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Abstract

End-to-end automatic speech translation (AST)
relies on data that combines audio inputs with
text translation outputs. Previous work used ex-
isting large parallel corpora of transcriptions
and translations in a knowledge distillation
(KD) setup to distill a neural machine transla-
tion (NMT) into an AST student model. While
KD allows using larger pretrained models, the
reliance of previous KD approaches on manual
audio transcripts in the data pipeline restricts
the applicability of this framework to AST. We
present an imitation learning approach where a
teacher NMT system corrects the errors of an
AST student without relying on manual tran-
scripts. We show that the NMT teacher can
recover from errors in automatic transcriptions
and is able to correct erroneous translations of
the AST student, leading to improvements of
about 4 BLEU points over the standard AST
end-to-end baseline on the English-German
CoVoST-2 and MuST-C datasets, respectively.
Code and data are publicly available.1

1 Introduction

The success of data-hungry end-to-end automatic
speech translation (AST) depends on large amounts
of data that consist of speech inputs and corre-
sponding translations. One way to overcome the
data scarcity issue is a knowledge distillation (KD)
setup where a neural machine translation (NMT)
expert (also called oracle) is distilled into an AST
student model (Liu et al., 2019; Gaido et al., 2020).
The focus of our work is the question of whether the
requirement of high-quality source language tran-
scripts, as in previous applications of KD to AST,
can be relaxed in order to enable a wider applicabil-
ity of this setup to AST scenarios where no manual
source transcripts are available. Examples for such

∗All work was done at Heidelberg University.
1https://github.com/HubReb/imitkd_ast/

releases/tag/v1.1

scenarios are low-resource settings (e.g., for lan-
guages without written form for which mostly only
audio-translation data are available), or settings
where one of the main uses of source transcripts
in AST — pre-training the AST encoder from an
automatic speech recognition (ASR) system— is
replaced by a large-scale pre-trained ASR system
(which itself is trained on hundreds of thousands
hours of speech, but the original training transcripts
are not available (Radford et al., 2022; Zhang et al.,
2022b)). Relaxing the dependence of pre-training
AST encoders on manual transcripts has recently
been studied by Zhang et al. (2022a). Our focus
is instead to investigate the influence of manual
versus synthetic transcripts as input to the student
model in an imitation learning (IL) approach (Lin
et al., 2020; Hormann and Sokolov, 2021), and to
lift this scenario to AST. To our knowledge, this has
not been attempted before. We present a proof-of-
concept experiment where we train an ASR model
on a few hundred hours of speech, but discard the
manual transcripts in IL training, and show that
this ASR model is sufficient to enable large NMT
models to function as error-correcting oracle in
an IL setup where the AST student model works
on synthetic transcripts. Focusing on the IL sce-
nario, we show that one of the key ingredients to
make our framework perform on synthetic ASR
transcripts is to give the AST student access to the
oracle’s full probability distribution instead of only
the expert’s optimal actions. Furthermore, when
comparing two IL algorithms of different power —
either correcting the student output in a single step,
or repairing outputs till the end of the sequence —
we find that, at least in the setup of a reference-
agnostic NMT teacher, the single-step correction
of student errors is sufficient.

One of the general reasons for the success of
our setup may be a reduction of data complexity
and an increase of variations of outputs, similar to
applications of KD in NMT (Zhou et al., 2020).
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To investigate the special case of imitation-based
KD on synthetic speech inputs, we provide a man-
ual analysis of the NMT expert’s behavior when
faced with incorrect synthetic transcripts as input,
or when having to correct a weak student’s transla-
tion in the IL setting. We find that the NMT oracle
can correct errors even if the source language input
lacks semantically correct information, by utiliz-
ing its language modeling capability to correct the
next-step token. This points to new uses of large
pre-trained ASR and NMT models (besides initial-
ization of encoder and decoder, respectively) as
tools to improve non-cascading end-to-end AST.

2 Related Work

Imitation learning addresses a deficiency of
sequence-to-sequence learning approaches, nick-
named exposure bias (Bengio et al., 2015; Ranzato
et al., 2016), that manifests as the inference-time
inability to recover from own errors, leading to
disfluent or hallucinated translations (Wang and
Sennrich, 2020). IL aims to replace the standard
learning paradigm of teacher forcing (Williams and
Zipser, 1989) (which decomposes sequence learn-
ing into independent per-step predictions, each con-
ditioned on the golden truth context rather than
the context the model would have produced on its
own) by enriching the training data with examples
of successful recovery from errors. We build upon
two previous adaptations of IL to NMT (Lin et al.,
2020; Hormann and Sokolov, 2021) and lift them
to AST.

