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Abstract

Simultaneous speech translation (SimulST)
translates partial speech inputs incrementally.
Although the monotonic correspondence be-
tween input and output is preferable for smaller
latency, it is not the case for distant language
pairs such as English and Japanese. A prospec-
tive approach to this problem is to mimic si-
multaneous interpretation (SI) using SI data to
train a SimulST model. However, the size of
such SI data is limited, so the SI data should
be used together with ordinary bilingual data
whose translations are given in offline. In this
paper, we propose an effective way to train a
SimulST model using mixed data of SI and
offline. The proposed method trains a single
model using the mixed data with style tags that
tell the model to generate SI- or offline-style
outputs. Experiment results show improve-
ments of BLEURT in different latency ranges,
and our analyses revealed the proposed model
generates SI-style outputs more than the base-
line.

1 Introduction

Simultaneous speech translation (SimulST) is a
technique to translate speech incrementally without
waiting for the end of a sentence. Since SimulST
should work in small latency against the input
speech, monotonic translation following the word
order of the source language is preferable. How-
ever, making translation monotonic is not trivial
especially for distant language pairs with different
word orders, such as English and Japanese. Most
recent SimulST studies still use parallel corpora
only with offline translations and potentially have
the limitation to work in a monotonic way.

A prospective approach to this problem is to
use SI data to train a SimulST model for mimick-
ing simultaneous interpretation (SI). There are sev-
eral SI data resources developed so far for English-
Japanese (Toyama et al., 2004; Shimizu et al., 2013;
Doi et al., 2021). Despite these efforts, SI data are

still very small compared to bilingual data based
on offline translations. Using such scarce SI data to
fine-tune an offline translation model causes over-
fitting on the small SI data. Training a model using
mixed data of offline and SI data is another option
to mitigate the problem of data scarcity, but the
simple data mixture causes confusion between the
output styles of offline translation and SI.

In this paper, we propose a method to train a
SimulST model using mixed data of SI and offline
translation with style tags to tell the model to gener-
ate SI- or offline-style output selectively. It has the
advantage of sharing two different styles in a single
model and generating SI-style outputs by putting
the SI-style tag in the decoding, which are lever-
aged by offline translation data. Experiment results
using MuST-C and small SI data showed improve-
ments of BLEURT by the proposed method over
the baselines in different latency ranges. Further
analyses revealed that the proposed model gener-
ates more appropriate SI-style outputs than base-
lines.

2 Related Work

There have been many studies on simultaneous
translation for text and speech in decades (Fügen
et al., 2007; Oda et al., 2014; Dalvi et al., 2018).
Most recent approaches are based on deep neural
networks and have evolved with the technologies
of neural machine translation (NMT) (Gu et al.,
2017) and neural speech recognition (ASR) (Rao
et al., 2017). An important advantage of the neural
SimulST methods (Ma et al., 2020b; Ren et al.,
2020) is their end-to-end modeling of the whole
process, which improves the efficiency compared to
a cascade approach. Such an end-to-end SimulST
model is trained using speech translation corpora
such as MuST-C (Di Gangi et al., 2019), but these
corpora are usually based on offline translation due
to the lack of large-scale SI data.

For the English-Japanese language pair, there
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6

しかしこの経済(6)危機や私の(8)国での(7)出来事について(1)私は(4)男性に(5)非があると(3)言うつもりは(2)ありません

(4)男性の、(5)せいだけでは(2)ありません、私どもの(8)国の、金融(6)崩壊の、(5)責任は、

And (1)I’m (2)not here to (3)say that (4)men are to (5)blame for the (6)crisis and what (7)happened in my (8)country.

