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Abstract

This paper describes the UCSC’s submission
to the shared task on formality control for spo-
ken language translation at IWSLT 2023. For
this task, we explored the use of “additive style
intervention” using a pre-trained multilingual
translation model, namely mBART. Compared
to prior approaches where a single style-vector
was added to all tokens in the encoder output,
we explored an alternative approach in which
we learn a unique style-vector for each input
token. We believe this approach, which we call
“style embedding intervention,” is better suited
for formality control as it can potentially learn
which specific input tokens to modify during
decoding. While the proposed approach ob-
tained similar performance to “additive style
intervention” for the supervised English-to-
Vietnamese task, it performed significantly bet-
ter for English-to-Korean, in which it achieved
an average matched accuracy of 90.6 compared
to 85.2 for the baseline. When we constrained
the model further to only perform style inter-
vention on the <bos> (beginning of sentence)
token, the average matched accuracy improved
further to 92.0, indicating that the model could
learn to control the formality of the translation
output based solely on the embedding of the
<bos> token.

1 Introduction

In the past decade, neural machine translation
has made remarkable strides, achieving transla-
tion quality that is increasingly comparable to
human-level performance across various languages.
However, despite these advancements, the field
of controllable machine translation remains rela-
tively under-explored. One crucial aspect of transla-
tion variation is formality, which manifests through
grammatical registers, adapting the language to suit
specific target audiences. Unfortunately, current
neural machine translation (NMT) systems lack
the capability to comprehend and adhere to gram-
matical registers, specifically concerning formality.

Consequently, this limitation can result in inaccu-
racies in selecting the appropriate level of formal-
ity, potentially leading to translations that may be
deemed inappropriate in specific contexts. Recog-
nizing the significance of formality control, we aim
to build a formality-controlled machine translation
system to foster smooth and reliable conversations
and enhance communication across languages and
cultures, facilitating more nuanced and effective
linguistic exchanges.

Formality-controlled Neural Machine Transla-
tion is the IWSLT 2023 task (Nădejde et al., 2022)
under the Formality track. The goal of the task
is to achieve formality controlled machine transla-
tion for the English-Vietnamese (En-Vi), English-
Korean (En-Ko) in a supervised setting and English-
Portuguese (En-Pt) and English-Russian (En-Ru)
in a zero-shot setting as detailed in (Agarwal et al.,
2023). We provide an example of formal and infor-
mal translations of an English sentence into Viet-
namese in Figure 1. The formal and informal to-
kens are in bold.

2 Related Works

Machine translation (MT) research has primarily
focused on preserving the meaning between lan-
guages. However, it is widely recognized that
maintaining the intended level of formality in
communication is a crucial aspect of the prob-
lem (Hovy, 1987) (Hovy, 1987). This field of
research was named formality-sensitive machine
translation (FSMT) (Niu et al., 2017), where the
target formality level is considered in addition to
the source segment in determining the translated
text. Further, several studies have attempted to
regulate formality in MT through side constraints
to control politeness, or formality (Sennrich et al.,
2016); (Feely et al., 2019); (Schioppa et al., 2021a).
Other studies have tried to address this with custom
models trained on data with consistent formality
(Viswanathan et al., 2020). Most prior research
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Figure 1: Contrastive Data Sample

has been tailored to individual languages and has
labeled large amounts of data using word lists or
morphological analyzers.

3 Approach

3.1 Overview

The task of formality-controlled generation can be
viewed as a seq2seq machine translation task. More
formally, given an input sequence x, we design a
model that does the following:

ŷ = argmax
y∈Y

p(y|x, ls, lt, f ; θ) (1)

Where,
x is the input sequence,
ls is the source language,
lt is the target language,
f is the formality,
ŷ is the formality controlled translation

We propose a single model that produces an out-
put, given input x, and formality setting f. Despite
being part of the unconstrained task, our proposed
approach does not mine or develop any formal-
ity annotated data for training and just uses a pre-
trained checkpoint of mBART.

3.2 Design

We looked at previous works incorporating con-
trasting styles Rippeth et al., 2022, and Schioppa
et al., 2021b as motivation for our approach. For
controlling styles, the aforementioned works use an
additive intervention approach. This approach en-
tails adding a single style intervention vector V to
the pre-trained encoder output Z. The same vector
V is added to all the tokens of the encoder outputs,
thereby changing the encoder outputs uniformly.