Knowledge distillation (Hinton et al., 2015)
transfers the knowledge encoded in a large model,
called teacher, to a far smaller student model by
using the teacher to create soft labels and train the
student model to minimize the cross-entropy to the
teacher. KD has been successfully used for ma-
chine translation (Kim and Rush, 2016), speech
recognition (Wong and Gales, 2016) and speech
translation (Liu et al., 2019).

Synthetic speech translation training datasets
have been used previously to train AST models:
Pino et al. (2020) used an ASR-NMT model cas-
cade to translate unlabeled speech data for aug-
mentation. To obtain more machine translation
(MT) training data, Jia et al. (2019); Pino et al.
(2019) generated synthetic speech data with a text-
to-speech model. Liu et al. (2019) applied KD
between an NMT expert and an AST student with
manual transcriptions as expert input to improve

AST performance. Gaido et al. (2020) improved
upon this by increasing the available training data
by utilizing a MT model to translate the audio tran-
scripts of ASR datasets into another language, yet
they still use manual transcripts for distillation in
the following finetuning phase.

Further attempts focused on improving AST
models by utilizing MT data for multitask learn-
ing with speech and text data (Tang et al., 2021b,a;
Bahar et al., 2019; Weiss et al., 2017; Anastasopou-
los and Chiang, 2018), such as XSTNet (Ye et al.,
2021) and FAT-MLM (Zheng et al., 2021).

A question orthogonal to ours, concerning the
influence of pre-training encoder and/or decoder on
source transcripts, has been investigated by Zhang
et al. (2022a). They achieved competitive results
without any pretraining via the introduction of pa-
rameterized distance penalty and neural acoustic
feature modeling in combination with CTC regular-
ization with translations as labels. Their question
and solutions are orthogonal to ours and are likely
to be yield independent benefits.

3 Imitation-based Knowledge Distillation

We view an auto-regressive NMT or AST system
as a policy π that defines a conditional distribution
over a vocabulary of target tokens v ∈ V that is con-
ditioned on the input x and the so far generated pre-
fix y<t: π(v|y<t;x). This policy is instantiated as
the output of the softmax layer. When training with
teacher-forcing, the cross-entropy (CE) loss ℓ(·) is
minimized under the empirical distribution of train-
ing data D: LCE(π) = E(y,x)∼D[

∑T
t=1 ℓ(yt, π)].

To perform well at test time we are interested in the
expected loss under the learned model distribution:
L(π) = E(y,x)∼π[

∑T
t=1 ℓ(yt, π)].

As shown by Ross et al. (2011), the discrepancy
between L and LCE accumulates quadratically with
the sequence length T , which in practice could
manifest itself as translation errors. They proposed
the Dagger algorithm which has linear worst-case
error accumulation. It, however, relies on the ex-
istence of an oracle policy π∗ that, conditioned on
the same input x and the partially generated π’s pre-
fix y<t, can produce a single next-step correction
to y<t. Ross and Bagnell (2014) further proposed
the AggreVaTe algorithm which relies on an even
more powerful oracle that can produce a full contin-
uation in the task-loss optimal fashion: For NMT,
this means continuing the y<t in a way that maxi-
mizes BLEU, as done for example in Hormann and
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Figure 1: Diagram of AST training with imitation
learning and synthetic transcripts coming from ASR
models. (1) With probability 1 − β the AST student
creates a hypothesis ŷ that replaces the reference trans-
lation y. (2) The ASR model generates the synthetic
transcript x̂s for the audio sample xa to feed the NMT
oracle as input. (3) Calculation of Dagger or AggreVaTe
loss as shown in Algorithm 1.

Sokolov (2021).

IL for NMT We pretrain a large NMT model to
serve as an oracle π∗ that either simply predicts the
next-step optimal output vocabulary token v∗t given
a source sentence x and any (potentially, erroneous)
partial NMT student hypothesis y<t (Dagger):

v∗t = argmax
v∈V

π∗(v | y<t;x), (1)

or continues y<t till the end (AggreVaTe):

y∗>t = argmax
y>t

π∗(y<t + at + y≥t | y<t;x), (2)

where y>t is the continuation, at is an exploratory
action, and the last argmax is implemented as
beam search. The predicted v∗t or y∗>t are viewed
as one-step or multi-step corrections of the current
policy, and the student is updated to increase the
probability of the correction via the cross-entropy
loss on triples (yt, x, v∗t ) in case of Dagger, or to
decrease a square loss between logit Q of the se-
lected action at and the BLEU of the predicted
suffix2 from that action in case of AggreVaTe.