SI Target

Source

Offline Target

Figure 1: Example of English-to-Japanese offline translation and SI.

have been some attempts for the development of
SI corpora (Toyama et al., 2004; Shimizu et al.,
2013; Doi et al., 2021). However, the amount of
such SI corpora is still very limited compared to
offline translations. We tackle this problem by us-
ing a larger-scale offline translation corpus. This
condition can be seen as domain adaptation from
resource-rich offline translation to resource-poor
simultaneous translation. In a typical domain adap-
tation scenario, an out-of-domain model is fine-
tuned using in-domain data (Luong and Manning,
2015; Sennrich et al., 2016), but it tends to over-
fit to the small in-domain data (Chu et al., 2017).
As another adaptation approach, tag-based NMT
works to control the politeness of translations (Sen-
nrich et al., 2016) and to enable zero-shot mul-
tilingual NMT (Johnson et al., 2017). This tag-
based approach has been extended to multi-domain
fine-tuning (Kobus et al., 2017) and mixed fine-
tuning (Chu et al., 2017). These studies fine-tune
NMT models using mixed data of in-domain and
out-of-domain corpora. Tagged Back-Translation
(Caswell et al., 2019) is an application of the tag-
based approach to well-known back-translation-
based data augmentation. It distinguishes source
language sentences from parallel corpora and those
obtained from back-translation to handle possible
back-translation noise in the training of an NMT
model. Our work is motivated by these tag-based
methods and tackles the scarcity of SI data.

3 Differences between Offline Translation
and Simultaneous Interpretation

There is a large style difference between SI and
offline translation. Figure 1 shows an example of
offline translation and SI transcript in Japanese for

a given English source sentence. The solid lines in
the figure represent word correspondences. In this
figure, we can find:

• Most English content words are translated into
Japanese in the offline translation, while some
are missing in the SI transcript.

• The SI tries to translate the former half of the
input earlier than the latter half with some un-
naturalness, while the offline translation keeps
naturalness in Japanese with long-distance re-
ordering from the input English.

These points suggest important differences between
offline translation and SI; SI focuses on the simul-
taneity of the interpretation to deliver the contents
as early as possible and to maintain the interpreter’s
working memory. The word order difference be-
tween English and Japanese poses a serious diffi-
culty in SI, as mentioned in the literature (Mizuno,
2017). Thus, it is important to use SI data to train
a SimulST model to improve its simultaneity.

4 Proposed Method

Although training a SimulST model using SI data
is necessary, we suffer from data scarcity in prac-
tice. We propose a method to use a relatively large
offline translation corpus to mitigate for the SI data
scarcity for training a SimulMT model. Following
the tag-based NMT studies, we put a style tag at
the beginning of the target string in training and
predict a specified tag forcibly at the first step in
inference. In this work, we use two tags: <si> for
SI and <off> for offline translation.

Suppose we have an SI transcript: 私は、買っ
た。ペンを、 for an English input: I bought a
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Offline SI
#segm. #En words #segm. #En words

train 328,639 5,714,360 65,008 1,120,245
dev 1,369 23,059 165 2,804
test 2,841 46,144 511 8,104

Table 1: Data sizes of offline data and SI data in the
number of aligned segments.

pen. as a training example. We put the SI-style tag
at the beginning of the SI transcript as follows:

<si>私は、買った。ペンを、

This string is tokenized into subwords1:

_< si > 私 は 、 買 っ た 。 ペ
ン を 、

Here, we assume we have a pre-trained sequence-
to-sequence model such as mBART (Liu et al.,
2020b; Tang et al., 2021) as a basis of the SimulST
model, as described later in the next section. The
aforementioned style tags may not be included in
the subword vocabulary of the pre-trained model
and are tokenized further like “_< si >”, but it
works in practice.