We modify the above approach to allow for more
flexibility while learning. Instead of a single inter-
vention vector V, we propose a unique vector Vi

for every token i in the input space. In short, we re-
purpose an Embedding layer as a style intervening
layer between the encoder and the decoder. This
design resulted from our original question: will
allowing more flexibility in the encoder enable it
to identify which tokens require stylization, thus
making it more interpretable. The hypothesis that
originated from this question was: by giving each
token its own intervention vector Vi, the model will
learn each intervention vector Vi differently based
on whether the token at that time step has a contrast-
ing translation that is dependent on the formality
setting. In short, we let the model learn different
Vi’s for each token. If true, this will provide some
interpretability on which tokens the model recog-
nizes as having a formality marker and translates
them differently in formal and informal settings.
This approach is visualized in Figure 2. Since our
approach uses an embedding layer for style inter-
vention, we call our approach ’style embedding
intervention.’

We learn the style embedding layer only in the
formal setting and use a zero vector in the informal
setting. In other words, the style embedding inter-
vention is performed only in the formal setting, and
encoder outputs are not perturbed in the informal
setting. We do not have separate Embedding lay-
ers to learn each formality style, simply because,
it would be difficult to switch between layers dur-
ing batched training. Looking at (Schioppa et al.,
2021b), the combination of a style vector and a
zero vector for contrasting styles was sufficient to
learn the style.

4 Experimental Apparatus

4.1 Dataset

The IWSLT formality shared task provided a for-
mality annotated dataset (Nadejde et al., 2022).
This dataset comprises source segments paired with
two contrastive reference translations, one for each
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Figure 2: Approach

formality level (informal and formal) for two lan-
guage pairs: EN-KO, VI in the supervised setting
and two language pairs: EN-PT, RU in the zero-
shot setting. The data statistics can be seen in Table
1. We use a random split of 0.2 to construct the
validation dataset during model development.

4.2 Training Setup

For all our modeling experiments, we use mbart-
large-50-one-to-many-mmt, a fine-tuned check-
point of mBART-large-50 (Liu et al., 2020). This
model, introduced by (Tang et al., 2020), is a fine-
tuned mBART model which can translate English
to 49 languages, including the languages we are
interested in: KO, VI, PT, and RU.

For our baseline, we perform zero-shot inference
on the mBART model for the four language pairs.
The results are shown in tables 3 - 6.

Based on the findings of (Nakkiran et al., 2019)
and (Galke and Scherp, 2022) we fixed our loss
function to be ‘cross entropy with logits‘ and op-
timizer to AdamW (Loshchilov and Hutter, 2017).
We use the default learning rate of 10-3, standard
weight decay of 10-2 and set β1, β2 and ϵ to 0.9,
0.998 and 10-8 respectively.

To effectively train the transformer-based
mBART model, we used a learning rate scheduler
- a linear schedule with a warm-up, as introduced
by (Vaswani et al., 2017). This creates a schedule
with a learning rate that decreases linearly from
the initial learning rate to 0 after a warm-up period.
The warm-up period is set to 10% of the total train-
ing steps, during which the learning rate increases
linearly from 0 to the initial learning rate set in the
optimizer. All the other hyper-parameters are left
at their defaults.

We trained our models using one NVIDIA A100
GPU with 80GB memory. To fit our model in this
GPU we used a batch size of 16 and a max sequence

length of 128. We trained for 15 epochs with an
early stopping callback set at 3.

We have implemented all the models in PyTorch
(Paszke et al., 2019) leveraging Huggingface (Wolf
et al., 2019) transformers and evaluate libraries.

4.3 Evaluation
To assess the performance of the models, we use
four metrics to evaluate the two main underlying
tasks - translation quality and formality control.

For evaluating the translation quality, we use the
following two metrics:

• Bilingual Understudy Evaluation (BLEU)
score: BLEU score (Papineni et al., 2002)
calculates the similarity between a machine
translation output and a reference translation
using n-gram precision. We use SacreBLEU
2.0 (Post, 2018) implementation for reporting
our scores.

• Cross-lingual Optimized Metric for Eval-
uation of Translation (COMET) score:
COMET score (Rei et al., 2020) calculates
the similarity between a machine translation
output and a reference translation using to-
ken or sentence embeddings. We use COMET
wmt22-comet-da (Rei et al., 2022) model for
reporting our scores.