2We use the difference between the BLEU values of the
full sequence and that of the prefix (Bahdanau et al., 2016).

Both algorithms proceed iteratively, where the
newly generated set of triples form a provisional
training data set Di. Originally, Dagger and Ag-
greVaTe train the student’s πi on the aggregated
dataset ∪j≤iDj and use a probabilistic mixture for
the current roll-out policy, which queries the oracle
with probability βi and the student otherwise. This
setup guarantees that the prediction error scales
at most linearly with time, unlike the quadratic
scaling of the standard teacher forcing (Ross et al.,
2011), which is standardly used in sequence-level
KD. This makes Dagger and AggreVaTe promising
candidates to improve over KD.

In our implementation, we follow Lin et al.
(2020), who save memory via training on individ-
ual Di in each iteration i, instead of training on
the set union. They further speed up training by
keeping the reference translation y with probability
βi, and otherwise generate a translation ŷ of the
source sentence x from the student policy (see Al-
gorithm 1). For each t in the algorithm, AggreVaTe
needs to generate an exploration token at and cal-
culate the BLEU it would lead to, according to the
oracle continuation starting off this action.

IL for AST Adapting Dagger and AggreVaTe to
an AST student is relatively straightforward (see
Figure 1): We feed the NMT oracle the source lan-
guage transcript xs of the audio data sample xa that
is also given to the AST student. We define an algo-
rithm IKD (imitation knowledge distillation) that
optimizes the cross-entropy of the student’s policy
w.r.t. the optimal expert prediction:

LIKD(π) = E

[
−

T∑

t=1

log π(v∗t | y<t;xa)

]
, (3)

with v∗t as in (1). Algorithm IKD+ optimizes the
cross-entropy w.r.t. the expert’s policy:

LIKD+(π) = (4)

E

[
−
∑

v∈V
π∗(v | y<t;xs) · log π(v | y<t;xa)

]
.

An important modification to these objectives
that we propose in this work is to replace the
gold source language transcripts xs fed to the
NMT oracle by synthetic transcripts generated by
a pretrained ASR model. We call this algorithm
SynthIKD, with a respective SynthIKD+ variant.

91



Algorithm 1: Dagger/AggreVaTe for distil-
lation in NMT; combined from (Lin et al.,
2020) and (Hormann and Sokolov, 2021).

Data: Let D be original bi-text dataset, π∗ the NMT
oracle policy, I the total number of iterations,
T the max sequence length, Q the final logits,
and B the batch size.

Initialize π1 arbitrarily.
for i = 1 . . . I do

Initialize Di ← ∅
for b = 1 . . . B do

Sample an example (x, y) ∼ D.
Sample uniformly u ∼ [0, 1]
if u > βi then

Generate ŷ from πi given x.
Replace y with ŷ.

if Dagger then
for t = 1 . . . T do

Predict v∗t = argmax
v∈V

π∗(v | y<t;x)

Append (y<t, x, v
∗
t ) to Di

else // AggreVaTe
Sample uniformly t ∈ {1, .., T}.
Predict at = argmax

v∈V
π(v | y<t;x)

Predict
y∗
>t = argmax

y>t

π∗(y>t | y<t + at;x)

Append (y<t, x, at,BLEU(y∗
>t)) to Di

LDagger = EDi

[
−

T∑
t=1

log πi(v
∗
t | y<t;x)

]

LAggreVaTe =

EDi

[
T∑

t=1

(
σ(Q(at | y<t;x))− BLEU(y∗

>t)
)2
]

Let πi+1 = πi − αi · ∂L
∂πi

.

4 Experiments

We experiment with English-German AST on the
CoVoST2 (Wang et al., 2021) (430 hours) and
the MuST-C (Di Gangi et al., 2019) datasets (408
hours)3. As expert model, we use the Transformer
from Facebook’s submission to WMT19 (Ng et al.,
2019), which is based on the Big Transformer
architecture proposed by (Vaswani et al., 2017).
Our sequence-to-sequence models for students are
RNNs and Base Transformers. All models are
based on the fairseq framework (Ott et al.,
2019; Wang et al., 2020), but use different set-
tings of meta-parameters and preprocessing than
the default models. More details on models, meta-
parameters and training settings are given in the
Appendix A.

Our training setups are summarized in Table 1.
We compare our trained student models with sev-
eral baseline approaches: “Standard” denotes AST

3We also experimented with a smaller Europarl-ST dataset
and to save space we report results in Appendix B. Overall,
they are similar to these on larger datasets.