5 Experimental Setup

5.1 Dataset
We used MuST-C (Di Gangi et al., 2019) v2
English-Japanese data as our offline speech trans-
lation corpus. We also prepared development and
test sets from our in-house Japanese SI recordings
on TED Talks that are not included in the train-
ing sets above. As for the SI data for training, we
used NAIT-SIC-Aligned (Zhao et al., 2023). This
SI data is constructed by applying heuristic sen-
tence alignment to extract parallel sentence pairs
using the latest version of NAIST-SIC2 (Doi et al.,
2021). From NAIST-SIC-Aligned, we selected IN-
TRA, AUTO-DEV and AUTO-TEST as train, dev
and test data, respectively. For all the SI sets, we
aligned the English text segments with the corre-
sponding audio tracks in MuST-C using an English
forced-aligner Gentle3. Here, we excluded seg-
ments not aligned with the source speech from the
aligned dataset. Table 1 shows the size of the of-
fline and SI data.

1“_” is the meta-character representing white spaces in
an original string by SentencePiece (Kudo and Richardson,
2018), and “ ” represents a white space in a tokenized string.

2https://dsc-nlp.naist.jp/data/
NAIST-SIC/2022

3https://github.com/lowerquality/
gentle

5.2 Simultaneous Speech Translation

We used our SimulST implementation based on
fairseq (Ott et al., 2019). It followed the sys-
tem architecture of the best-scored system in the
IWSLT 2022 evaluation campaign (Polák et al.,
2022), which used an offline ST model in the online
simultaneous decoding based on Local Agreement
(LA) (Liu et al., 2020a)4.

5.2.1 Offline ST Model
We built the initial offline ST model by connect-
ing two pre-trained models. Firstly, we used Hu-
BERT Large as the encoder, which consists of a
feature extractor trained on 60k hours of unlabeled
speech data Libri-Light (Kahn et al., 2020) and
a transformer encoder layer. The feature extrac-
tor is a 7-layer convolutional layer with a kernel
size of (10,3,3,3,3,2,2), a stride of (5,2,2,2,2,2,2),
and 512 channels, while the transformer encoder
layer consists of 24 layers. Next, we used the de-
coder portion of mBART50, an encoder-decoder
model pre-trained with 50 language pairs, as the
decoder. The decoder consists of 12 layers of trans-
former decoders, and the embedding layer and
linear projection weights are shared, with a size
of 250,000. The dimension of each layer of the
transformer encoder and decoder is 1024, the di-
mension of the feed forward network is 4096, the
number of multi-heads is 16, the activation func-
tion is the ReLU function, and the normalization
method is pre-layer normalization (Baevski and
Auli, 2019). These two models are connected by an
Inter-connection (Nishikawa and Nakamura, 2023)
that weights each transformer layer of the encoder
and integrates the output tensors of each layer in a
weighted sum, and a length adapter (Tsiamas et al.,
2022). The length adapter is a 3-layer convolu-
tional network with 1024 channels, the stride of 2,
and the activation function of GELU.

The inputs are waveforms with a 16-kHz sam-
pling rate that are normalized to zero mean and
unit variance. During training, each source audio
is augmented (Kharitonov et al., 2020) with a prob-
ability of 0.8. We train the model on MuST-C
(Di Gangi et al., 2019), CoVoST-2 (Wang et al.,
2020), Europarl-ST (Iranzo-Sánchez et al., 2020),
and TED-LIUM (Rousseau et al., 2012). We
use gradient accumulation and data parallelism to
achieve a batch size of approximately 32 million

4We also tried wait-k (Ma et al., 2019), but LA worked
better than wait-k in our pilot test.
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tokens. We use Adam with β1 = 0.99, β2 = 0.98,
and a base learning rate of 2.5× 10−4. The learn-
ing rate is controlled by a tri-stage scheduler with
phases of 0.15, 0.15, and 0.70 for warm-up, hold,
and decay, respectively, while the initial and final
learning rate has a scale of 0.01 compared to base.
We use sentence averaging and gradient clipping
of 20. We apply a dropout of 0.1 before every non-
frozen layer and use time masking for 10-length
spans with a probability of 0.2, and channel mask-
ing for 20-length spans with a probability of 0.1 in
the encoder feature extractor’s output. The loss is
the cross-entropy loss with label smoothing of 0.2.
We call this trained model base model.