For evaluating the formality control, we use the
following two metrics:

• Matched-Accuracy (M-Acc): A reference-
based corpus-level automatic metric that lever-
ages phrase-level formality markers from
the references to classify a system-generated
translation as either formal or informal. This
metric was provided by the IWSLT Formality
shared task organizers.

• Reference-free Matched-Accuracy (RF-M-
Acc): A reference-free variant of M-Acc that
uses a multilingual formality classifier, based
on xlm-roberta-base, fine-tuned on human-
written formal and informal text, to label a
system-generated hypothesis as formal or in-
formal. This metric was provided by the
IWSLT Formality shared task organizers.

In addition to this, we evaluate our generic trans-
lation quality on FLORES-200 (Goyal et al., 2022)
for all language pairs under supervised and zero-
shot settings. We use the devtest set of FLORES-
200 and compute the BLEU and COMET scores.
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Language pair Training Data points Testing Data points
EN-KO 400 600
EN-VI 400 600
EN-PT 0 600
EN-RU 0 600

Table 1: Data description

Formal Informal
BLEU Matched Acc BLEU Matched Acc

Rippeth et al., 2022 38.3 98.4 38.3 82.7
Style embedding intervention 38 99.2 37.4 98

Table 2: Grounding our model for EN-ES data

5 Grounding results and observations

Along with the validation splits, we ground our
approach by comparing our results with the 2022
formality track submission Rippeth et al., 2022.
We compare our results on one language pair i.e.
English-Spanish. The comparison is shown in Ta-
ble 2.

As seen in Table 2, the BLEU scores between
our approach - “style embedding intervention” -
and the approach in Rippeth et al., 2022 - "additive
style intervention" - are similar but our approach
makes significant gains in Matched Accuracy, espe-
cially in the informal setting indicating improved
formality control.

5.1 Style embedding layer analysis

In this section, we analyze the style embedding
layer and compare the analysis with the original
hypothesis - giving each token its own interven-
tion vector Vi, the model will learn each vector
differently based on whether the token at that time
step has a contrasting translation that is dependent
on the formality setting. Due to the unique nature
of our training setup - learning zero vector in the
informal setting - for our hypothesis testing, we
compare the encoder vectors with and without the
style embedding intervention. For this purpose, we
use the dot product similarity. At each time step,
we compute the dot product similarity between the
encoder output before style intervention and the
output after style intervention. This is equivalent
to comparing the encoder outputs in the formal and

the informal setting. The similarity scores are vi-
sualized in Figure 3. For a closer look, Table 8
displays the similarity scores.

Figure 3: Similarity scores for hypothesis analysis.

As seen from the token representation similarity
scores, the model does not seem to learn new in-
formation in tokens that have a contrasting setting-
dependent translation - the tokens’ similarity scores
are very near 1. Instead, it uses the </s>’s repre-
sentation to store the style ’signal’, by creating a
style vector that makes the </s>’s representation
∼11% different between formality settings.

Another interesting observation is the extremely
slight dissimilarity produced at the beginning of
the sentence or ’en_xx’ token. Did the model learn
the same style information in ∼1% of information
space in the ’en_xx’ token compared to the ∼11%
of information space in the ’</s>’ token? To an-
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Models EN-VI EN-KO
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 26.7 0.3629 96 0.95 4.9 0.2110 78 0.99
Baseline 2 26.1 0.829 3 0.006 3.9 0.8445 66.7 0.979
Model 1 44.8 0.8467 99 0.989 22.2 0.8246 74.1 0.9815
Model 2 44.2 0.8702 98.6 0.9782 22.5 0.831 82.9 0.9765
Model 3 44.6 0.874 99 0.9849 23.3 0.836 85.7 0.9832
Model 4 44.3 0.8462 99.2 0.9849 23.2 0.8287 75.3 0.9815
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 3: Results on the official test split in the formal supervised setting for language pairs EN-VI and EN-KO.

Models EN-PT EN-RU
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 27.3 0.4477 96.3 0.9766 22.0 0.3492 96.20 0.92
Baseline 2 33 0.8445 54.9 0.8447 24.9 0.7604 99.4 0.9116
Model 1 27.2 0.7686 84.6 0.918 23.8 0.737 97.6 0.865
Model 2 26.6 0.7895 81.5 0.8748 18.5 0.6837 99.2 0.76
Model 3 26.6 0.7889 89.9 0.9082 18.4 0.6664 98.8 0.79
Model 4 28.2 0.7726 80.5 0.9348 24.3 0.7373 97.9 0.858
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 4: Results on the official test split in the formal unsupervised setting for language pairs EN-PT and EN-RU.

swer this question, we added another modification
to our approach - we masked out the intervention
vectors for all tokens except the ’en_xx’ token.