Variant Expert Input Loss

Standard - CE

KD+ (Liu et al., 2019) gold CE
SynthKD+ synthetic CE

IKD (Lin et al., 2020) gold LIKD
IKD+ (Lin et al., 2020) gold LIKD+

SynthIKD (ours) synthetic LIKD
SynthIKD+ (ours) synthetic LIKD+

Table 1: Summary of training variants: “Standard” de-
notes AST trained via cross-entropy (CE) on ground
truth targets with a label smoothing. KD+ denotes word-
level knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD+ denote
imitation knowledge distillation where student model is
corrected by the optimal expert action or the full expert
policy (Lin et al., 2020), respectively. SynthIKD and
SynthIKD+ are our variants with synthetic transcripts.
Expert Input indicates whether the NMT expert is given
the original transcripts from the dataset or synthetic
transcripts created by ASR. All IKD methods use the
exponential decay schedule for β that (Lin et al., 2020)
found to work best.

trained by teacher forcing on ground truth targets
with a label smoothing (Szegedy et al., 2016) factor
of 0.1. KD+ (Liu et al., 2019) denotes word-level
knowledge distillation between the expert’s and
student’s full output probability. IKD and IKD+

denote imitation knowledge distillation, where stu-
dent model is corrected by the empirical distribu-
tion of the optimal expert actions or the full expert
policy (Lin et al., 2020), respectively. SynthIKD
and SynthIKD+ are our variants with synthetic tran-
scripts. We used the same same exponential decay
schedule (β = 1

T ) used by (Lin et al., 2020) as
early experiments showed that this performed best
in our setup.

All AST models’ encoders are initialized with
the encoder of the corresponding ASR model,
trained on the respective datasets with cross-
entropy and the label-smoothing factor of 0.1. Be-
cause of the relatively small size of these datasets,
our experiments should seen as proof-of-concept,
showing that ASR models trained on a few hun-
dred hours of audio provide synthetic transcripts
of sufficient quality to enable imitation-based KD
for AST. The standalone performance of our ASR
models is listed in Table 2.
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Model CoVoST2 MuST-C
dev test dev test

RNN 26.68 33.94 23.42 24.44
Transformer 20.93 26.60 21.10 20.68

Table 2: WER↓ results for ASR models pretrained on
CoVoST2 and MuST-C. These models are used to cre-
ate the synthetic transcripts for respective experiments.
Standard development and test splits were used for CoV-
oST2. For MuST-C, we tested on tst-COMMON.

4.1 Feasibility of Oracle Correction

The idea of using synthetic transcripts in place of
gold transcripts has merit only if the NMT oracle’s
translations have higher quality than the transla-
tions the AST model generates. Therefore, we first
verify if the NMT oracle is capable of complet-
ing an AST models’ partial hypotheses y<t while
improving quality at the same time.

We follow Lin et al. (2020) and let the AST
models trained with label-smoothed CE on ground
truth targets translate the audio input with greedy
decoding up to a randomly chosen time step. Then,
we feed the NMT expert the gold transcript as input
and the partial translation as prefix, and let the
oracle finish the translation with greedy decoding.

As Table 2 shows, the out-of-the-box ASR per-
formance is relatively low (high WER), so errors
in synthetic transcripts will be propagated through
the NMT oracle. The question is whether the ex-
pert’s continuation can be of higher quality than
the student’s own predictions despite the partially
incorrect synthetic transcripts. In Table 3, lines 1
and 2 (or, 5 and 6) set the lower (end-to-end) and
upper (cascade) bounds on the performance. We
see that the NMT expert is able to complete the
student hypotheses successfully (lines 3, 4 and 7,
8), bringing gains in both gold and synthetic setups,
and reaching the upper bound (lines 3 vs. 2 and
7 vs. 6) for gold ones. Although the mistakes in
the synthetic transcripts do result in lower BLEU
scores (lines 4 and 8) they still improve over the
AST student complete translations (lines 1 and 5).

4.2 Main Results

Table 4 shows the main results of applying Algo-
rithm 1 for training an AST student with imitation-
based knowledge distillation on CoVoST2 and
MuST-C.

Dagger First we present results for the Dagger
algorithm. In Table 4, for both CoVoST2 and

MuST-C models, Dagger with the Transformer ar-
chitecture outperforms all baselines4, and matching
full teacher distributions (the ‘+’-versions of losses)
gives consistent gains. Distillation with RNNs, on
the other hand, fails to improve BLEU scores over
baselines, most likely due to their overall lower
translation quality. This leads to the student hy-
potheses that are too far from the reference so that
the expert’s one-step corrections are not able to
correct them.