The base model was fine-tuned using the of-
fline training and development sets (Table 1). Dur-
ing fine-tuning, we set the learning rate of 2.5 ×
10−5, saved models in every 1,000 updates, and
adopted checkpoint averaging over five-best check-
points according to the loss on the development
set. We call this fine-tuned model base+O model.
About those base and base+O models, we use
the NAIST IWSLT 2023 Simultaneous speech-to-
speech model for the Simultaneous Speech Transla-
tion task (Fukuda et al., 2023). We further fine-tune
the base+O model using the SI data in the same
manner to derive base+O+S model. Here, follow-
ing (Tsiamas et al., 2022), to avoid overfitting the
small SI data, the parameters of the following com-
ponents were kept fixed: the feature extractor and
feedforward layers of the encoder and the embed-
ding, self-attention, and feedforward layers of the
decoder.

5.2.2 Fine-tuning using Prefix Alignment

For further fine-tuning toward SimulST, we ex-
tracted prefix-to-prefix translation pairs from the
available training sets using Prefix Alignment
(PA) (Kano et al., 2022). PA uses an offline transla-
tion model to find prefix-to-prefix translation pairs
that can be obtained as intermediate translation
results using a given offline translation model. Fi-
nally, we fine-tuned the base+O model using the
prefix pairs.

5.2.3 Compared Methods

We compared the following conditions on the final
fine-tuning data:

Offline FT Fine-tuned using the prefix pairs from
the offline data (baseline in offline).

(BLEURT) SI Offline
Offline FT 0.386 0.518
SI FT 0.359 0.347
Mixed FT 0.393 0.483
Mixed FT + Style 0.445 0.522
Mixed FT + Style + Up 0.443 0.516

Table 2: BLEURT in full-sentence offline ST on SI and
offline test sets.

(BLEU) SI Offline
Offline FT 7.8 16.0
SI FT 10.9 6.3
Mixed FT 9.4 13.3
Mixed FT + Style 10.3 15.4
Mixed FT + Style + Up 12.2 14.2

Table 3: BLEU in full-sentence offline ST on SI and
offline test sets.

SI FT Fine-tuned using the prefix pairs from the
SI data (baseline in SI).

Mixed FT Fine-tuned using prefix pairs from both
of the offline and SI data (baseline in mixed).

Mixed FT + Style Fine-tuned using prefix pairs
from both of the offline and SI data with the
style tags (proposed method).

Mixed FT + Style + Up The SI portions were up-
sampled in Mixed FT + Style to balance the
data size between the offline and SI data (pro-
posed method).

Here, the prefix pairs from the offline data were ob-
tained using base+O model, and those from the SI
data were obtained using the base+O+S model.
The hyperparameter settings for the fine-tuning
were the same as that for the base+O model.

5.3 Evaluation Metrics

We evaluated the SimulST systems using SimulE-
val5 (Ma et al., 2020a). The unit length of speech
segments was set to {200, 400, 600, 800, 1,000}
milliseconds6. For the SimulST systems, transla-
tion quality was evaluated in BLEURT (Sellam
et al., 2020) and BLEU (Papineni et al., 2002)7.

5https://github.com/facebookresearch/
SimulEval

6We also evaluated SI FT on the SI test set with 120 and
160 ms speech segments to investigate its performance in low
latency ranges.

7BLEU was calculated using SacreBLEU (Post, 2018).
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Figure 2: SimulST latency (ATD) – quality results on SI test set.
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Figure 3: SimulST latency (ATD) – quality results on offline test set.

The latency in SimulST was evaluated in Aver-
age Token Delay (ATD) (Kano et al., 2023) im-
plemented in SimulEval. Even though Average
Lagging (AL) (Ma et al., 2019) is the most popular
latency metric, it sometimes resulted in negative
values, as suggested by Kano et al. (2023). Thus,
we present the results using ATD and include the
AL results in Appendix A.