For naming purposes, we call this approach ’bos
style intervention’ respectively.

6 Official Results

Along with the approach from Rippeth et al., 2022
taken as a baseline and an adapted version of it,
we submit the results of our approach and of the
’bos style intervention’ approach. We analyse the
performance of our models under the supervised
setting and the zero-shot setting. We also generate
results on the FLORES-200 test split.

6.1 Supervised Setting
We trained our models multi-lingually on EN-VI
and EN-KO for the supervised setting. In the for-

mal setting, we obtain a BLEU score of 44.6 for
EN-VI and 23.3 for EN-KO on the official test split.
In the informal setting, we obtain a BLEU score of
43.5 for EN-VI and 22.8 for EN-KO. Tables 3 and
5 have detailed results of all our models. Our pri-
mary model - ’bos style intervention’ - outperforms
the UMD baseline significantly for both languages
with around 20 BLEU increase and more than dou-
ble the COMET score. This answers our hypothesis
that the model can learn the formality style in the
small ∼1% information space at the beginning of
the sentence in ’en_xx’ token. Moreover, we ob-
tain higher scores on the metrics M-Acc% & C-F%
that compute the degree of formality/informality
induced.

Qualitative analysis of the translations, espe-
cially for KO, revealed that code-switching was
a major issue. For example, some translations have
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Models EN-VI EN-KO
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 25.3 0.3452 96 0.9816 4.9 0.1697 97.6 0.995
Baseline 2 31.9 0.8352 97 0.9933 3.2 0.8311 33.3 0.020
Model 1 43.3 0.8238 98.7 0.9949 22.1 0.8115 96.3 0.889
Model 2 43.6 0.8514 98.9 0.9949 23.0 0.8256 98.3 0.9514
Model 3 43.5 0.8504 98.9 1 22.8 0.8257 98.3 0.9581
Model 4 42.5 0.8232 98.3 0.9765 22.6 0.8162 96.4 0.9028
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 5: Results on the official test split in the informal supervised setting for language pairs EN-VI and EN-KO.

Models EN-PT EN-RU
BLEU COMET %M-Acc %C-F BLEU COMET %M-Acc %C-F

Baseline 1 30.9 0.4161 93.2 0.9082 21.6 0.3475 84.1 0.8417
Baseline 2 33.2 0.8229 45.1 0.1552 18.8 0.7489 0.6 0.0883
Model 1 28.2 0.7606 55.6 0.378 18.8 0.7109 47.7 0.556
Model 2 28.7 0.7821 58.8 0.5092 18.6 0.6544 45.1 0.6
Model 3 28.4 0.7853 58 0.419 14.9 0.6365 51.6 0.6683
Model 4 28.8 0.7673 57 0.3305 20 0.7102 46.9 0.55
Baseline 1: UMD-baseline
Baseline 2: Zero-Shot mBart
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 6: Results on the official test split in the informal unsupervised setting for language pairs EN-PT and EN-RU.

Models EN-VI EN-KO EN-PT EN-RU
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Model 1 29.8 0.8169 5.5 0.773 30.6 0.8082 21.4 0.794
Model 2 27.8 0.8205 4.6 0.758 30.8 0.8258 19.3 0.7686
Model 3 27.9 0.8225 4.5 0.7586 30.4 0.8264 19.1 0.7543
Model 4 30.3 0.8186 5.6 0.7752 30.9 0.814 21.5 0.7935
Model 1: single vector intervention with train-dev split of 0.1
Model 2: style embedding intervention
Model 3: bos style intervention - Primary Submission
Model 4: single vector intervention with train-dev split of 0.2

Table 7: Results on Flores-200 test split for language pairs EN-VI & EN-KO in supervised setting and for language
pairs EN-PT & EN-RU in unsupervised setting.

entire phrases or latter parts of sentences in English
as shown in Figure 4.

6.2 Zero-shot Setting

We evaluate the above multi-lingually trained
model on RU and PT in a zero-shot setting. In the
formal setting, we obtain a BLEU score of 26.6 for
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Token Similarity Score
en_xx 0.99037
Have 0.99928
you 0.99914
ever 0.99935
seen 0.99916
Big 0.99916
hero 0.99919
6 0.99920
? 0.99910
</s> 0.89028

Table 8: Similarity scores for hypothesis analysis.