The results show that Transformers and RNNs
with synthetic transcripts show statistically insignif-
icant differences in performance to the ones that
are using gold transcripts. This is notable since
the partially synthetic transcripts provided to the
NMT oracle are often incorrect, yet do not result in
a noticeable effect on the final student performance
if used in the IL framework. A similar observa-
tion can be made when comparing the use of gold
transcripts versus synthetic transcripts: Transform-
ers on both datasets perform comparably and erro-
neous transcripts do not seem to harm the trained
AST model.

AggreVaTe Finally, we evaluate the performance
of AggreVaTe both with gold and synthetic tran-
scripts. During training we targeted and evalu-
ated with the non-decomposable BLEU metric (i.e.
training with sentence-BLEU and evaluating with
corpus-BLEU) as well as with the decomposable
TER metric (Table 5). Following Hormann and
Sokolov (2021) we warm-started AggreVaTe with
differently trained standard or Dagger models, and
trained with AggreVaTe objectives for up to 50
epochs with early stopping on respective develop-
ment sets.

Surprisingly, we found that AggreVaTe does not
bring additional benefits on top of Dagger despite
the promise for a better matching between training
and inference objectives. Also there is no signifi-
cant difference between the results with the TER
rewards objective and sentence-BLEU rewards on
both CoVoST2 and MuST-C. We explain these re-
sults by the sufficiency of one-step corrections to
correct a “derailed” student, with little benefit of
continuing demonstration till the end of translation.
The fact that Dagger turns out to reap all of the ben-
efits from training with IL is good news in general,
since running beam search during training (to get
AggreVaTe’s full continuations) is more expensive

4p-value < 0.005 using the paired approximate random-
ization test (Riezler and Maxwell, 2005)
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Architecture Hypotheses # Decoding Setup Source Transcripts dev-BLEU↑

RNN
full 1 AST - 11.9

2 ASR transcribes, NMT expert translates - 21.8

partial 3 AST starts, NMT expert completes gold 21.9
4 AST starts, NMT expert completes synthetic 15.6

Transformer
full 5 AST - 16.7

6 ASR transcribes, NMT expert translates - 25.4

partial 7 AST starts, NMT expert completes gold 25.4
8 AST starts, NMT expert completes synthetic 19.9

Table 3: Feasibility experiment: BLEU score on CoVoST2 development set of NMT expert’s completion of AST
model full or partial hypotheses with greedy decoding; gold denotes the usage of the dataset’s source language
transcripts as NMT inputs and synthetic denotes synthetic transcripts created by the respective ASR model.

Achitecture Models CoVoST2 MuST-C
dev test dev test

RNN ba
se

lin
e Standard 13.6 10.0 14.6 14.1

KD+ 14.6 11.1 17.9 17.2
IKD+ 13.1 10.1 15.7 14.9

ou
rs SynthKD+ 14.1 10.6 16.9 15.9

SynthIKD+ 12.8 9.7 16.3 15.1

Transformer ba
se

lin
e Standard 18.4 14.2 19.5 19.4

KD+ 21.3 17.7 17.7 22.2
IKD+ 21.8 18.4 23.2 23.3

ou
rs SynthKD+ 21.7 18.0 22.5 22.6

SynthIKD+ 21.8 18.5 23.5 23.5

Table 4: Main results: RNN and Transformer student
models trained on expert inputs and loss variants of Ta-
ble 1, using Dagger for IL. We used the tst-COMMON
as the test set for MuST-C. (Synth)IKD is not included
since its performance is worse than (Synth)KD+. Trans-
formers trained with IL outperform all baselines, while
pure KD is the best for generally lower-quality RNN-
based models. Synthetic transcripts do not harm perfor-
mance for Transformer student models.

than greedily selecting one action (as does Dagger).

4.3 Quality of Synthetic Transcripts

In this section, we investigate explanations for
the high performance of Dagger on synthetic tran-
scripts: The first hypothesis is that synthetic tran-
scripts are already “good enough” and per-step IL
corrections add nothing on top. Second, the gains
could be due to the known NMT “auto-correcting”
ability and due to general robustness to the quality
of the source (cf. the success of back-translation in
NMT), and all benefits could be reached with KD
alone. To test both hypotheses, we create new train-
ing datasets where we replace references with trans-
lated gold or synthetic transcripts by the same NMT
expert with beam size 5. Evaluating on the unmodi-
fied references, we trained Transformer-based base-
lines and the IL model from Lin et al. (2020) on

these two new corpora.
As Table 6 shows, Transformer KD+ trained on

translated gold transcripts outperforms its coun-
terparts trained on translated synthetic transcripts,
confirming errors in the synthetic transcripts. This
refutes the first hypothesis.

