ACL presentations may still prove difficult for a
strong ASR model like Whisper. We therefore
condition the decoder towards key technical vocab-
ulary and named entities by prompting Whisper
with the corresponding abstracts when decoding
each presentation.

Additionally, we test the effect of using the
pre-segmented audio files (with oracle segmenta-
tion provided by the IWSLT 60-60 challenge or-
ganizers) versus using longer speech segments for
Whisper decoding. We find that decoding the full
talk at once results in a lower WER than decod-
ing segment-by-segment. For Whisper-large, the
best performing model, this difference is 0.6 WER.
Longer form inputs more closely match the train-
ing segments of Whisper, which were in 30 second
segments (Radford et al., 2022).
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4.1.2 Audio Segmentation
Since we found that decoding using unsegmented
audio outperformed decoding using the predefined
segments, we segment our ASR text output in order
to perform sentence-level machine translation. We
choose to perform sentence-level machine trans-
lation rather than incorporating more document
context because our final systems make use of
many large pre-trained multilingual models that
are trained at a sentence level rather than a docu-
ment level.

Because we require sentence-level segments
from our ASR outputs, we use the state-of-the-
art ersatz neural sentence segmenter. ersatz has
been shown to be more robust to technical terms in-
cluding acronyms and irregular punctuation, which
is particularly helpful in the ACL domain (Wicks
and Post, 2021).

4.1.3 Machine Translation
We test several pre-trained MT systems on our data.
Specifically, we test NLLB-200 (NLLB Team et al.,
2022), mBART50 (Tang et al., 2020), and M2M100
(Fan et al., 2021). All 10 of our target languages
are supported by these models.

The original NLLB-200 model is a 54 billion pa-
rameter Mixture-of-Experts model that translates
to and from 200 languages. It is trained on a
large amount of mined parallel, back-translated,
and monolingual data. We use the 3.3B parame-
ter version of NLLB-200, which is a dense Trans-
former model that is trained via online distillation
of the original model, but still supports all of the
original 200 languages.

mBART50 is the second iteration of the multi-
lingual BART model, which is a dense transformer
architecture trained on multilingual text using a
denoising task. The authors of mBART50 also re-
lease a checkpoint of mBART50 that is fine-tuned
on the one-to-many translation task, which we will
refer to as mBART50-1toN. In this case, English
is the source, and all 50 covered languages are the
targets.

Finally, M2M100 is another transformer-based
model that is trained directly on the MT task. It
translates to and from 100 languages, and is a previ-
ous iteration of the initiative that produced NLLB-
200. However, we still test both models because
sometimes adding additional language pairs to a
model can lead to the reduced performance of some
language pairs (Aharoni et al., 2019; Arivazhagan

et al., 2019). We use the 1.2B parameter version of
M2M100 in our experiments.

4.1.4 Domain-Specific Data
Using the 2021 ACL data described in Section 3,
we attempted to perform sequence knowledge dis-
tillation (SeqKD) (Kim and Rush, 2016). Because
we only had additional source-side monolingual
data, SeqKD could give us pseudo-target labels in
order to retrain our best model on these outputs.

Although NLLB-200-3.3B is our best model for
many of our language pairs, we fine-tune NLLB-
200-1.3B instead due to computational constraints.
While benchmarking these models, however, there
is only a marginal improvement in using the larger
model over the smaller (average +0.6 chrF). For en-
ja, however, we continue to use mBART50-1toN.

Despite the large amount of in-domain source
language data we made available, we did not see
much benefit from it ourselves, specifically for data
augmentation via SeqKD. We speculate that the
data may be too noisy in spite of filtering, and that
its best use may be as source context during infer-
ence, rather than for training data augmentation.