6 Results

6.1 Offline Translation Results
Tables 2 and 3 show the offline translation re-
sults in BLEURT and BLEU for the SI and offline
test sets. These results show that our proposed
Mixed FT + Style and Mixed FT + Style + Up sur-
passed baselines in BLEURT for SI test. On the
offline test set (MuST-C tst-COMMON), the per-
formance of the proposed models was almost the
same as Offline FT. This suggests that our proposed
method leads to outputs semantically close to SI
references than the baseline. Contrary, the SI FT
baseline surpassed the Mixed FT + Style in BLEU.

The result shows that the upsampling worked for
BLEU improvement for the SI test set in the offline
translation condition.

6.2 Simultaneous Translation Results

Figure 2 shows SimulST results in BLEURT and
BLEU for the SI test set. In Figure 2a, the pro-
posed method with the style tags showed clearly
better BLEURT results than the baselines. The up-
sampling did not bring clear differences, the same
as findings on the offline translation results shown
in Table 2. In contrast, Figure 2b shows SI FT
worked the best in almost all latency ranges, while
the proposed method outperformed the other two
baselines (Offline and Mixed).

Figure 3 shows SimulST results for the offline
test set. They reflect the difference in reference
translations between the SI and offline test sets.
The Offline FT baseline worked well in BLEURT
and outperformed the proposed method in BLEU.
The other baselines resulted in worse BLEURT and
BLEU scores than the proposed method.
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Figure 4: SimulST latency (ATD) – quality (BERTScore) results on SI test set.

These results suggest the proposed method con-
veys the information given in source language
speech better than the baselines.

7 Discussions

The results shown in Figures 2, 3 demonstrated the
advantage of the proposed method in BLEURT, but
not in BLEU. In this section, we discuss the results
in detail to reveal which model works the best from
the viewpoint of SimulST.

7.1 BERTScore Details

Figure 4 shows the detailed results in F1, recall,
and precision by BERTScore (Zhang et al., 2020)
for the SI test set. The proposed method worked
the best in BERTScore recall, and the recall curves
look similar to BLEURT curves shown in Figure 2a.
On the other hand, the SI FT baseline worked the
best in BERTScore precision, and the precision
curves look very similar to the BLEU curves shown
in Figure 2b. We conducted further analyses below
to investigate the mixed results in different quality
metrics.

7.2 Length Differences

First, we focus on the length differences between
translation outputs and references. Figure 5 shows
the length ratios of translation results and their ref-
erences. The proposed method resulted in longer
outputs than the baselines, and the SI FT baseline
preferred shorter output than the others and ref-
erences. From the viewpoint of the precision of
the translation results, outputs longer than their
references are unfavorable. Figure 6 shows the his-
togram of length differences between SI FT and
Mixed FT + Style. They showed different distribu-
tions; this suggests that SI FT suffered from under-
translation, and the proposed method suffered from
over-translation.

200 400 600 800 1000
ATD

0.8

1.0

1.2

1.4

1.6

Le
ng

th
 R

at
io

SI test

Offline FT
SI FT
Mixed FT
Mixed FT + Style
Mixed FT + Style + Up

Figure 5: Length ratio results on SI test set.
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Figure 6: The length differences between hypotheses
and references in SI FT and Mixed FT + Style (speech
segment size is 600ms) on SI test set.

Table 4 shows the translation examples by SI FT
and Mixed FT + Style. Here, SI FT generates very
short outputs compared with Mixed FT + Style;
BLEU is not always good due to the brevity penalty,
but SI FT would have an advantage in BERTScore
precision.

7.3 Non-speech Sound Events and Repetitions
Next, we investigated the over-translation sug-
gested in the analyses above.

We observed serious repetitions by the proposed
method, such as (拍手) (拍手) ..., which means
(Applause). This kind of non-speech sound events
(applause and laughter) are found many times in
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Source TEMPT was one of the foremost graffiti artists in the 80s.
There’s no hospital that can say “No.”
Anybody who’s paralyzed now has access to actually draw or communicate using only their eyes.