Regarding the second hypothesis, we compare
the KD+ to IKD+ from the synthetic translated part
in Table 6. Were “auto-correction” sufficient we
would see similar performance in both lines. This
rejects the second hypothesis and suggests that IL
adds value on top of general NMT robustness to
inputs.

4.4 Qualitative Analysis

Here, we perform a human evaluation of success-
ful IL corrections, aiming at an explanation of the
performance of Dagger on synthetic transcripts.

We randomly sample 100 examples from the
CoVoST2 training set on which the ASR Trans-
former has a non-zero sentence-wise word error
rate, and compare the NMT expert’s probability
distributions over time for the given synthetic tran-
scripts. From the WER histogram in Figure 2 we
see that most of the sentences have a single-digit
number of errors.

Figure 2: Histogram of sentence-wise WER of ASR
Transformer on 100 samples from CoVoST2.
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IL Algorithm Model Data
CoVoST2 MuST-C

BLEU↑ TER↓ BLEU↑ TER↓
dev test dev test dev test dev test

Dagger
Standard gold 18.4 14.2 69.1 77.1 19.5 19.4 70.8 69.4
IKD+ gold 21.8 18.4 63.7 70.0 23.2 23.3 67.4 65.6
SynthIKD+ synth 21.8 18.5 63.6 69.8 23.5 23.5 67.2 65.6

Warm-start Model Data BLEU↑ TER↓ BLEU↑ TER↓
dev test dev test dev test dev test

AggreVaTe

sentence-BLEU reward-to-go
Standard gold 18.7 14.6 68.2 76.0 19.9 19.9 70.2 68.1
Standard synth 18.7 14.6 68.2 75.9 20.0 19.7 70.1 68.7
IKD+ gold 22.1 18.5 63.1 69.6 23.5 23.4 67.4 65.7
SynthIKD+ synth 22.1 18.5 63.1 69.7 23.5 23.6 67.0 65.6

TER reward-to-go
Standard gold 18.7 14.7 67.8 75.4 20.0 19.9 70.0 68.5
Standard synth 18.7 14.6 67.9 75.6 19.9 19.6 69.8 68.4
IKD+ gold 22.0 18.5 63.1 69.4 23.3 23.4 67.3 65.5
SynthIKD+ synth 22.1 18.5 63.1 69.6 23.5 23.6 67.0 65.3

Table 5: Comparison of Dagger with warm-started AggreVaTe with a maximum of 50 epochs on CoVoST2 and
MuST-C.

Training CoVoST2 MuST-C
dev test dev test

training on translated gold transcripts
Standard 18.1 14.9 20.0 20.0
KD+ 21.3 17.6 23.4 23.1
IKD+ 22.6 18.6 23.5 23.7

training on translated synthetic transcripts
Standard 17.8 14.2 19.2 19.2
KD+ 20.2 16.5 22.1 22.5
IKD+ 21.0 17.4 23.0 23.1

Table 6: BLEU scores of Transformer models trained
on the training set with original references replaced by
translations of gold and synthetic transcripts in com-
parison to using the original training set (lower part of
Table 4).

As WER cannot be used to differentiate between
small but inconsequential (to the understanding of
the sentence) errors and mistakes that change the
meaning of the sentence, we further compare the
generated transcript to the gold transcript and look
at the top-8 output probabilities of the expert at
each time step for each sample to classify each er-
ror in the synthetic transcripts. We further feed the
sampled sentences to the NMT expert and find that
in 36 out of 100 samples (all but the last two lines
in Table 7), the expert is able to generate output
probability distributions that favor the correct tar-
get token despite errors in the transcript. Although
the expert can put large probability mass on the
correct target token, whether it does so depends
on the error type in the generated transcript. The
expert is often able to deal with surface form errors,

Error Type Freq

omitted tokens 2
surface form error 17
contentual error, correct target in top-1 5
contentual error, correct target in top-8 12
critical error, expert predicts correctly due to prefix 32
critical error, expert does not predict correctly 32

Table 7: Error types in the synthetic transcripts created
by the ASR model.

such as different spellings, punctuation errors and
different word choice (17 occurrences). When the
synthetic transcripts contain critical errors, e.g. par-
tially hallucinated transcript, the expert is still able
to produce the correct translation if the missing or
wrong information can be still inferred from the
prefix (32 occurrences).