4.2 Constrained Subtrack
4.2.1 Automatic Speech Recognition
We leveraged the pre-trained wav2vec 2.0 model
(Baevski et al., 2020) for the constrained ST task.
Wav2vec 2.0 was trained in a self-supervised fash-
ion and requires fine-tuning on an annotated cor-
pus in order to be used for the ASR task, with the
domain-similarity between the choice of the fine-
tuning corpus and the evaluation data being crucial
for ASR performance. The most commonly used
wav2vec 2.0 model is fine-tuned with a CTC objec-
tive on Librispeech, a corpus made of audiobooks
that is considered to have a considerable domain
mismatch compared to the ACL 60-60 data. Since
the development split of the ACL 60-60 data alone
is insufficient for wav2vec 2.0 fine-tuning, we in-
stead performed a two-stage fine tuning with TED-
LIUM 3 (Hernandez et al., 2018) being used in the
first stage and the ACL 60-60 development data
used in the second.

Our approach to tackling the content domain mis-
match between the training data and ACL presen-
tations is to perform ASR decoding with the help
of an content-domain matching language model.
What it means in practice is that we rescore the per-
frame output trellis with a content-domain match-
ing language model, which in turn was created by
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interpolating a general language model (trained
from all the available English corpora in the con-
strained challenge) and a domain-specific language
model (trained with transcripts from the ACL 60-
60 development data). In order to bias our model
towards named entities mentioned in each specific
presentation, we train a separate language model
for each presentation by re-interpolating the above-
mentioned language model with one trained with
the corresponding paper abstract.

4.2.2 Machine Translation
In the constrained setting, we use mBART50-1toN
and M2M100 as our base models. We addition-
ally test fine-tuning these models on MuST-C data,
which we hypothesized to be closely related to the
ACL talk data, domain-wise (Di Gangi et al., 2019).
This data is comprised of professionally translated
English TED talks, which matches the presentation
domain as well as some of the technical nature of
the ACL talks, although to a lesser degree.

We fine-tune both mBART and M2M100 using
the MuST-C transcripts and translations available
in all 10 language pairs. We use data from both v1.2
(v1.0 is contained in v1.2) and v2.0 depending on
language pair availability. A summary of this data
is provided in Table 1. For mBART, we additionally
test multilingual fine-tuning where we fine-tune on
all the language pairs simultaneously, rather than
fine-tuning on a single language pair bitext (Tang
et al., 2020).

lang. pair MuST-C release # lines

en-ar v1.2 212085
en-de v1.0 229703
en-fa v1.2 181772
en-fr v1.0 275085
en-ja v2.0 328639
en-nl v1.0 248328
en-pt v1.0 206155
en-ru v1.0 265477
en-tr v1.2 236338
en-zh v1.2 184801

Table 1: Dataset statistics and source of MuST-C bitext
across the 10 task language pairs.

5 Experimental Setup

In this section, we provide technical details of our
experiments and our evaluation practices.

5.1 ASR Experiments
5.1.1 Prompting Whisper
In the unconstrained setting, we evaluate Whisper
on both the segmented and unsegmented audio files.
We simulate LM biasing by using the “prompt”
interface provided by Whisper.

5.1.2 Decoding with an Interpolated
Language Model

In the constrained setting, we build a domain-
adapted language model as follows: first we com-
bine transcripts from a number of ASR corpora that
are available in the constrained challenge, namely
Librispeech, VoxPopuli, Common Voice (Ardila
et al., 2020), and TED-LIUM 3, to train a flexi-
ble 6-gram general bpe-level language model for
English. We proceed to interpolate the general
English language model with one trained on the
development split transcripts from the ACL 60-60
challenge, allowing the model to gain exposure
to technical terms within the NLP field. Finally,
during decoding, we further interpolate the previ-
ously obtained language model with a low-order
language model trained from the paper abstract cor-
responding to the current presentation, biasing our
model towards technical terms and named entities
that are likely to appear in the presentation.

We used KenLM (Heafield, 2011) to train and
integrate our language models. The interpolation
weights for each step were estimated using a leave-
one-out strategy on the development split, minimis-
ing the perplexity on the held-out transcript and
averaging the interpolation weights.