SI FT テンプトは、グラフィティアーティストの (TEMPT was, graffiti artists’)
(Baseline) 病院は、(a hospital)

麻痺した人達は、 (paralyzed people)
Mixed FT + Style テンプトは、グラフィティアーティストの一人です。(TEMPT is one of graffiti artists.)
(Proposed) 病院では「いいえ」は言えません。(In a hospital, we cannot say “No.”)

麻痺した人なら誰でも、絵を描いたり、会話をすることができます。
(Anybody who is paralyzed can draw a picture and have a talk.)

SI reference 八十年代の素晴らしいグラフィックアーティストでした。
((He) was a great graphic artist in the 80s.)

病院も、ノーとは言えない。(There’s no hospital that can say “No.”)
麻痺してる人達は、これを全員使うことが出来るようになっています。

(Everybody who is paralyzed can use this.)
Offline reference 80年代を代表するグラフィティ・アーティストでした

病院もダメと言えません
全身麻痺の人誰もが目だけで絵を描いたりコミュニケーションできます

Table 4: Example sentences in SI FT and Mixed FT + Style (speech segment size: 600ms) on SI test set.

TED Talks, but they are not translated by inter-
preters and excluded from the SI data. According
to this assumption, we tried to eliminate typical
repetitions as follows and to conduct the evaluation
after that.

• Removing tokens if they are surrounded by
"()" and "<>". (if the tokens include parts of
"(拍手)" like "拍手)" or "(", they were also
excluded.)

• Stopping the generating output when at least
one kind of 3-gram appeared at least 3 times
in the steps until reaching the end of the sen-
tence.

We applied this repetition removal on the re-
sults by Mixed FT + Style and SI + Style; they
are labeled as Mixed FT + Style + Rmrep and
SI FT + Rmrep, respectively. Figure 7 shows
BLEU and length ratio results before and after
the repetition removal. BLEU increased consis-
tently on the proposed method while almost no
changes were observed on the SI FT baseline ex-
cept for one sample at ATD=200. This suggests the
existence of many repetitions in the translation re-
sults by the proposed method. We also investigated
BLEURT and BERTScore, as shown in Figure 8.
The repetition removal made almost no changes in
BLEURT, probably due to the semantic-oriented
evaluation strategy of BLEURT. BERTScore Pre-
cision and F1 of the proposed method increased
in the middle latency ranges, while they decreased
almost consistently for the SI FT baseline. These
findings suggest an over-translation problem with

the proposed method, but it made little impact on
semantic-oriented automatic evaluation results.

8 Conclusion

In this paper, we proposed an effective method
to train a SimulST model using mixed data of SI-
and offline-style translations with style tags to tell
the model to generate outputs in either style, mo-
tivated by the tag-based approach to domain adap-
tation. Experiment results on English-to-Japanese
SimulST demonstrated the advantage of the pro-
posed method in BLEURT and BERTScore re-
call despite the inferior performance in BLEU and
BERTScore precision due to over-translations and
repetitions. Future work includes an extension to
other language pairs and further verification via
human evaluation.

9 Limitation

The scores reported in the SI test were lower than
those in the offline test. Reporting results on other
SI data would support seeing the effectiveness of
our method. To our knowledge, this is the first work
to use SI data as speech translation data. There
are no other language pairs SI data than English-
Japanese pairs those source speech and target text
aligned.
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A Evaluation Results in AL.

Figure 9 shows the main results in BLEURT and
BLEU in SI test in AL. Figure 10 shows the main
results in BLEURT and BLEU in offline test in
AL. Those results trends are almost the same as the
trends in main results in Figure 2, 3.
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Figure 9: SimulST latency (AL) – quality results on SI test set.
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Figure 10: SimulST latency (AL) – quality results on offline test set.
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