Next, we verify that the decoder language mod-
eling capability is what primarily drives the cor-
rection process. We do this by feeding parts of
reference translations as prefix conditioned on erro-
neous synthetic transcripts. Consider the transcript
“The king had taken possession of Glamis Castle
and plywood.” generated by the ASR model. Its
gold transcript reads “plundered it” instead of “ply-
wood”. In Figure 3 we illustrate output probabili-
ties that the expert generates in the last time-steps.
Assume as in Figure 3a that the expert has been

given the prefix “Der König hatte Glamis Castle
in Besitz genommen und”. According to the out-
put probabilities, the next output symbol is the
subword unit “Sperr” and would not be a proper
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(a) with y<t = “Der König hatte Glamis Castle in Besitz
genommen und ”

(b) with y<t = “Der König hatte Glamis Castle in Besitz
genommen und ge”

Figure 3: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “The king had
taken possession of Glamis Castle and plywood it.”

(a) with y<t = “S” (b) with y<t = “Sagte , ”

Figure 4: NMT expert top-8 output probabilities when translating the incorrect synthetic transcript “Slow down!”

correction. At the next timestep, however, the last
symbol in the prefix is the subword unit “ge” and,
as Figure 3b shows, the expert, being driven by its
decoder language modeling capability, puts highest
probabilities on subword units that are most likely
to produce a fluent output (the correct one “pl@@”,
and less probable “pflan@@” and “kl@@” rather
then paying attention to the (wrong) information in
the synthetic transcripts.

Similar situations can be observed in samples
with entirely wrong synthetic transcripts. In Fig-
ure 4, the expert has received the synthetic tran-
script “Slow down!” as input, which shares no
meaning with the gold transcript “Said he’d con-
sider it.” As shown in Figure 4a, the expert as-
signs the highest probability to “@@low” if it is
given the prefix “S” (as the expert has a shared
vocabulary, it can complete the output this way),
which turns the partial translation into an exact
copy of the transcript. Again, the top-8 predic-

tions do not share similar meaning with the tran-
script. After, in Figure 4b, the expert has received
the prefix “Sagte,”, it still attempts to complete
y<t by generating output symbols that would turn
y into a valid translation of this wrong transcript
(“langsam” (slow), “ruhig” (quiet), “langs@@”))
with the rest of options being mostly driven by
language modeling rather then reproducing source
semantics (“ent@@”, “verlan@@”).

Overall, with the SynthIKD+ training, the expert
induces smoothed output distributions and fluency
on the student more than it enforces the student to
predict one-hot labels produced by the expert as is
done by sequence-level KD.

5 Conclusion

We showed that a pretrained NMT model can suc-
cessfully be used as an oracle for an AST student,
without requiring gold source language transcripts
as in previous approaches to imitation learning for
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AST. This widens the applicability of imitation
learning approaches to datasets that do not con-
tain manual transcripts or to pre-trained ASR mod-
els for which training transcripts are not available.
Our qualitative analysis suggests an explanation of
the fact that the NMT oracle is robust against mis-
matches between manual and synthetic transcripts
by its large language model capabilities that allow
it to continue the prefix solely based on its learned
contextual knowledge.

6 Limitations

There are several limitations of this study. First, it is
done on one language pair although we believe this
should not qualitatively change the results. Second,
only one set of standard model sizes was evaluated
for AST student and NMT expert; we expect it
be in line with reported findings for NMT (Ghor-
bani et al., 2021). Finally, while alluding to the
potential of using large pre-trained ASR models in-
stead of manual transcripts for IL-based AST, our
current work must be seen as a proof-of-concept
experiment where we train ASR models on a few
hundred hours of audio, and discard the manual
transcripts in IL training, showing the feasibility of
our idea.
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Model BLEU↑
dev test

original dataset
Standard 13.8 14.4
KD+ 17.4 17.8
SynthKD+ 17.5 18.0
IKD+ 17.0 17.1
SynthIKD+ 17.0 17.0

translated gold training set
Standard 15.3 15.3
KD+ 18.2 18.4
IKD 16.8 17.0
IKD+ 17.1 17.5
synthetic translated training set
Standard 14.7 15.3
KD+ 17.0 16.8
IKD 16.1 16.0
IKD+ 16.3 16.6