5.1.3 Decoding with a Language Model
Trained on Additional ACL Anthology
data

We use the text scraped from the proceedings and
workshops of ACL 2021 to train a 6-gram domain-
matching language model for decoding. Without
interpolation or additional data, this gives a WER
of 18.9 and a technical term recall of 0.47 using
Wav2Vec2-TED-LIUM 3 as the acoustic model.
We observe that using data from a similar domain
improves performance even though the data are
relatively noisy.

5.1.4 Evaluation
We compare ASR performance, as measured by
Word Error Rate (WER), across the different sys-
tems that we built. Specifically, we compute WER
on depunctuated lowercase transcripts. Since we
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Acoustic Model Language Model WER Tech. Term Recall
Whisper-medium.en - 8.1 0.861
Whisper-medium.en abstract prompting 8.7 0.865
Whisper-large - 6.8 0.854
Whisper-large abstract prompting 6.9 0.852
Whisper-large abstract and conclusion prompting 6.7 0.863
Whisper-large abstract, conclusion and intro prompting 6.6 0.851
Whisper-large abstract, conclusion, intro & author name prompting 6.4 0.854
Wav2Vec2-960h librispeech librispeech-4gram 25.1 0.306
Wav2Vec2-960h librispeech interpolated LM 24.3 0.370
Wav2Vec2-960h librispeech inter. LM + dev transcripts 24.1 0.382
Wav2Vec2-960h librispeech inter. LM + dev + abstract 23.7 0.392
Wav2Vec2-960h librispeech inter. LM + dev + abstract + ACL anthology 20.7 0.462
HUBERT-960h librispeech librispeech-4gram 22.0 0.390
HUBERT-960h librispeech interpolated LM 21.7 0.386
HUBERT-960h librispeech inter. LM + dev transcripts 20.4 0.421
HUBERT-960h librispeech inter. LM + dev + abstract 20.4 0.498
HUBERT-960h librispeech inter. LM + dev + abstract + ACL anthology 18.5 0.473
Wav2Vec2-TED-LIUM 3 librispeech-4gram 20.9 0.383
Wav2Vec2-TED-LIUM 3 interpolated LM 19.5 0.422
Wav2Vec2-TED-LIUM 3 inter. LM + dev transcripts 18.9 0.436
Wav2Vec2-TED-LIUM 3 inter. LM + dev + abstract 14.2 0.626
Wav2Vec2-TED-LIUM 3 inter. LM + dev + abstract + ACL anthology 16.7 0.505
Wav2Vec2-TED-LIUM 3 ACL anthology only 18.9 0.470

Table 2: ASR results. WER is measured against depunctuated, all lower-case reference text.

either perform ASR on unsegmented talks (uncon-
strainted), or on the SHAS-segmented audio (con-
strained), we use mwerSegmenter to align our out-
puts to the gold transcripts (Matusov et al., 2005).

Because we are interested in the effect of using
domain-specific text to improve ASR on techni-
cal terms, we compute the recall of NLP-specific
technical words in our output. We obtain these
technical terms by asking domain experts to flag
all technical terms in the development set reference
transcript.

5.2 MT Experiments
5.2.1 MuST-C fine-tuning
For bilingual fine-tuning on mBART50 and
M2M100, we train for 40K updates, and use loss
to select the best checkpoint. For multilingual fine-
tuning on mBART50-1toN, we train for 100K up-
dates, and use temperature sampling of the mixed
datset using T = 1.5. We use loss to select the
best checkpoint. For all experiments, we use an
effective batch size of 2048 tokens.

5.2.2 Evaluation
For all experiments, we report BLEU and chrF
scores as reported by sacrebleu (Post, 2018). For
Japanese and Chinese, we use the appropriate tok-

enizers provided by sacrebleu (ja-mecab and zh,
respectively).

For evaluating translations of ASR outputs, ei-
ther segmented using ersatz or pre-segmented us-
ing the provided SHAS-segmented wav files, we
use the mwerSegmenter to resegment the transla-
tions based on the references. For all languages ex-
cept Japanese and Chinese, we use detokenized text
as input to resegmentation. However, for Japanese
and Chinese, we first use whitespace tokenization
as input to mwerSegmenter, and then detokenize
for scoring, which is retokenized according to the
sacrebleu package.