Figure 4: Similarity scores for hypothesis analysis.

EN-PT and 18.4 for EN-RU on the official test split.
In the informal setting, we obtain a BLEU score of
28.4 for EN-PT and 14.9 for EN-RU. Tables 4 and 6
have detailed results of all our models. We observe
that our model does not transfer the style knowl-
edge very well. In both cases, the model is often
biased toward formal translations. Moreover, our
models have a slightly degraded performance in the
translation quality than UMD baseline model. This
cements our earlier observation that style knowl-
edge transfer is incomplete. Qualitative analysis
of the translations revealed that the zero-shot lan-
guage translations also suffer from code-switching.

6.3 Testing on FLORES-200 dataset

In addition to evaluating formality, we assess the
translation quality of our models by evaluating on
the FLORES-200 test split. The results can be seen
in Table 7.

7 Conclusion

In this paper, we presented and explored "style
embedding intervention," a new approach for low-
resource formality control in spoken language
translation. By assigning unique style vectors to
each input token, the proposed approach shows
promising results in understanding and controlling
the nuances of formal and informal style transla-
tion. It outperforms previous "additive style in-
tervention" methods, specifically for the English-

to-Korean translation task, resulting in an average
matched accuracy improvement from 85.2 to 90.6.
Further, on analysis of our "style embedding inter-
vention" model, we find that most of the style infor-
mation is learnt in the <bos> token. Constraining
style addition to the <bos> token - "bos style inter-
vention" - further improved our averaged matched
accuracy from 90.6 to 92.

We also observed that in a zero-shot setting, the
formality control doesn’t seem to transfer well, and
the model leans towards biases learnt during pre-
training rather than the transferred style interven-
tions. This is more pronounced for En-Ru trans-
lations where the model is more biased towards
the formal style, with a matched accuracy of 98.8,
than the informal style, with a matched accuracy
of 51.6.

Future works focused on alleviating the style
biases of pre-trained models might be necessary
to ensure style transfer works equally well in a
zero-shot setting.

We hope our work on translation models with
interpretable formality control can serve as a base
for other future works on interpretable models, es-
pecially in low-resource settings.

Code used for our implementation can be ac-
cessed at https://github.com/Priyesh1202/
IWSTL-2023-Formality.

8 Acknowledgements

We thank Prof. Lane, Prof. Rao and Brendan King
from UC Santa Cruz for their constant guidance
and support.

References
Milind Agarwal, Sweta Agrawal, Antonios Anasta-

sopoulos, Claudia Borg, Marine Carpuat, Roldano
Cattoni, Mauro Cettolo, William Chen, Khalid
Choukri, Alexandra Chronopoulou, Thierry Declerck,
Qianqian Dong, Yannick Estève, Kevin Duh, Mar-
cello Federico, Souhir Gahbiche, Benjamin Hsu,
John Judge, Tom Ko, Rishu Kumar, Xutail Ma,
Prashant Mathur, Evgeny Matusov, Paul McNamee,
John P. McCrae, Kenton Murray, Matteo Negri, Jan
Niehues, Xing Niu, Atul Ojha Kr., John E. Ortega,
Proyag Pal, Juan Pino, Lonneke van der Plas, Elijah
Rippeth, Elizabeth Salesky, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Brian Thompson,
Marco Turchi, Alex Waibel, Mingxuan Wang, and
Rodolfo Zevallos. 2023. Findings of the IWSLT 2023
Evaluation Campaign. In Proceedings of the 20th
International Conference on Spoken Language Trans-
lation (IWSLT 2023). Association for Computational
Linguistics.

327

https://github.com/Priyesh1202/IWSTL-2023-Formality
https://github.com/Priyesh1202/IWSTL-2023-Formality


Weston Feely, Eva Hasler, and Adrià de Gispert.
2019. Controlling japanese honorifics in english-to-
japanese neural machine translation. In Proceedings
of the 6th Workshop on Asian Translation, pages 45–
53.

Lukas Galke and Ansgar Scherp. 2022. Bag-of-words
vs. graph vs. sequence in text classification: Ques-
tioning the necessity of text-graphs and the surpris-
ing strength of a wide MLP. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
4038–4051, Dublin, Ireland. Association for Compu-
tational Linguistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The Flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Eduard Hovy. 1987. Generating natural language un-
der pragmatic constraints. Journal of Pragmatics,
11(6):689–719.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.
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