Table A.1: Results on Europarl-ST

A Models, Meta-parameters, and
Training Settings

We use the speech-to-text module of the fairseq
framework (Ott et al., 2019; Wang et al., 2020)
for all experiments and train both RNNs with con-
volutional layers for time dimension reduction as
in Berard et al. (2018) and small Transformers as
in Wang et al. (2020), which consist of a convo-
lutional subsampler of two convolutional blocks,
followed by 12 encoder layers and 6 decoder layers.
The dimension of the self-attention layer is 256 and
the number of attention heads is set to 4. For the
NMT oracle, we use the trained Transformer model
from the Facebook’s submission to WMT19 (Ng
et al., 2019) 5, which is based on the big Trans-
former (Vaswani et al., 2017) which has 6 encoder
and decoder layers, 16 attention heads and the di-
mension of 1024, with a larger feed-forward layer
size of 8192. This NMT oracle had been trained
on all available WMT19 shared task en-de training
data and on back-translated english and german
portions of the News crawl dataset.

For all models we use Adam (Kingma and Ba,
2015) with gradient clipping at norm 10 and stop
training if the development set loss has not im-
proved for 10 epochs. For RNN architectures, we
return the best model on the development set and

5As the WMT19 submission consists of an ensemble of
models, we use the model1.pt for our experiments.

for Transformers, we create each model by aver-
aging over the last 10 checkpoints. For inference,
a beam size of 5 was used and we report case-
sensitive detokenized BLEU (Papineni et al., 2002)
computed with sacreBLEU (Post, 2018). We tested
for statistical significance with the paired approx-
imate randomization test (Riezler and Maxwell,
2005).

For all experiments, we preprocess the datasets
as follows: We extract log mel-scale filterbanks
with a povey window, 80 bins, a pre-emphasis filter
of 0.97, a frame length of 25 ms and a frame shift
of 10 ms. We discard samples with less than five or
more than 3000 frames and subtract the mean of the
waveform from each frame and zero-pad the FFT
input. For the text data, we normalize punctuation,
remove non-printable characters, use the Moses
tokenizer (Koehn et al., 2007) for tokenization and
segment the text data into subword units with byte-
pair encoding (Sennrich et al., 2016). We used a
random seed of 1 for all experiments.

We list the final used and best performing hy-
perparameters in Table A.2. Parameters that do
not differ between the training methods are not re-
peated in the table. We determine the batch size by
defining a maximum number of input frames in the
batch.

B Europarl-ST

We performed additional experiments on the
Europarl-ST dataset (Iranzo-Sánchez et al., 2020)
that provides 83 hours of speech training data. We
train RNNs with a learning rate of 0.002 and a max-
tokens size of 40,000 for a total of 80,000 updates.
All other hyper-parameters are the same as listed
for MuST-C in Table A.2. We only trained RNNs
on the Europarl-ST dataset due to the small amount
of available training data. We present the results in
Table A.1.

Both improvements over standard training and
by training on both the gold-translated and
synthetic-translated translated training data corre-
spond with the results presented in the main body
of this work. Hence, the results presented here hold
for relatively small datasets, too.

C Additional Example of NMT Expert
Correction

Here we give another example of the NMT expert
predicting the correct output token despite receiv-
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Model Hyperparameter CoVoST2 MuST-C

RNN
standard learning rate 1e-3 1e-3

max-tokens 60000 40000
scheduler fixed fixed

warmup-updates 20000 20000
encoder freezing updates 10000 10000

dropout 0.2 0.2
KD+ learning rate 1e-3 2e-3

max-tokens 50000 30000
warmup-updates 25000 20000

max-update 250000 250000
encoder-freezing updates 20000 10000

scheduler inverse square root inverse square root

Transformer
ASR learning rate 2e-3 1e-3

max-tokens 50000 40000
max-update 60000 100000

scheduler inverse square root inverse square root
warmup-updates 10000 10000

dropout 0.15 0.1
AST
standard learning rate 2e-3 2e-3

max-update 30000 100000
encoder-freezing updates 1000 -

KD+ max-tokens 50000 20000

Table A.2: list of hyperparameters that are dependent on model and dataset; we list only parameters which differ
from the previous model’s

Figure C.1: NMT expert top-8 output probabilities with
y<t = “ Er wurde später von der Canadian Cancer Soci-
ety und der Weltgesundheits”.

ing a transcript with incomplete or false informa-
tion.

Figure C.1 shows the expert’s output probabili-
ties in response to receiving factually false informa-
tion in the transcript. The ASR model transcribed

“World Health Organization” as “World Health Ser-
vice Scheme”, yet the expert produces a probability
distribution that is skewed in favor of the correct
proper name due to its learned context knowledge.
Note that the probability of generating the correct
output token “organisation” (organization) is above
0.8.
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