6 Results

6.1 ASR Results
For the Whisper-based systems, we focus on the ef-
fects of prompting; for the constrained systems, we
contrast different families of pre-trained ASR mod-
els fine-tuned on different ASR corpora; finally, we
assess the efficacy of incorporating an in-domain
language model during decoding. The full list of
results is shown in Table 2.

Contrary to what we expected, prompting Whis-
per with the corresponding paper abstracts not only
had little impact on the ASR WER, but also failed
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mBART50-1toN M2M100 NLLB-200

language pair BLEU chrF BLEU chrF BLEU chrF

en-ar 22.6 52.9 16.2 46.3 37.6 65.4
en-de 37.4 66.0 39.7 66.8 42.9 69.6
en-fa 17.2 49.6 20.4 49.5 27.4 57.3
en-fr 46.4 70.4 54.5 74.6 55.9 76.2
en-ja 37.5 45.9 35.2 43.8 25.7 36.3
en-nl 41.0 69.0 50.9 75.3 51.5 76.1
en-pt 44.3 69.7 57.6 77.4 61.6 79.0
en-ru 22.2 52.0 24.3 54.3 27.4 57.2
en-tr 15.5 50.7 22.3 56.5 28.6 62.8
en-zh 43.8 38.8 45.7 40.7 42.2 38.5

Table 3: Unconstrained MT results on the development set using oracle transcripts as input. Both chrF and BLEU
scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh are computed using
the ja-mecab and zh tokenizers in sacrebleu, respectively. We bold our best chrF scores as it is the main metric of
the task.

mBART50-1toN +MuST-C (indiv) +MuST-C (multi) M2M-100 +MuST-C (indiv)

lang pair BLEU chrF BLEU chrF BLEU chrF BLEU chrF BLEU chrF

en-ar 22.6 52.9 24.7 55.9 19.6 51.0 16.2 46.3 24.0 55.7
en-de 37.4 66.0 35.6 63.7 36.8 64.5 39.7 66.8 34.7 62.8
en-fa 17.2 49.6 28.9 56.0 26.3 52.4 20.4 49.5 17.9 54.4
en-fr 46.4 70.4 48.0 70.9 46.7 70.1 54.5 74.6 49.0 71.1
en-ja 37.5 45.9 24.0 35.7 24.9 37.0 35.2 43.8 21.0 32.3
en-nl 41.0 69.0 43.3 70.1 38.5 67.1 50.9 75.3 42.1 69.0
en-pt 44.3 69.7 48.2 71.4 42.8 68.5 57.6 77.4 50.0 72.3
en-ru 22.2 52.0 21.0 50.4 19.5 47.9 24.3 54.3 22.1 50.7
en-tr 15.5 50.7 18.9 53.3 15.6 50.8 22.3 56.5 21.4 56.0
en-zh 43.8 38.8 45.3 40.6 31.5 39.2 45.7 40.7 42.8 37.5

Table 4: Constrained MT results on the development set using oracle transcripts as input. Both chrF and BLEU
scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh are computed using
the ja-mecab and zh tokenizers in sacrebleu, respectively. We bold our best chrF scores as it is the main metric of
the task.

to improve the recall of technical terms of the ASR
system. Further increasing the length and relevance
of the prompts provided to whisper, such as adding
the conclusion and part of the introduction section
of each paper corresponding to the ACL presenta-
tion in question, had marginal impact on both of the
above-mentioned metrics. A more detailed look at
the mechanism and behaviour of Whisper prompt-
ing could help to understand this observation.

On the constrained side, the incorporation of the
interpolated LM during ASR decoding had a sig-
nificant impact on the performance of our ASR
systems, regardless of the upstream acoustic model.
As expected, increasing the quality of the out-of-

domain language model (from Librispeech-4gram
to Interpolated LM) resulted in WER improve-
ments while not necessarily helping technical term
recall; by contrast, while LMs that better fit the
domain may not necessarily help WER, they bring
substantial gains in technical term recall.

The language model that best fits our domain,
namely the model that interpolates the LMs trained
from every ASR corpus in addition to the develop-
ment transcripts, from the current paper abstract,
and from the crawled ACL anthology, provided
substantial improvement on both WER and tech-
nical term recall for the weaker acoustic models
(Wav2Vec2 fine-tuned on Librispeech) but not on
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Constrained Unconstrained

language MT system BLEU chrF MT system BLEU chrF

en-ar mBART50-1toN+MuST-C 15.3 45.6 NLLB-200-3.3B 33.7 62.5
en-de M2M100 24.3 55.2 NLLB-200-3.3B 39.6 67.8
en-fa mBART50-1toN+MuST-C 14.8 42.0 NLLB-200-3.3B 24.5 54.3
en-fr M2M100 33.3 61.9 NLLB-200-3.3B 49.3 72.5
en-ja mBART50-1toN 21.9 29.9 mBART50-1toN 34.8 43.1
en-nl M2M100 30.6 62.5 NLLB-200-3.3B 45.7 72.4
en-pt M2M100 34.9 63.4 NLLB-200-3.3B 54.7 75.6
en-ru M2M100 15.0 45.1 NLLB-200-3.3B 24.8 54.4
en-tr M2M100 11.9 43.5 NLLB-200-3.3B 24.7 58.8
en-zh M2M100 32.2 26.6 M2M100 37.7 33.5

Table 5: Final speech translation results for both our constrained and unconstrained systems on the development set.
Both chrF and BLEU scores are computed using the mWER Segmenter and sacrebleu. BLEU scores for ja and zh
are computed using the ja-mecab and zh tokenizers in sacrebleu, respectively. We used output from our strongest
ASR system, Whisper-large with abstract prompting, as the input to our translation system.

the stronger acoustic models.

6.2 MT results
We detail the results of testing pre-trained MT mod-
els as described in Section 4 on the oracle tran-
scripts in Table 3. This table reflects experiments
we performed for the unconstrained setting. We
find that for almost all language pairs, NLLB-200-
3.3B has the best performance, except for en-ja
and en-zh, which perform best with mBART and
M2M100, respectively.

We summarize our fine-tuning results in Table
4. This table reflects experiments we performed
for the constrained setting. We find that in gen-
eral, the additional data can provide a boost over
mBART50-1toN, but not for M2M100. Addition-
ally, we find that despite positive results in Tang
et al. (2020), multilingual fine-tuning does not out-
perform bilingual fine-tuning in this setting. For a
majority of pairs, M2M100 without fine-tuning is
the best system, but for en-ar and en-fa, mBART50-
1toN with fine-tuning is the best system, and simi-
lar to the unconstrained system, mBART50-1toN
without fine-tuning is the best system for en-ja.

6.3 ST Results
Final results for both our constrained and uncon-
strained systems are summarized in Table 5. We
translate the transcripts from our best ASR systems
using the best language-pair specific MT systems.
In the unconstrained case, the average reduction in
chrF from using ASR outputs versus oracle tran-

scripts is -5.7 chrF. In the constrained case, this
value is -12.8 chrF. The small reduction in the un-
constrained system indicates that our cascaded ap-
proach of two strong components is a viable option
for ST in this setting. However, our constrained
system could likely benefit from techniques that
help reduce the error propagation from ASR, like
mixing ASR outputs with gold source sentences
during MT training, or joint training of ASR and
MT components.

7 Conclusion

We present a constrained and unconstrained system
for the IWSLT 2023 Multilingual speech transla-
tion task. We address some of the major challenges
of this dataset with our design choices: ASR ro-
bust to speaker accents, adaptation to match the
domain specificity, and ASR prompting to incorpo-
rate context in this academic talk-level translation
task. We additionally release a supplemental ACL
audio and text corpus to encourage further work in
high quality speech translation of ACL content.
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